
©Jesper Larsson Träff 21.11.2012

History and Development of the
MPI Standard

Jesper Larsson Träff
Vienna University of Technology

Faculty of Informatics, Institute of Information Systems
Research Group Parallel Computing

Favoritenstrase 16, 1030 Wien
www.par.tuwien.ac.at

http://www.par.tuwien.ac.at/

©Jesper Larsson Träff 21.11.2012

21. September, 2012, MPI Forum meeting in Vienna:
MPI 3.0 has just been released …

… but MPI has a long history and it is instructive to
look at that

www.mpi-forum.org

http://www.mpi-forum.org/
http://www.mpi-forum.org/
http://www.mpi-forum.org/

©Jesper Larsson Träff 21.11.2012

„Those who cannot remember the past are condemned to repeat
it”, George Santyana, The Life of Reason, 1905-1906

“History always repeats itself twice: first time as tragedy,
second time as farce”, Karl Marx

“History is Written By the Winners”, George Orwell, 1944
(but he quotes from someone else)

©Jesper Larsson Träff 21.11.2012

Last quote:
„history“ depends. Who tells it, and why? What informations is
available? What‘s at stake?

My stake:
•Convinced of MPI as a well designed and extremely useful
standard, that has posed productive research/development
problems, with a broader parallel computing relevance
•Critical of current standardization effort, MPI 3.0

•MPI implementer, 2000-2010 with NEC
•MPI Forum member 2008-2010 (with Hubert Ritzdorf,
representing NEC)
•Voted „no“ to MPI 2.2

©Jesper Larsson Träff 21.11.2012

A long debate: shared-memory vs. distributed memory

Question: What shall a parallel machine look like?

M

P P P P

Answer depends
•What are your concerns?
•What is desirable?
•What is feasible?

causing debate since (at least) the 70ties, 80ties

?

©Jesper Larsson Träff 21.11.2012

Hoare/Dijkstra:
Parallel programs shall be structured as collections of
communicating, sequential processes

Their concern: CORRECTNESS

Wyllie, Vishkin:
A parallel algorithm is like a collection of synchronized sequential
algorithms that access a common shared memory, and the machine
is a PRAM

Their concern: (asymptotic) PERFORMANCE

And, of course, PERFORMANCE: many, many practitioneers

And, of course, CORRECTNESS: Hoare semantics

©Jesper Larsson Träff 21.11.2012

Hoare/Dijkstra:
Parallel programs shall be structured as collections of
communicating, sequential processes

Wyllie, Vishkin:
A parallel algorithm is like a collection of synchronized sequential
algorithms that access a common shared memory, and the machine
is a PRAM

[Fortune, Wyllie: Parallelism in Random Access Machines. STOC
1978: 114-118]

[Shiloach, Vishkin: Finding the Maximum, Merging, and Sorting in a
Parallel Computation Model. Jour. Algorithms 2(1): 88-102, 1981]

[C. A. R. Hoare: Communicating Sequential Processes. Comm. ACM
21(8): 666-677, 1978]

©Jesper Larsson Träff 21.11.2012

Hoare/Dijkstra:
Parallel programs shall be structured as collections of
communicating, sequential processes

Wyllie, Vishkin: (many, many practiotioneers, Burton-Smith, …)
A parallel algorithm is like a collection of synchronized sequential
algorithms that access a common shared memory, and the machine
is a PRAM

M

P P P P

Neither perhaps cared
too much about how to
build machines…

Neither perhaps cared
too much about how to
build machines (in the
beginning)

©Jesper Larsson Träff 21.11.2012

The INMOS transputer T400, T800, from
ca. 1985

…but others (furtunately) did

A complete architecture entirely based on
the CSP idea. An original programming
language, OCCAM (1983, 1987)

Parsytec (ca. 1988-1995)

©Jesper Larsson Träff 21.11.2012

Intel iPSC/2 ca. 1990

Intel Paragon, ca. 1992

IBM SP/2 ca. 1996
Thinking machines
CM5, ca. 1994

©Jesper Larsson Träff 21.11.2012

MasPar (1987.1996)
MP2

Thinking Machines (1982-94) CM2, CM5

KSR 2, ca. 1992

HEP Denelcor,
mid 1980ties

©Jesper Larsson Träff 21.11.2012

Ironically…

Despite algorithmically stronger properties and potential for
scaling to much, much larger numbers of processors of shared-
memory models (like the PRAM)

practically, high-performance systems with (quite) substantial
parallelism have all been distributed-memory systems

and the corresponding de facto standard – MPI (the
Message-Passing Interface) is much stronger

than (say) OpenMP

©Jesper Larsson Träff 21.11.2012

Sources of MPI: the early years

Commercial vendors and national laboratories (including
many European) needed practically working programming
support for their machines and applications

