
Cray XE6 architecture

Cray XE6 Performance Workshop
PDC/KTH

12-14 September

Jason Beech-Brandt, Harvey Richardson,
Stephen Sachs

Cray

Recipe for a good MPP

2

● Select Best Microprocessor

● Function of time

● Surround it with a balanced or “bandwidth rich” environment

● Interconnection network

● Local memory

● “Scale” the System

● Eliminate Operating System Interference (OS Jitter)

● Design in Reliability and Resiliency

● Provide Scaleable System Management

● Provide Scaleable I/O

● Provide Scaleable Programming and Performance Tools

● System Service Life (provide an upgrade path)

September 12, 2012 Slide 2 Cray Proprietary

The Cray XE6 node

We are concentrating on the Cray XE6 installed here in
Stockholm, which is called Lindgren

There are other Cray XE6 models using different
processors and different interconnects topology which we

don’t cover in this workshop
We start by introducing the node parts (processors used,

interconnect, …) and shows how they are packaged

Processor

The Opteron 6100 Series (Magny-Cours)

Lindgren uses the Model 6172 (2.1 GHz)

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

6MB L3

Cache

Greyhound

Greyhound

Greyhound

Greyhound

Greyhound

Greyhound

6MB L3

Cache

Greyhound

Greyhound

Greyhound

Greyhound

Greyhound

Greyhound

6MB L3

Cache

Greyhound

Greyhound

Greyhound

Greyhound

Greyhound

Greyhound

6MB L3

Cache

Greyhound

Greyhound

Greyhound

Greyhound

Greyhound

Greyhound H
T

3

H
T

3

● 2 Multi-Chip Modules, 4 Opteron Dies

● 24 (or 16) Computational Cores, 24 MB of L3 cache

● 8 Channels of DDR3 Bandwidth to 8 DIMMs

● Dies are fully connected with HT3

Cray XE6 Compute Node Details:
24-core Magny Cours

To Interconnect

HT3

HT3

HT3

HT3

Cray Inc. Proprietary

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

6MB L3

Cache

Greyhound

Greyhound

Greyhound

Greyhound

Greyhound

Greyhound

6MB L3

Cache

Greyhound

Greyhound

Greyhound

Greyhound

Greyhound

Greyhound

6MB L3

Cache

Greyhound

Greyhound

Greyhound

Greyhound

Greyhound

Greyhound

6MB L3

Cache

Greyhound

Greyhound

Greyhound

Greyhound

Greyhound

Greyhound H
T

3

H
T

3

● Any communication between PEs on a
node will be “intercepted” by the libraries
and use shared memory copies (via
XPMEM)

● All global AMOs go through Gemini

XE6 Compute Node Details:
24-core Magny Cours

To Interconnect

HT3

HT3

HT3

HT3

DIE 2

DIE 3 DIE 1

DIE 0

Cray Inc. Proprietary

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

6MB L3

Cache

Greyhound

Greyhound

Greyhound

Greyhound

Greyhound

Greyhound

6MB L3

Cache

Greyhound

Greyhound

Greyhound

Greyhound

Greyhound

Greyhound

6MB L3

Cache

Greyhound

Greyhound

Greyhound

Greyhound

Greyhound

Greyhound

6MB L3

Cache

Greyhound

Greyhound

Greyhound

Greyhound

Greyhound

Greyhound H
T

3

H
T

3

XE6 Compute Node Details:
24-core Magny Cours

To Interconnect

HT3

HT3

HT3

HT3

● Communication from Die 0 can go straight to
Gemini via HT link

● Communication from Die 1 or 2 must first go through Die 0
via an “edge” HT link

● Communication from Die 3 must go through 0 via “cross”
HT link

● Many buffers and other structures along any given path

Cray Inc. Proprietary

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

6MB L3

Cache

Greyhound

Greyhound

Greyhound

Greyhound

Greyhound

Greyhound

6MB L3

Cache

Greyhound

Greyhound

Greyhound

Greyhound

Greyhound

Greyhound

6MB L3

Cache

Greyhound

Greyhound

Greyhound

Greyhound

Greyhound

Greyhound

6MB L3

Cache

Greyhound

Greyhound

Greyhound

Greyhound

Greyhound

Greyhound H
T

3

H
T

3

● 100 M/s * 64 byte data packet size =

 6.4 Gbytes/second

XE6 Compute Node Details:
24-core Magny Cours

To Interconnect

HT3

HT3

HT3

HT3

Can transfer about

~5-5.5 Gbytes/second peak

Can transfer about

~4 Gbytes/second peak

Can transfer about

~4 Gbytes/second peak

Can transfer about

~3 Gbytes/second peak

Cray Inc. Proprietary

Gemini

The Cray interconnect

10

Cray Gemini ASIC (application-specific integrated circuit)

