

PDC Summer School	2
Overview	
 Where are we today on the road to exascale? 	
• Why is exascale such a challenge?	
 What is the CRESTA project doing to help solve it 	
 Before we start – what do we mean by "exascale"? An exaflop equals 10¹⁸ calculations That's a million million million Supercomputer performance is normally quoted in terms of flops can be completed in a second Computing at the exascale means being able to perform a per second on a single (very large) computer 	-
	epcc

ols and
e most difficult
CREST

8/8/12

PDC Summer School	30
Systemware	
 Systemware is the software components requir applications to exploit future exascale platforms 	<u> </u>
Consists of	
 Underpinning and cross cutting technologies 	
 Operating systems, fault tolerance, energy, performa 	nce optimisation
 Development environment 	
 Runtime systems, compilers, programming models a domain specific 	nd languages including
 Algorithms and libraries 	
 Key numerical algorithms and libraries for exascale 	
 Debugging and Application performance tools 	
 Very lucky to have world leaders in CRESTA 	
 Allinea's DDT, TUD's Vampir and KTH's perfminer 	
 Pre- and post- processing of data resulting from s 	imulations
 Often neglected, hugely important at exascale 	CREST

	F	lanned mod		
IFS model resolution	Envisaged Operational Implementation	Grid point spacing (km)	Time-step (seconds)	Estimated number of cores ¹
T1279 H ²	2010 (L91) 2012 (L137)	16	600	1100 1600
T2047 H	2014-2015	10	450	6K
T3999 NH ³	2020-2021	5	240	80K
T7999 NH	2025-2026	2.5	120	1M

1 - a gross estimate for the number of 'Power7' equivalent cores needed to achieve a 10 day model forecast in under 1 hour (~240 FD/D), system size would normally be 10 times this number.

2 – Hydrostatic Dynamics

3 – Non-Hydrostatic Dynamics

CREST