Early 90ties fruitful years for practical parallel computing
(funding for „grand challenge“ and „star wars“)

Vendors and labs proposed and maintained own languages,
interfaces, libraries for parallel programming (early 90ties)

•Intel NX, Express, Zipcode, PARMACS, IBM EUI/CCL,
PVM, P4, OCCAM, …

©Jesper Larsson Träff 21.11.2012

•Intel NX, Express, Zipcode, PARMACS, IBM EUI/CCL,
PVM, P4, OCCAM, …

intended for distributed memory machines, and centered around
similar concepts

Similar enough to warrant an effort towards creating a common
standard for message-passing based parallel programming

Portability problem: wasted effort in maintaining own interface
for small user group, lack of portability across systems

©Jesper Larsson Träff 21.11.2012

•Intel NX: send-receive message passing (non-blocking,
buffering?), no tags(?), no group concept, no collectives weak
encapsulation

•IBM EUI: point-to-point and collectives (more than in MPI),
group concept, high performance [Snir et al.]

•Zipcode/Express: point-to-point, emphasis on library building
[Skjellum]

•PARMACS/Express: point-to-point, topological mapping [Hempel]

•PVM: point-to-point communication, some collective, virtual
machine abstraction, fault-tolerance

Message-passing interfaces/languages early 90ties

©Jesper Larsson Träff 21.11.2012

Some odd men out

•Linda: tuple space get/put – a first PGAS approach?

•Active messages; seems to presuppose an SPMD model?

•OCCAM: too strict CSP-based, synchronous message passing?

•PVM: heterogeneous systems, fault-tolerance, …

[Hempel, Hey, McBryan, Walker: Special Issue – Message Passing
Interfaces. Parallel Computing 29(4), 1994]

©Jesper Larsson Träff 21.11.2012

Standardization: the MPI Forum and MPI 1.0

[Hempel, Walker: The emergence of the MPI message passing standard
for parallel computing. Computer Standards & Interfaces, 21: 51-62,
1999]

A standardization effort was started early 1992; key Dongarra,
Hempel, Hey, Walker

Goal: to come out within a few years time frame with a
standard for message-passing parallel programming; building on
lessons learned from existing interfaces/languages

•Not a research effort (as such)!
•Open to participation from all interested parties

©Jesper Larsson Träff 21.11.2012

Key technical design points

•Basic message-passing and related functionality (collective
communication!)

•Enable library building: safe encapsulation of messages (and
other things, eg. query functionality)

•High performance, across all available and future systems!

•Scalable design

•Support for C and Fortran

MPI should encompass and enable

©Jesper Larsson Träff 21.11.2012

The MPI Forum

Not and ANSI/IEEE Standardization body, nobody „owns“
the MPI standard; „free“

Open to participation for all interested parties; protocols
open (votes, email discussions)

Regular meetings, 6-8 week intervals

Those who participates at meetings (with a history) can
vote, one vote per organization (current discussion:
quorum, semantics of abstaining)

The 1st MPI Forum set out out to work early 1993

©Jesper Larsson Träff 21.11.2012

Errata, minor adjustments: MPI 1.0, 1.1, 1.2: 1994-1995

After 7 meetings, 1st version of the MPI Standard was ready
early 1994. Two finalizing meetings in February 1994

MPI: A Message-Passing Interface standard. May 5th, 1994

The standard is the 226 page pdf-document
that can be found at www.mpi-forum.org

as voted by the MPI Forum

http://www.mpi-forum.org/
http://www.mpi-forum.org/
http://www.mpi-forum.org/

©Jesper Larsson Träff 21.11.2012

Take note:

The MPI 1 standardization process was followed hand-in-hand
by a(n amazingly good) prototype implementation: mpich from
Argonne National Laboratory (Gropp, Lusk, …)

[W. Gropp, E. L. Lusk, N. E. Doss, A. Skjellum: A High-Performance,
Portable Implementation of the MPI Message Passing Interface
Standard. Parallel Computing 22(6): 789-828, 1996]

Other parties, vendors could build on this implementation (and
did!), so that MPI was quickly supported on many parallel
systems

©Jesper Larsson Träff 21.11.2012

Why MPI has been successful: an appreciation

•abstractions, but is still close enough to common architectures
to allow efficient, low overhead implementations („MPI is the
assembler of parallel computing…“);

•is formulated with care and precision; but not a formal
specification

•is complete (to a high degree), based on few, powerful, largely
orthogonal key concepts (few exceptions, few optionals)

•and few mistakes

MPI made some fundamental

©Jesper Larsson Träff 21.11.2012

i

j

m

k

l

Entities: MPI
processes

can communicate through a
communication medium

that can be
implemented as
„processes“ (most
MPI
implementations),
„threads“, …

Communication
medium: concrete

network,…

nature of which is of no concern to the MPI standard:
•No explicit requirements on network structure or capabilities
•No performance model or requirements