● Supports 2 Nodes per ASIC

● 3D Torus network

● XT5/XT6 systems field upgradable

● Scales to over 100,000 network
endpoints

● Link Level Reliability and Adaptive
Routing

● Advanced Resiliency Features

● Advanced features

● MPI – millions of messages /
second

● One-sided MPI

● UPC, Coarray FORTRAN, Shmem,
Global Arrays

● Atomic memory operations

Gemini

Hyper

Transport 3

NIC 1

 Netlink

 Block

48-Port

YARC Router

Hyper

Transport 3

NIC 0

Gemini NIC Design

● Fast memory access (FMA)
● Mechanism for most MPI transfers,

involves processor
● Supports tens of millions of MPI

requests per second
● Block transfer engine (BTE)

● Supports asynchronous block
transfers between local and remote
memory, in either direction

● For large MPI transfers that happen
in the background

● Hardware pipeline maximizes issue
rate

● HyperTransport 3 host interface
● Hardware translation of user ranks

and addresses
● AMO cache
● Network bandwidth dynamically

shared between NICs

11 September 12, 2012 Slide 11 Cray Proprietary

H
T

3
 C

a
v

e

vc0

vc1

vc1

vc0

LB Ring

L
B

L
M

N
L

FMA

CQ

NPT

RMT
net req

H

A

R

B

net

rsp

ht p

ireq

ht treq p

ht irsp

ht np

ireq

ht np req

ht np req
net req

ht p req O

R

B

RAT

NAT

BTE

net

req

net

rsp

ht treq np

ht trsp net

req

net

req

net

req

net

req

net

reqnet req

ht p req

ht p req

ht p req net rsp

CLM

AMO
net rsp headers

T

A

R

B

net req

net rsp

S

S

I

D

R
o

u
te

r
T

il
e

s

Gemini Software

12

● Cray MPI uses MPICH2 distribution from Argonne
● CH3 device Nemesis: multi-method device with a highly optimized

shared memory sub-method

● MPI device for Gemini based on
● User level Gemini Network Interface (uGNI)

● Distributed Memory Applications (DMAPP) library

● FMA (Fast Memory Access)
● In general used for small transfers

● FMA transfers are lower latency

● BTE (Block Transfer Engine)
● BTE transfers take longer to start but can transfer large amount of

data without CPU involvement

Gemini MPI Features

13

● FMA provides low-overhead OS-bypass
● Lightweight issue of small transfers

● DMA offload engine
● Allows large transfers to proceed asynchronously of the application

● Designed to minimize memory usage on large jobs
● Typically 20MB/process including 4MB buffer for unexpected

messages

● Adaptive routing:
● Reduces network contention

● Automatically routes around link failures

● AMOs provide a fast synchronization method for
collectives
● AMO=Atomic Memory Operations

September 12, 2012 Slide 13 Cray Proprietary

Gemini PGAS Features

14

● PGAS= Partitioned Global Address Space

● Globally addressable memory provides efficient support
for
● UPC, Coarray Fortran, SHMEM

● Pipelined global loads and stores
● Allows for fast execution of irregular communication patterns

● Atomic memory operations
● Provides fast synchronization method for one-sided communication

● Cray DMAPP application interface
● Cray Programming Environment targets this directly

● Available for 3rd party tools

September 12, 2012 Slide 14 Cray Proprietary

Gemini Performance Highlights

15

● MPI latency of 1.4 μs
● 3X improvement on Seastar

● MPI message rate of 9M/sec
● 20X improvement on Seastar

● Injection bandwidths in excess of 6 GB/sec
● 3X improvement on Seastar

● Cray SHMEM put rate of 25M/sec

● Scattered/indexed put rates of 60-90M/sec

September 12, 2012 Slide 15 Cray Proprietary

Gemini MPI Latency

16

● Small message latencies of 1.4 μs (best case)

