VERITAS Deep Observations of the Dwarf Spheroidal Galaxy Segue 1 arxiv : 1202.2144

OKC-DM 2012/03/13

Christian Farnier

OUTLINE

- IACT / VERITAS reminder
- dSph Segue 1
- VERITAS observations
- DM bounds

Imaging Atmospheric Cherenkov Telescope (IACT) principle

A high energy gamma-ray (or charged cosmic-ray) entering the atmosphere interacts with its atoms.

It produces a shower of secondary particles travelling @ v>c/n which creates a dim cone of Cherenkov light for a very short duration.

It is possible to observe such showers with large collection area mirrors and a fast camera put in their focal plane.

IACT experiments have to deal with background from :

- the night sky (stars, Moon, ...)
- Charged cosmic rays (CCR) with a rate x10⁵ times higher than the brightest TeV gamma-ray source.₃

IACT principle (cntd)

IACT - Stereoscopic system

In the current experiments, up to 4 IACTs are put together, allowing to observe the same shower from several point of view.

Advantages :

- Improved bckg rejection (muons)
- Incoming direction degeneracy dispelled
- Improved angular resolution
- Improved energy resolution

+ new shower reconstruction algorithms developped based on intrinsic 3D shower properties.

Census of relevant Imaging Atmospheric Cherenkov Telescopes (IACT) experiments

Political Map of the World, April 2007

Current space mission

VERITAS

499 PMTs/camera Aeff ~ 10^5 m^2 $\delta \text{E/E} ~ 15\text{-}20 \%$ $\delta \theta ~ 0.1 \text{deg/event}$

Why dwarf galaxies ?

- DM dominated (M/L ~ 10 100)
- Satellites of the Milky-Way \rightarrow nearby (~100 kpc)
- Low background (ordinary matter content very low)
- Stellar velocities can be used to measure DM density (error can be propagate to particle constraints)

Results from dwarf spheroidal galaxies

Dwarf galaxies probed in gamma-rays as in 2011

Segue 1

Draco (discovered 1954)

data on >200 stellar velocities

classical dwarf

Segue 1 (discovered 2006)

.

data is being analyzed (-65 stars) [Simon et.al.]

New stellar

ultra-faint dwarf

 $\gamma, \nu \text{ flux} \propto \mathcal{L} \sim \int \rho^2 \quad \frac{\text{determined from}}{\text{stellar velocities}}$

Current analysis suggests $\mathcal{L}_{Segue1} \gtrsim \mathcal{L}_{Draco}$

However, this is preliminary and analysis is still ongoing!

Neelima Sehgal, KIPAC

VERITAS observations

- Observations between Jan. 2010 and May 2011
 - \rightarrow total exposure after quality selection and dead time correction : 47.8h
- Mean zenith angle : 20deg (important for low E_{th} =170GeV / E_{th} =300GeV after additionnal cut to account for E bias)
- Wobble observations (0.5 deg offset) Increase the number of OFF regions \rightarrow reduce the bckg systematic uncertainties (N_v = N_{ON} - $\alpha x N_{OFF}$)

VERITAS observations - cntd

Flux upper limits

 Flux UL are based on the number of accepted events, the effective area and the assumed spectral shape :

$$N_{\gamma}(E \ge E_{\min}) = T_{obs} \times \frac{\int_{E_{\min}}^{\infty} \mathcal{A}_{eff}(E) \frac{dN_{\gamma}}{dE} dE}{\int_{E_{\min}}^{\infty} \frac{dN_{\gamma}}{dE} dE} \times \Phi_{\gamma}(E \ge E_{\min})$$

• Integral flux ULs for different spectral index value in case of a power-law spectrum : $spectral index \Phi^{95\% CL}(E > 300 GeV)$

$$\frac{\mathrm{dN}_{\gamma}}{\mathrm{dE}} \propto \mathrm{E}^{-\Gamma}$$

Spectral index	$\Phi_{\gamma}^{95\%{\rm CL}}({\rm E}\geq 300{\rm GeV})$
Г	$[10^{-13}\mathrm{cm}^{-2}\mathrm{s}^{-1}]$
1.8	7.6
2.2	7.7
2.6	8.0
3.0	8.2

1% of Crab Nebula integrated flux above 300 GeV is 1.5×10^{-12} ph/(cm² s)

UL with DM gamma-ray spectra

- 3 different branching ratios considered (simulated with PYTHIA) :
 - b-bbar (generic quark spectrum)
 - W+W-
 - tau+tau-

DM bounds

- 2 scenarios considered :
- Annihilating DM • $\frac{d\Phi_{\gamma}}{dE}(\Delta\Omega, E) = \frac{1}{4\pi} \frac{\langle \sigma v \rangle}{2 m_{\chi}^2} \frac{dN_{\gamma}}{dE} \times \bar{J}(\Delta\Omega)$

$$\begin{split} & \text{Einasto profile}^*\\ & \bar{J}(\Delta\Omega) = \int_{\Delta\Omega} \mathrm{d}\Omega \int_{s_{\min}}^{s_{\max}} \rho_{\chi}^2(r[s]) \mathrm{d}s\\ & \bar{J}(\Delta\Omega) = 7.7 \times 10^{18} \, \mathrm{GeV}^{-2} \, \mathrm{cm}^{-5} \, \mathrm{sr} \end{split}$$

- Decaying DM
- $- \bullet \langle \sigma v \rangle / 2 m_{\chi}^2 \to \Gamma / m_{\chi}, \text{ where } \Gamma = \tau^{-1} \qquad \rho_{\chi}^2 \to \rho_{\chi}$ $\overline{J}(\Delta \Omega) = 2.6 \times 10^{17} \,\text{GeV cm}^{-2} \,\text{sr}^{-1}$

* claim that systematic uncertainties on the astrophysical factor are <10

DM bounds (ctd)

UL on annihilation cross-section

LL on the decay lifetime

constrains for thearmally produced WIMPs

Constraints on Sommerfeld enhancement and boost factor

Sommerfeld enhancement :

multiple exchange of gauge boson ϕ before DM annihilation \rightarrow ladder Feynman diagram

 \rightarrow 'natural' boost factor

FIG. 2: Sommerfeld enhancement S as a function of the dark matter particle mass m, for different values of the particle velocity. Going from bottom to top $\beta = 10^{-1}, 10^{-2}, 10^{-3}, 10^{-4}, 10^{-5}$.

Constraints on Sommerfeld enhancement and boost factor

Sommerfeld enhancement :

multiple exchange of gauge boson ϕ before DM annihilation \rightarrow ladder Feynman diagram

 \rightarrow 'natural' boost factor