Message-pasing abstraction

©Jesper Larsson Träff 21.11.2012

i j

MPI_Send(&data,count,type,j,tag,comm);

MPI_Recv(&data,count,type,i,tag,comm,&status);

Basic message-pasing: point-to-point communication

Only processes in same communicator: ranked set of processes
with unique „context“ - can communicate

Fundamental library building concept: isolates communication
in library routines from application communication

©Jesper Larsson Träff 21.11.2012

i j

MPI_Send(&data,count,type,j,tag,comm);

MPI_Recv(&data,count,type,i,tag,comm,&status);

Basic message-pasing: point-to-point communication

Receiving
process blocks
until data have
been
transferred

MPI implementation must ensure reliable transmission; no time
out (see RT-MPI)

Semantics: messages from same sender are delivered in order;
possible to write fully deterministic programs

©Jesper Larsson Träff 21.11.2012

i j

MPI_Send(&data,count,type,j,tag,comm);

MPI_Recv(&data,count,type,i,tag,comm,&status);

Basic message-pasing: point-to-point communication

Receiving
process blocks
until data have
been
transferred

Sending process may block or not… this is not synchronous
communication (as in CSP; close to this, synchronous MPI_Ssend)

Semantics: upon return, data buffer can safely be reused

©Jesper Larsson Träff 21.11.2012

i j

MPI_Isend(&data,count,type,j,tag,comm);

MPI_Irecv(&data,count,type,i,tag,comm,&status);

Basic message-pasing: point-to-point communication

Receiving process
returns
immediately, data
buffer must not
be touched

Non-blocking communication: MPI_Isend/MPI_Irecv
Explicit completion: MPI_Wait,…

Design principle: MPI specification shall not enforce internal
buffering, all communication memory in user space…

©Jesper Larsson Träff 21.11.2012

i j

MPI_Isend(&data,count,type,j,tag,comm);

MPI_Irecv(&data,count,type,i,tag,comm,&status);

Basic message-pasing: point-to-point communication

Receiving process
returns
immediately, data
buffer must not
be touched

Non-blocking communication: MPI_Isend/MPI_Irecv
Explicit completion: MPI_Wait,…

Design choice: No progress rule, communication will/must
eventually happen

©Jesper Larsson Träff 21.11.2012

i j

MPI_Isend(&data,count,type,j,tag,comm);

MPI_Irecv(&data,count,type,i,tag,comm,&status);

Basic message-pasing: point-to-point communication

Completeness: MPI_Send, Isend, Issend, …, MPI_Recv, Irecv can
be combined, semantics make sense

Receiving process
returns
immediately, data
buffer must not
be touched

©Jesper Larsson Träff 21.11.2012

i j

MPI_Send(&data,count,type,j,tag,comm);

MPI_Recv(&data,count,type,i,tag,comm,&status);

Basic message-pasing: point-to-point communication

Receiving
process blocks
until data have
been
transferred

MPI_Datatype describes structure of communication data
buffer: basetypes MPI_INT, MPI_DOUBLE, …, and
recursively applicable type constructors

data

©Jesper Larsson Träff 21.11.2012

i j

MPI_Send(&data,count,type,j,tag,comm);

MPI_Recv(&data,count,type,i,tag,comm,&status);

Basic message-pasing: point-to-point communication

Receiving
process blocks
until data have
been
transferred

Orthogonality: Any MPI_Datatype can be used in any
communication operation

data

Semantics: only signature of data sent and data received must
match (performance!)

©Jesper Larsson Träff 21.11.2012

Other functionality (supporting library building)

•Attributes to describe MPI objects (communicators,
datatypes)

•Query functionality for MPI objects (MPI_Status)

•Errorhandlers to influence behavior on errors

•MPI_Group‘s for manipulating ordered sets of processes

©Jesper Larsson Träff 21.11.2012

„MPI is too large“

„MPI is the assembler of parallel computing“…

„MPI is designed not to make easy things easy, but to make
difficult things possible“
Gropp, EuroPVM/MPI 2004

Conjecture (tested at EuroPVM/MPI 2002): for any MPI
feature there will be at least one (significant) user depending
essentially on exactly this feature

Often heard objections/complaints

and two answers

©Jesper Larsson Träff 21.11.2012

Collective communication: patterns of process communication

Fundamental, well-studied, and useful parallel communication
patterns captured in MPI 1.0 as socalled collective
operations:

•MPI_Barrier(comm);
•MPI_Bcast(…,comm);
•MPI_Gather(…,comm); MPI_Scatter(…,comm);
•MPI_Allgather(…,comm);
•MPI_Alltoall(…,comm);
•MPI_Reduce(…,comm); MPI_Allreduce(…,comm);
•MPI_Reduce_scatter(…,comm);
•MPI_Scan(…,comm);