0

0.5

1

1.5

2

2.5

3

8 16 32 64

La
te

n
cy

 (m
ic

ro
se

co
n

d
s)

Message Size (bytes)

PPN=1 PPN=2

PPN=4 PPN=8

September 12, 2012 Slide 16 Cray Proprietary

MPI Latency at Scale

17

● Low latencies are maintained across the whole system
with cores sending non-local messages (HPCC
natural+random ring)

0

1

2

3

4

5

6

7

8

9

10

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

L
a

te
n

c
y
 (
m

ic
ro

s
e

c
o

n
d

s
)

Number of processes

Nehalem + IB natural ring Nehalem + IB random ring

Westmere + IB natural ring Westmere + IB random ring

Small Cray XE6 natural ring Small Cray XE6 random ring

Large Cray XE6 natural ring Large Cray XE6 random ring

September 12, 2012 Slide 17 Cray Proprietary

MPI Bandwidth

18

● Gemini MPI bandwidth exceeds 5 GB/sec – nearly twice
that of QDR Infiniband (not limited by Gen2 PCI-Express)

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

M
P

I b
an

d
w

id
th

 (M
B

yt
e

s/
se

c)

Message size (bytes)

Single message

Multiple messages

September 12, 2012 Slide 18 Cray Proprietary

Cray XE6 Compute Node

19

● Built around the Gemini Interconnect

● Each Gemini ASIC provides 2 NICs enabling it
to connect 2 dual-socket nodes

Y

X

Z

The Cray Programming
Environment Overview

The Cray Programming Environment Vision

21

● It is the role of the Programming Environment to close the
gap between observed performance and peak
performance
● Help users achieve highest possible performance from the hardware

● The Cray Programming Environment is addressing the

issues of scale and complexity of high end HPC systems
with:
● Increased automation
● Ease of use

● Hiding the system complexity

● Extended functionality
● Focus on scalability

● Improved Reliability
● Strong academic collaborations
● Close interaction with users

● For feedback targeting functionality enhancements

Luiz DeRose © Cray Inc.
22

Cray Programming Environment Distribution
Focus on Differentiation and Productivity

Programming
Languages

Fortran

C

C++

Chapel

Python

I/O Libraries

NetCDF

HDF5

Optimized Scientific

Libraries

LAPACK

ScaLAPCK

BLAS (libgoto)

Iterative
Refinement

Toolkit

Cray Adaptive
FFTs (CRAFFT)

FFTW

Cray PETSc
 (with CASK)

Cray Trilinos
 (with CASK)

Cray developed

#: Under development

Licensed ISV SW

3rd party packaging

Cray added value to 3rd party

PGI

GNU

Compilers

Cray Compiling
Environment

(CCE)

•CrayPat

• Cray
Apprentice2

Tools

Environment setup

Debuggers

Modules

DDT

gdb

Modules

Debugging Support

Tools

• Fast Track
Debugger
(CCE w/ DDT)

• Abnormal
Termination
Processing

DDT

Performance Analysis

STAT

Cray
Comparative
Debugger#

Programming

models

Distributed
Memory
(Cray MPT)

• MPI

• SHMEM

PGAS & Global
View

• UPC (CCE)

• CAF (CCE)

• Chapel

Shared Memory

• OpenMP 3.0

PGI CCE

Cray Programming Environment Releases

Luiz DeRose © Cray Inc.
23

Q2 Q3 Q4

2011

Q1

2012

Q1 Q2 Q3 Q4

2013

Q1 Q2 Q3 Q4

Cray Performance Measurement & Analysis Tools

▼5.2 ▼5.3 ▼5.2.2 ▼6.0

Cray Compiling Environment

▼8.0 ▼7.4 ▼8.1

▼6.0 ▼6.2

Cray Scientific & Math Libraries

▼1.3.3 ▼1.4

Cray Debugging Support Tools

▼6.0.2 ▼6.1

▼8.0b ▼7.4.1

▼5.2.3 ▼6.1

▼9.0

▼7.0

▼2.0

Chapel

▼1.3 ▼1.4 ▼1.5 ▼2.0 ▼2.1

▼9.1

▼6.2.x

Cray Message Passing Toolkit

▼5.3.1 ▼5.2 ▼5.4 ▼5.6 ▼6.0 ▼5.5 ▼6.1 ▼6.2

▼2.1

The Cray Compilation Environment

24

● Cray technology focused on scientific applications
● Takes advantage of automatic vectorization
● Takes advantage of automatic shared memory parallelization