Semantics: all processes in comm participates; blocking; no tags

©Jesper Larsson Träff 21.11.2012

Collective communication: patterns of process communication

Fundamental, well-studied, and useful parallel communication
patterns captured in MPI 1.0 as socalled collective
operations:

•MPI_Barrier(comm);
•MPI_Bcast(…,comm);
•MPI_Gather(…,comm); MPI_Scatter(…,comm);
•MPI_Allgather(…,comm);
•MPI_Alltoall(…,comm);
•MPI_Reduce(…,comm); MPI_Allreduce(…,comm);
•MPI_Reduce_scatter(…,comm);
•MPI_Scan(…,comm);

Completeness: MPI_Bcast dual of MPI_Reduce; MPI_Gather
dual of MPI_Scatter. Regular and irregular (vector) variants

©Jesper Larsson Träff 21.11.2012

Collective communication: patterns of process communication

Fundamental, well-studied, and useful parallel communication
patterns captured in MPI 1.0 as socalled collective
operations:

•MPI_Gatherv(…,comm); MPI_Scatterv(…,comm);
•MPI_Allgatherv(…,comm);
•MPI_Alltoallv(…,comm);

•MPI_Reduce_scatter(…,comm);

Completeness: MPI_Bcast dual of MPI_Reduce; MPI_Gather
dual of MPI_Scatter. Regular and irregular (vector) variants

©Jesper Larsson Träff 21.11.2012

Collective communication: patterns of process communication

Fundamental, well-studied, and useful parallel communication
patterns captured in MPI 1.0 as socalled collective
operations

Collectives capture complex patterns, often with non-trivial
algorithms and implementations: delegate work to library
implementer, save work for the application programmer

Obligation: MPI implementation must be of sufficiently high
quality – otherwise application programmer will not use or
implement own collectives

This did happen! For datatypes: unused for a long time

©Jesper Larsson Träff 21.11.2012

Collective communication: patterns of process communication

Fundamental, well-studied, and useful parallel communication
patterns captured in MPI 1.0 as socalled collective
operations

Collectives capture complex patterns, often with non-trivial
algorithms and implementations: delegate to library
implementer, save work for the application programmer

Completeness: MPI makes it possible to (almost) implement MPI
collectives „on top of“ MPI point-to-point communication

Some exceptions for reductions, MPI_Op; datatypes

©Jesper Larsson Träff 21.11.2012

Collective communication: patterns of process communication

Fundamental, well-studied, and useful parallel communication
patterns captured in MPI 1.0 as socalled collective
operations

Collectives capture complex patterns, often with non-trivial
algorithms and implementations: delegate to library
implementer, save work for the application programmer

Conjecture: well-implemented collective operations contributes
significantly towards application „performance portability“

[Träff, Gropp, Thakur: Self-Consistent MPI Performance Guidelines.
IEEE TPDS 21(5): 698-709, 2010]

©Jesper Larsson Träff 21.11.2012

Proc 0

x

Proc p-1

Three algorithms for matrix-vector multiplication

nxm matrix A and m-element vector y distributed evenly across
p MPI processes: compute z = Ay

Algorithm 1:
•Row-wise matrix
distribution
•Each process needs full
vector: MPI_Allgather(v)
•Compute blocks of result
vector locally

©Jesper Larsson Träff 21.11.2012

Proc 0 x Proc p-1

Algorithm 2:
•Column-wise matrix
distribution
•Compute local partial
result vector
•MPI_Reduce_scatter to
sum and distribute partial
results

Three algorithms for matrix-vector multiplication

©Jesper Larsson Träff 21.11.2012

Proc 0

Proc 2c

Proc c

Proc c-1 …

x

M
PI

_
A

ll
ga

th
e
r

M
PI

_
A

ll
ga

th
e
r

Three algorithms for matrix-vector multiplication

•Algorithm 3:
•Matrix distribution into
blocks of n/r x m/c
elements
•Algorithm 1 on columns
•Algorithm 2 on rows

©Jesper Larsson Träff 21.11.2012

Proc 0

Proc 2c

Proc c

Proc c-1 …

x

MPI_Reduce_scatter

MPI_Reduce_scatter

MPI_Reduce_scatter

p=rc

Three algorithms for matrix-vector multiplication

•Algorithm 3:
•Matrix distribution into
blocks of n/r x m/c
elements
•Algorithm 1 on columns
•Algorithm 2 on rows

Algorithm 3 is more scalable. Partitioning the set processes
(new communicators) is essential!

Interfaces that do support collectives on subsets of processes
are not able to express Algorithm 3: case in point UPC

©Jesper Larsson Träff 21.11.2012

Three algorithms for matrix-vector multiplication

For the „regular“ case where p divides n (and p=rc)
•Regular collectives: MPI_Allgather, MPI_Reduce_scatter

For the „irregular“ case
•Irregular collectives: MPI_Allgatherv, MPI_Reduce_scatter

MPI 1.0 defined regular/irregular versions – completeness –
for all the considered collective patterns; except for
MPI_Reduce_scatter

Performance: irregular subsume regular counterparts; but
much better algorithms are known for the regular ones

©Jesper Larsson Träff 21.11.2012

[R. A. van de Geijn, J. Watts: SUMMA: scalable
universal matrix multiplication algorithm. Concurrency -
Practice and Experience 9(4): 255-274 (1997)]

[Ernie Chan, Marcel Heimlich, Avi Purkayastha, Robert A. van de Geijn:
Collective communication: theory, practice, and experience. Concurrency
and Computation: Practice and Experience 19(13): 1749-1783 (2007)]

[F. G. van Zee, E. Chan, R. A. van de Geijn, E. S.
Quintana-Ortí, G. Quintana-Ortí: The libflame Library
for Dense Matrix Computations. Computing in Science
and Engineering 11(6): 56-63 (2009)]

A lesson: Dense Linear Algebra and (regular) collective
communication as offered by MPI go hand in hand

Note: Most of these collective communication algorithms are a
factor 2 off from best possible

©Jesper Larsson Träff 21.11.2012

Another example: Integer (bucket) sort

n integers in a given range [0,R-1], distributed evenly across p
MPI processes: m= n/p integers per process

0 1 3 0 0 2 0 1 …

4
2
1
3

Step 1: bucket sort locally, let B[i] number of elements with key i

Step 2: MPI_Allreduce(B,AllB,R,MPI_INT,MPI_SUM,comm);

Step 3: MPI_Exscan(B,RelB,R,MPI_INT,MPI_SUM,comm);)

B = A =

Now: Element A[j] needs to go to position AllB[A[j]-1]+RelB[A[j]]+j

©Jesper Larsson Träff 21.11.2012

Another example: Integer (bucket) sort

n integers in a given range [0,R-1], distributed evenly across p
MPI processes: m= n/p integers per process

0 1 3 0 0 2 0 1 …

4
2
1
3

Step 4: compute number of elements to be sent to each other
process, sendelts[i], i=0,…,p-1

B = A =

Step 5:
MPI_Alltoall(sendelts,p,MPI_INT,recvelts,p,MPI_INT,comm);

Step6: redistribute elements
MPI_Alltoallv(A,sendelts,sdispls,…,comm);

©Jesper Larsson Träff 21.11.2012

Another example: Integer (bucket) sort

The algorithm is stable Radixsort

Choice of radix R depends on properties of network (fully
connected, fat tree, mesh/torus, …) and quality of
reduction/scan-algorithms

The algorithm is portable (by virtue of the MPI collectives),
but tuning depends on systems – concrete performance model
needed, but this is outside scope of MPI

Note: on strong network T(MPI_Allreduce(m)) = O(m+log p)

NOT: O(mlog p)

©Jesper Larsson Träff 21.11.2012

A last feature

Process topologies:

Specify application communication pattern (as either a directed
graph, or Cartesian grid) to MPI library, let library assign
processes to processors so as to improve communication
follwing specified pattern

MPI version: collective communicator construction functions,
process ranks in new communicator represent new (improved)
mapping

And a very last: (simple) tool building support – the MPI profiling
interface

©Jesper Larsson Träff 21.11.2012

The mistakes

•MPI_Cancel(), semantically ill-defined, difficult to implement; a
concession to RT?

•MPI_Rsend(); vendors got too much leverage?

•Pack/unpack; was added as an afterthough in last 1994
meetings (functionality is useful/needed, limitations in
specification)

•Some functions enforce full copy of argument (list)s into
library

©Jesper Larsson Träff 21.11.2012

Missing functionality

•Datatype query functions – not possible to query/reconstruct
structure specified by given datatype

•Some MPI objects are not first class citizens (MPI_Aint,
MPI_Op, MPI_Datatype); makes it difficult to build certain
types of libraries

•Reductions cannot be performed locally

©Jesper Larsson Träff 21.11.2012

Definition:

An MPI construct is non-scalable, if memory or time overhead(*)
is Ω(p), p number of processes

Questions:

•Are there aspects of the MPI specification that are non-
scalable (forces Ω(p) memory or time)?

•Are there aspects of (typical) MPI implementations that are
non-scalable

(*)cannot be accounted for in application

Is MPI scalable?