● Standard conforming languages and programming models

● Fortran 2003 standard compliant with F2008 features already available
● C++98/2003 compliant
● OpenMP 3.0 compliant, working on OpenMP 3.1 and OpenMP 4.0

● OpenMP and automatic multithreading fully integrated

● Share the same runtime and resource pool
● Aggressive loop restructuring and scalar optimization done in the

presence of OpenMP
● Consistent interface for managing OpenMP and automatic multithreading

● PGAS languages (UPC & Fortran Coarrays) fully optimized and

integrated into the compiler
● UPC 1.2 and Fortran 2008 coarray support
● No preprocessor involved
● Target the network appropriately

Cray MPI & Cray SHMEM

25

● MPI
● Implementation based on MPICH2 from ANL

● Optimized Remote Memory Access (one-sided) fully supported
including passive RMA

● Full MPI-2 support with the exception of
● Dynamic process management (MPI_Comm_spawn)

● MPI3 Forum active participant

● Cray SHMEM
● Fully optimized Cray SHMEM library supported

● Cray XE implementation close to the T3E model

Cray Performance Analysis Tools

26

● From performance measurement to performance analysis

● Assist the user with application performance analysis and
optimization
● Help user identify important and meaningful information from

potentially massive data sets

● Help user identify problem areas instead of just reporting data

● Bring optimization knowledge to a wider set of users

● Focus on ease of use and intuitive user interfaces
● Automatic program instrumentation

● Automatic analysis

● Target scalability issues in all areas of tool development

Debuggers on Cray Systems

27

● Systems with hundreds of thousands of threads of
execution need a new debugging paradigm
● Innovative techniques for productivity and scalability

● Scalable Solutions based on MRNet from University of Wisconsin
● STAT - Stack Trace Analysis Tool

● Scalable generation of a single, merged, stack backtrace tree

• running at 216K back-end processes
● ATP - Abnormal Termination Processing

● Scalable analysis of a sick application, delivering a STAT tree and a minimal,
comprehensive, core file set.

● Fast Track Debugging

● Debugging optimized applications
● Added to Allinea's DDT 2.6 (June 2010)

● Comparative debugging

● A data-centric paradigm instead of the traditional control-centric paradigm
● Collaboration with Monash University and University of Wisconsin for scalability

● Support for traditional debugging mechanism
● TotalView, DDT, and gdb

Cray Scientific Libraries

November, 2011 Luiz DeRose © Cray Inc.
28

FFT

CRAFFT

FFTW

P-CRAFFT

Dense

BLAS

LAPACK

ScaLAPACK

IRT

CASE

Sparse

CASK

PETSc

Trilinos

IRT – Iterative Refinement Toolkit

CASK – Cray Adaptive Sparse Kernels

CRAFFT – Cray Adaptive FFT

CASE – Cray Adaptive Simplified Eigensolver

Environment Setup

Environment Setup

30

● The Cray XE system uses modules in the user
environment to support multiple software versions and to
create integrated software packages

● As new versions of the supported software and associated man pages
become available, they are added automatically to the Programming
Environment, while earlier versions are retained to support legacy
applications

● You can use the default version of an application, or you can choose
another version by using Modules system commands

The module tool on the Cray XE

31

● How can we get appropriate Compiler, Tools, and
Libraries?
● The modules tool is used to handle different versions of packages

● e.g.: module load compiler_v1
● e.g.: module swap compiler_v1 compiler_v2
● e.g.: module load perftools

● Taking care of changing of PATH, MANPATH,

LM_LICENSE_FILE,.... environment
● Modules also provide a simple mechanism for updating certain

environment variables, such as PATH, MANPATH, and
LD_LIBRARY_PATH

● In general, you should make use of the modules system rather than
embedding specific directory paths into your startup files, makefiles,
and scripts.