Question must distinguish between specification and
implementation

©Jesper Larsson Träff 21.11.2012

Answer is “yes” to both questions

Example:
Irregular collective alltoall communication (each process
exchange some data with each other process)

MPI_Alltoallw(sendbuf,sendcounts[],senddispl[],sendtypes[],
 recvbuf,recvcounts[],recvdispls[],recvtypes[],…)

takes 6 p-sized arrays (4- or 8-byte integers) ~ 5MBytes, 10%
of memory on BlueGene/L

Sparse usage pattern: often each process exchanges with
only few neighbors, so most send/recvcounts[i]=0

MPI_Alltoallw is non-scalable
Pi

©Jesper Larsson Träff 21.11.2012

Experiment:
sendcounts[i]=0, recvcounts[i] =0 for all processes and all i

Argonne Natl. Lab
BlueGene/L

Entails no communication

[Balaji, …, Träff : MPI on millions of cores. Parallel Processing Letters
21(1): 45-60, 2011]

©Jesper Larsson Träff 21.11.2012

Definitely non-scalable features in MPI 1.0

•Irregular collectives: p-sized lists of counts, displacements,
types

•Topology interface: requires specification of full process
topology by all processes

©Jesper Larsson Träff 21.11.2012

MPI 2: what (almost) went wrong

A number of issues/desired functionality were left open by
MPI 1.0, either because of

•no agreement
•deadline, desire to get a consolidated standard out in time

Major open issues

•Parallel IO
•One-sided communication
•Dynamic process management

were partly described in the socalled JOD: „Journal of
Development“ (see www.mpi-forum.org)

http://www.mpi-forum.org/
http://www.mpi-forum.org/
http://www.mpi-forum.org/

©Jesper Larsson Träff 21.11.2012

MPI Forum started to reconvene already in 1995

Between 1995-1997 there were 16 meetings which lead to
MPI 2.0

MPI 1.0:
226 pages

MPI 2.0: 356
additional pages

Major new features, with new concepts: extended message
passing models
1. Dynamic process management
2. One-sided communication
3. MPI-IO

©Jesper Larsson Träff 21.11.2012

1. Dynamic process management:

MPI 1.0 was completely static: a communicator cannot change
(design principle: no MPI object can change; new objects can
be created and old ones destroyed), so the number of
processes in MPI_COMM_WORLD cannot change: therefore
not possible to add or remove processes from a running
application

MPI 2.0 process management relies on inter-communicators
(from MPI 1.0) to establish communication with newly started
processes or already running applications
•MPI_Comm_spawn
•MPI_Comm_connect/MPI_Comm_accept
•MPI_Intercomm_merge

©Jesper Larsson Träff 21.11.2012

1. Dynamic process management:

MPI 1.0 was completely static: a communicator cannot change
(design principle: no MPI object can change; new objects can
be created and old ones destroyed), so the number of
processes in MPI_COMM_WORLD cannot change: therefore
not possible to add or remove processes from a running
application

What if a process (in a communicator) dies? The fault-
tolerance problem

Most (all) MPI implementations also die – but this may be an
implementation issue

©Jesper Larsson Träff 21.11.2012

1. Dynamic process management:

MPI 1.0 was completely static: a communicator cannot change
(design principle: no MPI object can change; new objects can
be created and old ones destroyed), so the number of
processes in MPI_COMM_WORLD cannot change: therefore
not possible to add or remove processes from a running
application

What if a process (in a communicator) dies? The fault-
tolerance problem

If implementation does not die, it might be possible to
program around/isolate faults using MPI 1.0 error handlers
and inter-communicators

[W. Gropp, E. Lusk: Fault Tolerance in Message Passing Interface
Programs. IJHPCA 18(3): 363-372, 2004]

©Jesper Larsson Träff 21.11.2012

1. Dynamic process management:

MPI 1.0 was completely static: a communicator cannot change
(design principle: no MPI object can change; new objects can
be created and old ones destroyed), so the number of
processes in MPI_COMM_WORLD cannot change: tehrefore
not possible to add or remove processes from a running
application

What if a process (in a communicator) dies? The fault-
tolerance problem

The issue is contentious&contagious…

©Jesper Larsson Träff 21.11.2012

2. One-sided communication

Motivations/arguments:
•Expressivity/convenience: For applications where only one
process may readily know with which process to communicate
data, the point-to-point message-passing communication model
may be inconvenient

•Performance: On some architectures point-to-point
communication could be inefficient; e.g. if shared-memory is
available

Challenge: define a model that captures the essence of one-
sided communication, but can be implemented without requiring
specific hardware support

©Jesper Larsson Träff 21.11.2012

2. One-sided communication

Challenge: define a model that captures the essence of one-
sided communication, but can be implemented without requiring
specific hardware support