● It is also easy to setup your own modules for your own

software

Useful module commands

32

● Which modules are available?
● module avail, module avail cce

● Which modules are loaded?
● module list

● Load software
● module load perftools

● Change programming environment
● module swap PrgEnv-cray PrgEnv-gnu

● Change software version
● module swap cce/8.0.2 cce/7.4.4

module list

33

emil-login2:harveyr% module list

Currently Loaded Modulefiles:

 1) modules/3.2.6.6

 2) nodestat/2.2-1.0400.31264.2.5.gem

 3) sdb/1.0-1.0400.32124.7.19.gem

 4) MySQL/5.0.64-1.0000.5053.22.1

 5) lustre-cray_gem_s/1.8.6_2.6.32.45_0.3.2_1.0400.6453.5.1-1.0400.32127.1.90

 6) udreg/2.3.1-1.0400.4264.3.1.gem

 7) ugni/2.3-1.0400.4374.4.88.gem

 8) gni-headers/2.1-1.0400.4351.3.1.gem

 9) dmapp/3.2.1-1.0400.4255.2.159.gem

 10) xpmem/0.1-2.0400.31280.3.1.gem

 11) hss-llm/6.0.0

 12) Base-opts/1.0.2-1.0400.31284.2.2.gem

 13) xtpe-network-gemini

 14) PrgEnv-pgi/4.0.46

 15) atp/1.4.4

 16) xt-asyncpe/5.11

 17) pmi/3.0.1-1.0000.8917.33.1.gem

 18) xt-libsci/11.1.00

 19) pgi/12.5.0

 20) moab/6.0.1

 21) torque/3.0.2

 22) openssh/5.3p1-20100124-patch

 23) openafs/1.4.14-2.6.32.45-0.3.2_1.0400.6453-cray_gem_s

 24) heimdal/1.3.3

 25) snic-env/1.0.0

 26) cray-mpich2/5.5.1

 27) xtpe-mc12

 28) torque-utils/0.0

 29) pdc-utils/0.0

PrgEnv-pgi is the default

@eslogin002:~> module show xtpe-mc12

/opt/cray/xt-asyncpe/default/modulefiles/xtpe-mc12:

conflict xtpe-barcelona

conflict xtpe-quadcore

conflict xtpe-shanghai

conflict xtpe-istanbul

conflict xtpe-interlagos-cu

conflict xtpe-mc8

conflict xtpe-interlagos

conflict xtpe-xeon

prepend-path PE_PRODUCT_LIST XTPE_MC12

setenv CRAY_CPU_TARGET mc12

setenv INTEL_PRE_COMPILE_OPTS -msse3

setenv PATHSCALE_PRE_COMPILE_OPTS -march=barcelona

Setenv GNU_PRE_COMPILE_OPTS -march=amdfam10

What is xtpe-mc12?

34

I should build for

the right compute-

node architecture.

It’d probably be a

really bad idea to load

two architectures at

once.

Oh yeah, let’s link in the tuned math libraries for this architecture

too.

Which SW Products and Versions Are Available

35

● avail [avail-options] [path...]
● List all available modulefiles in the current MODULEPATH

● Useful options for filtering

● -U, --usermodules
● List all modulefiles of interest to a typical user

● -D, --defaultversions

● List only default versions of modulefiles with multiple available versions

● -P, --prgenvmodules
● List all PrgEnv modulefiles

● -T, --toolmodules

● List all tool modulefiles

● -L, --librarymodules
● List all library modulefiles

● % module avail <product>

● List all <product> versions available

Which Software Versions Are Available?

36

hpcnicho@eslogin002:~> module avail perftools

--------------------------- /opt/cray/modulefiles --------------------------

perftools/5.2.0 perftools/5.2.3 perftools/5.3.0(default)

hpcnicho@eslogin002:~> module avail cce

---------------------------- /opt/modulefiles --------------------------------

cce/7.3.3 cce/7.4.2 cce/8.0.0 cce/8.0.0.137

cce/8.0.2(default) cce/7.3.4 cce/7.4.4 cce/8.0.0.129

cce/8.0.1

What Happens When I Load a Module?