New MPI 2.0 concepts: communication window, communication
epoch

MPI one-sided model cleanly separates communication from
synchronization; three specific synchronization mechanisms
•MPI_Win_fence
•MPI_Win_Start/Complete/Post/Wait
•MPI_Win_lock/unlock
with cleverly thought out semantics and memory model

©Jesper Larsson Träff 21.11.2012

2. One-sided communication

MPI one-sided model cleanly separates communication from
synchronization; three specific synchronization mechanisms
•MPI_Win_fence
•MPI_Win_Start/Complete/Post/Wait
•MPI_Win_lock/unlock
with cleverly thought out semantics and memory model

Unfortunately, application programmers did not seem to like it
•„too complicated“
•„not efficient“
•…

©Jesper Larsson Träff 21.11.2012

3. MPI-IO

Communication with external (disk/file) memory. Could leverage
MPI concepts and implementations:
•Datatypes to describe file structure
•Collective communication for utilizing local file systems
•Fast communication

MPI datatype mechanism is essential, and the power of this
concept starts to become clear

MPI 2.0 introduces (inelegant!) functionality to decode a
datatype = discover the structure described by datatype.
Needed for MPI-IO implementation (on top of MPI) and
supports library building

©Jesper Larsson Träff 21.11.2012

Take note:

Apart from MPI-IO (ROMIO), the MPI 2.0 standardization
process was not followed by prototype implementations

New concept (IO only): split collectives

©Jesper Larsson Träff 21.11.2012

Not discussed:

Thread-support/compliance, the ablity of MPI to work in a
threaded environment

•MPI 1.0: a recommendation that MPI implementations be
thread safe

•MPI 2.0: level of thread support can be requested and queried;
an MPI library is not required to support the requested level,
but returns information on the highest smaller level supported

MPI_THREAD_SINGLE
MPI_THREAD_FUNNELED
MPI_THREAD_SERIALIZED
MPI_THREAD _MULTIPLE

©Jesper Larsson Träff 21.11.2012

Quit years: 1997-2006

No standardization activity from 1997

MPI 2.0 implementations
•Fujitsu (claim) 1999
•NEC 2000
•mpich 2004
•OpenMPI 2006(?)
•…

Ca. 2006 most/many implementations support mostly full MPI 2.0

Implementations evolved and improved; MPI was an interesting
topic to work on, good MPI work was/is acceptable to all parallel
computing conferences (SC, IPDPS, ICPP, Euro-Par, PPoPP, SPAA)

[J. L.Träff, H. Ritzdorf, R. Hempel:
The Implementation of MPI-2 One-
Sided Communication for the NEC
SX-5. SC 2000]

©Jesper Larsson Träff 21.11.2012

2012 Wien, Austria
2011 Santorini, Greece
2010 Stuttgart, Germany EuroMPI (no longer PVM)
2009 Helsinki, Finland EuroPVM/MPI
2008 Dublin, Ireland
2007 Paris, France
2006 Bonn, Germany
2005 Sorrento, Italy
2004 Budapest, Hungary
2003 Venice, Italy
2002 Linz, Austria
2001 Santorini, Greece (9.11 – did not actually take place)
2000 Balatonfüred, Hungary
1999 Barcelona, Spain
1998 Liverpool, UK
1997 Cracow, Poland Now EuroPVM/MPI
1996 Munich, Germany
1995 Lyon, France
1994 Rome, Italy EuroPVM

Euro(PVM/)MPI conference series: dedicated to MPI
M

PI F
orum

 m
e
etings

…biased
towards
MPI
implementa
tion

©Jesper Larsson Träff 21.11.2012

[Thanks to Xavier Vigouroux, Vienna 2012]

Bonn 2006: discussions („Open Forum“)
on restarting MPI Forum starting

©Jesper Larsson Träff 21.11.2012

The MPI 2.2 – MPI 3.0 process

Late 2007: MPI Forum reconvenes

Consolidate standard: MPI 1.2 and MPI 2.0 into single
standard document: MPI 2.1 (Sept. 4th, 2008)

MPI 2.2 intermediate step towards 3.0
•Address scalability problems
•Missing functionality
•BUT preserve backwards compatibility

586 pages 623 pages

©Jesper Larsson Träff 21.11.2012

Some MPI 2.2 features

•Addressing scalability problems: new topology interface,
application communication graph is specified in a distributed
fashion

•Library building: MPI_Reduce_local

•Missing function: regular MPI_Reduce_scatter_block

•More flexible MPI_Comm_create (MPI 3.0:
MPI_Comm_create_group)

•New datatypes, e.g. MPI_AINT

[T. Hoefler, R. Rabenseifner, H. Ritzdorf, B. R. de Supinski,
R. Thakur, J. L. Träff: The scalable process topology
interface of MPI 2.2. Concurrency and Computation: Practice
and Experience 23(4): 293-310, 2011]

©Jesper Larsson Träff 21.11.2012

Some MPI 2.2 features

C++ bindings (since MPI 2.0) deprecated! With the intention
that they will be removed

MPI_Op, MPI_Datatype still not first class citizens (datatype
support is weak and cumbersome)

Fortran bindings modernized and corrected

©Jesper Larsson Träff 21.11.2012

•6 meetings 2012
•6 meetings 2011
•7 metings 2010

•6 meetings 2009
•7 meetings 2008

MPI 2.1, 2.2, and 3.0 process

Total: 32 meetings (and counting…)

Recall:
•MPI 1: 7 meetings
•MPI 2.0: 16 meetings

MPI Forum rules: presence at physical meetings with a history
(presence at past two meetings) required to vote

Requirement: new functionality must be supported by use-case
and prototype implementation; backwards compatibility not strict

©Jesper Larsson Träff 21.11.2012

©Jesper Larsson Träff 21.11.2012

MPI 2.2 – MPI 3.0 process had working groups on

•Collectives Operations
•Fault Tolerance
•Fortran bindings
•Generalized requests ("on hold")
•Hybrid Programming
•Point to point (this working group is "on hold")
•Remote Memory Access
•Tools
•MPI subsetting ("on hold")
•Backward Compatibility
•Miscellaneous Items
•Persistence

©Jesper Larsson Träff 21.11.2012

MPI 3.0: new features, new themes, new opportunities

Major new functionalities:
1. Non-blocking collectives
2. Sparse collectives
3. New one-sided communication

4. Performance tool support

Deprecated functions removed: C++ interface has gone

MPI 3.0, 21. September 2012: 822 pages

Implementation status: mpich should cover MPI 3.0

Performance/quality?

©Jesper Larsson Träff 21.11.2012

1. Non-blocking collectives

Introduced for performance (overlap) and convenience reasons

Similarly to non-blocking point-to-point routines; MPI_Request
object to check and enforce progress

Sound semantics based on ordering, no tags

Different from point-to-point (with good reason): blocking and
non-blocking collectives do not mix and match: MPI_Ibcast() is
incorrect with MPI_Bcast()

Incomplete: non-blocking versions for some other collectives
(MPI_Icomm_dup)
Non-orthognal: split and non-blocking collectives

©Jesper Larsson Träff 21.11.2012

2. Sparse collectives

Addresses scalability problem of irregular collectives.
Neighborhood specified with topology functionality

MPI_Neighbor_allgather(…,comm);
MPI_Neighbor_allgatherv(…,comm);
MPI_Neighbor_alltoall(…,comm);
MPI_Neighbor_alltoallv(…,comm);
MPI_Neighbor_alltoallw(…,comm); Pi

and corresponding non-blocking versions

[T. Hoefler, J. L. Träff: Sparse collective operations for MPI. IPDPS
2009]

Will users take up? Optimization potential?

©Jesper Larsson Träff 21.11.2012

[Hoefler, Dinan, Buntinas, Balaji, Barrett, Brightwell, Gropp,
Kale, Thakur: Leveraging MPI‘s one-sided communication for
shared-memory programming. EuroMPI 2012, LNCS 7490,
133-141, 2012]

3. One-sided communication

Model extension for better performance on hybrid/shared
memory systems

Atomic operations (lacking in MPI 2.0 model)

Per operation local completion, MPI_Rget, MPI_Rput, … (but
only for passive synchronization)

©Jesper Larsson Träff 21.11.2012

4. Performance tool support

Problem of MPI 1.0 allowing only one profiling interface at a
time (linker interception of MPI calls) NOT solved

Functionality added to query certain internals of the MPI
library

Will tool writers take up?

©Jesper Larsson Träff 21.11.2012

MPI at a turning point

Extremely large-scale systems
now appearing stretch the
scalability of MPI

Is MPI for exascale?

•Heterogeneous?
•memory constrained?
•low bisection width?
•unreliable?
systems

©Jesper Larsson Träff 21.11.2012

MPI Forum at a turning point

Attendance large enough?
Attendance broad enough?

MPI 2.1-MPI 3.0 process has been long and exhausting,
attendance driven by implementors, relatively little input form
users and applications, non-technical goals have played a role;
research has been conducted but not lead to useful outcome for
the standard (fault tolerance, thread/hybrid support,
persistence, …)

Perhaps time to take a break?

More meetings,
smaller attendance

©Jesper Larsson Träff 21.11.2012

Summary:

Study history and learn from it: how to do better than MPI

Standardization is a major effort, has taken a lot of dedication
and effort from a relatively large (but declining?) group of
people and institutions/companies

MPI 3.0 will raise many new implementation challenges

MPI 3.0 is not the end of the (hi)story