Luiz DeRose © Cray Inc.
37

hpcnicho@eslogin002:~> module show perftools

/opt/cray/modulefiles/perftools/5.3.0:

setenv PERFTOOLS_VERSION 5.3.0

conflict x2-craypat

conflict craypat

conflict xt-craypat

conflict apprentice2

module load rca

setenv CHPL_CG_CPP_LINES 1

setenv PDGCS_LLVM_DISABLE_FP_ELIM 1

setenv PAT_REPORT_PRUNE_NAME

_cray$mt_start_,__cray_hwpc_,f_cray_hwpc_,cstart,__pat_,pat_region_,PAT_,OMP.slave_loop,slave_entry,_new_slave

_entry,__libc_start_main,_start,__start,start_thread,__wrap_,UPC_ADIO_,_upc_,upc_,__caf_,__pgas_

module-whatis Perftools - the Performance Tools module sets up environments for CrayPat, Apprentice2 and

PAPI

prepend-path PATH /opt/cray/perftools/5.3.0/bin

prepend-path MANPATH /opt/cray/perftools/5.3.0/man

setenv CRAYPAT_LICENSE_FILE /opt/cray/perftools/craypat.lic

prepend-path CRAYLMD_LICENSE_FILE /opt/cray/perftools/craypat.lic

setenv CRAYPAT_ROOT /opt/cray/perftools/5.3.0

setenv CRAYPAT_INCLUDE_OPTS $($CRAYPAT_ROOT/sbin/pat-opts INCLUDE)

setenv CRAYPAT_PRE_LINK_OPTS $($CRAYPAT_ROOT/sbin/pat-opts PRE_LINK)

setenv CRAYPAT_POST_LINK_OPTS $($CRAYPAT_ROOT/sbin/pat-opts POST_LINK)

setenv CRAYPAT_PRE_COMPILE_OPTS $($CRAYPAT_ROOT/sbin/pat-opts PRE_COMPILE)

setenv CRAYPAT_POST_COMPILE_OPTS $($CRAYPAT_ROOT/sbin/pat-opts POST_COMPILE)

setenv CRAYPAT_ROOT_FOR_EVAL /opt/cray/perftools/$PERFTOOLS_VERSION

module load papi/4.2.0

setenv APP2_STATE 5.3.0

setenv JH_HELPSET /opt/cray/perftools/5.3.0/help/app2help.jar

setenv JH_VIEWER /opt/cray/perftools/5.3.0/help/jh2_0_05/demos/bin/hsviewer.jar

prepend-path CRAY_LD_LIBRARY_PATH /opt/cray/perftools/5.3.0/lib

append-path CLASSPATH /opt/cray/perftools/5.3.0/help/jh2_0_05/javahelp

append-path PE_PRODUCT_LIST PERFTOOLS

append-path PE_PRODUCT_LIST CRAYPAT

Release Notes

November, 2011 Luiz DeRose © Cray Inc.
38

hpcnicho@eslogin002:~> module help cce/8.0.2

----------- Module Specific Help for 'cce/8.0.2' ------------------

The modulefile, cce, defines the system paths and environment

variables needed to run the Cray Compile Environment.

Type "module avail cce" to see if other versions of this product

are available on this system. Use "module switch" to change versions.

Cray Compiling Environment 8.0.2 (CCE 8.0.2)

==

 Purpose:

 The CCE 8.0.2 update provides bugfixes to the CCE 8.0.1 release for Cray XE

 systems.

 Bugs fixed in 8.0.2 are:

 779483 Runtime error with Cray Fortran compiler cce/7.4.4

 780053 Illegal folding of optional argument test into a merge

 780346 Internal compiler error with crayftn when enabling full debugging

 779573 Fortran function pointer issue

 Note:

 Support for CCE on Cray XT systems will continue to be provided with

 updates to the CCE 7.4 release. The CCE 8.0 release branch is

 supported on the Cray XE and XK systems only.

 Dependencies:

 The CCE 8.0.2 release is supported on Cray XE systems that run on the Cray

 Linux Environment (CLE) operating system, version 3.1 and later and on the

 Cray XK systems that run the Cray Linux Environment 4.0 UP01 and later.

Release Notes (cont.)

November, 2011 Luiz DeRose © Cray Inc.
39

 CCE 8.0.2 requires that gcc/4.4.4 be installed. GCC 4.4.4 does not need to

 be a default GNU environment.

 Cray Performance Measurement and Analysis Tools dependency:

 - cce/8.0.0 or later compiles using -h profile_generate require

 perftools/5.3.0 in order to provide loop work estimates.

 - perftools/5.3.0 is required to support the PGAS (UPC, CAF) runtime

 library changes made in CCE 8.0

 The Cray Compiling Environment 8.0.2 update requires the following supporting

 asynchronous software products:

 Cray Compiler Drivers (xt-asyncpe) 5.04 or later

 GNU GCC 4.4.4 must be installed, but is not required to be the default GCC

 PMI 2.1.4 or later

 Cray Scientific Libraries (LibSci) 11.0.00 or later

 The Cray Compiling Environment 8.0.2 update requires the following minimum

 version if these products are used:

 PETSc 3.1.05 or later

 hdf5-netcdf 1.8 (HDF5 1.85 and netcdf 4.1.1)

 MPT 5.2.3 or later

 acml 4.4.0 or later. To use acml 5.0, gcc 4.6.1 must be installed.

 Cray Performance Measurement and Analysis Tools 5.3.0

Using the Compiler Driver Commands

40

● You use compiler driver commands to launch all Cray XE
compilers

● The syntax for the compiler driver is:
● cc | CC | ftn [Cray_options | PGI_options | GNU_options] files [-

lhugetlbfs]

● For example, to use any Fortran compiler (CCE, PGI, GNU)
to compile prog1.f90
● Use this command:

● % ftn prog1.f90

● The compiler drivers are setup by the PrgEnv-??? Module

● The drivers automatically support an MPI build

The Cray Compilation Environment

42

CCE Technology Sources

X86 Code

Generator

Cray XK Code

Generator

Fortran Front End

Interprocedural Analysis

Optimization and

Parallelization

C and C++ Source

Object File

C
o

m
p

il
e

r

C & C++ Front End

Fortran Source

C and C++ Front End supplied by Edison

Design Group, with Cray-developed code

for extensions and interface support

X86 Code Generation from LLVM, with

additional Cray-developed optimizations

and interface support

Cray Inc. Compiler

Technology

PTX Code Generation derived from the

Cray X2 code generator

Fortran 2003 plus portions of 2008 (CAF),

OpenMP, and Cray-specific programming

support

Aggressive inlining and interprocedural

optimization, including cross-file

Automatic vectorization and SMP;

automatic restructuring for memory

usage; OpenMP, UPC and CAF

expansion and optimization;

heterogeneous target data transfer,

parallelization, and optimization; scalar

and vector optimization

CCE Main Features

43

● Compliance with ANSI/ISO FORTRAN 2003
● Fortran 2008 (full compliance targeted for 2012)

● Fortran 2008 coarrays
● Submodules
● Block construct
● Contiguous Attribute
● ALLOCATE enhancements (MOLD =, shape from SOURCE/MOLD)
● intrinsic assignment for polymorphic variables
● Most of the new intrinsic functions
● ISO_Fortran_Env module enhancements

● Compliance with ANSI/ISO C99 and ANSI/ISO C++ 2003

● (except the export keyword for templates)
● Support for Kernighan & Ritchie C
● C/C++ enhancements/changes

● updated to GCC version 4.4.4 compatibility
● C++ supports the ISO 1998 Standard Template Library (STL) headers
● Upgraded the C and C++ front end to EDG Version 4.1

● With this update CCE can better handle modern C++ applications
● Periodic synchronization with the latest sources and bug fixes
● Better support for non-standard GNU language extensions
● The new EDG C and C++ front end more strictly enforces the standards

● UPC 1.2 support

CCE Main Features (cont.)

44

● AMD support, including AVX, FMA, and XOP instructions
● X86/NVIDIA compiler and library development (ongoing “beta”

release)
● Support for MPI 2.2
● Full OpenMP 3.0 support

● Automatic multithreading integrated with OpenMP
● Atomic construct extensions
● taskyield construct
● firstprivate clause accepts intend(in) and constant objects

● Support for hybrid programming using MPI across node and
OpenMP within the node

● Support for IEEE floating-point arithmetic and IEEE file formats
● Cray performance tools and debugger support
● Program Library
● CCE 8.0 was released on December, 2011

● The full release overview can be found at: http://docs.cray.com/books/S-
5212-74/

http://docs.cray.com/books/S-5212-74/
http://docs.cray.com/books/S-5212-74/
http://docs.cray.com/books/S-5212-74/
http://docs.cray.com/books/S-5212-74/
http://docs.cray.com/books/S-5212-74/

UPC and Fortran Coarray Features

45

● C-based UPC and Fortran Coarray are PGAS language
extensions, not stand-alone languages

● A subset of Fortran coarray collectives were added for
CCE
● Although they are not yet part of the official language – they are too

useful to be delayed

● Significant improvements were made to the automatic use
of blocked network transfers, including:
● Automatic conversion of multiple single-word accesses into blocked

accesses

● Improved capabilities for pattern matching to hand-optimized library
routines, including messages stating what might be inhibiting the
conversion

● UPC and Fortran coarrays support up to 2,147,483,647
threads within a single application
● We actually did hit the previous limit of 65,535!

CCE Compiler Testing

46

● Roughly 35,000 nightly regression tests run for Fortran (14,000),
C (7,000), and C++ (14,000)
● Default optimization, but for multiple targets (X86, X86+AVX+FMA, X2,

X86+NVIDIA), plus “debug” and “production” compiler versions
● Additionally, cycle through “options testing” with the same test base

● Fortran: -G0, -G1, -G2, -O0, -Oipa0, -Oipa5 -hpic, “-O3,fp3” –e0
● C and C++: -Gn, -O0, -hipa0, -hipa5, -hpic, “-O3 –hfp3” -hzero
● Additional tests and suites have been added for GPU testing
● And some “stress test” option sets to create worse-case scenarios for the

compiler
● Other combinations as necessary and by request

● Performance regression testing done weekly using important

applications and benchmarks

● Functional and performance regressions typically use an
automated system that isolates the change to a specific
compiler or library mod

● Issues that are found as a result of testing but not immediately
addressed have bugs opened to track them

Inlining with CCE

47

● Inlining is enabled by default
● Command line option –Oipan (ftn) –hipan (cc/CC) where n=0..4, provides

a set of choices for inlining behavior
● 0 - All inlining and cloning are disabled. All inlining and cloning compiler

directives are ignored.

● 1 - Directive inlining. Inlining is attempted for call sites and routines that are
under the control of an inlining compiler directive. Cloning disabled and cloning
directives are ignored.

● 2 - Call nest inlining. Inline a call nest to an arbitrary depth as long as the nest
does not exceed some compiler-determined threshold. A call nest can be a leaf
routine. The expansion of the call nest must yield straight-line code (code
containing no external calls) for any expansion to occur. The call site is said to
"flatten" when there are no calls present in the expanded code. The call site
must reside within the body of a loop for expansion to be attempted. Cloning
disabled and cloning directives are ignored.

● 3 - Constant actual argument inlining and tiny routine inlining. Default level for
inlining. This includes levels 1 and 2, plus any call site that contains a constant
actual argument. Additionally, any call nest (regardless of location) that is below
some small compiler-determined threshold will be inlined provided that call nest
completely flattens. Cloning disabled and cloning directives are ignored.

● 4 - This includes levels 1, 2, and 3, plus routine cloning is attempted if inlining
fails at a given call site. Cloning directives are enabled.

Inlining with CCE (cont)

48

● By default, all inlining candidates come from the current source file

● The –Oipafrom= (ftn) or –hipafrom= (cc/CC) option instructs the
compiler to look for inlining candidates from other source files, or a
directory of source files
● “ftn –Oipafrom=b.f a.f” tells the compiler to look for inlining candidates

within b.f when compiling a.f

● “cc –hipafrom=./dir src.c” tells the compiler to look for inlining candidates in
all the valid source files that exist in the directory ./dir when compiling src.c

● Cross language inlining is not supported.

Whole-Program Compilation

49

● The Program Library (PL) feature allows the user to
specify a repository of compiler information for an
application build
● This repository provides the framework for future productivity features

such as
● Whole program static error detection
● Incremental recompilation
● Provide support for the future Cray interactive whole program performance

analysis and tuning assistant Reveal

● Two command line options control the Program Library
functionality
● -h pl = <PL_path> specifies the repository

● ftn –hpl=./PL.1 tells the compiler to either update the Program Library
“./PL.1” if it exists, or create it if it does not exist.

● <PL_path> should specify a single location to be used for entire application
build. If a makefile changes directories during a build, an absolute path
might be necessary.

● -h wp enables whole-program mode

Whole-Program Compilation (cont)

50

● Whole-program mode (-hwp) requires a program library (-hpl =)
and both options must be specified on all compilation
command lines as well as on the link line.
● The compiler frontend is invoked for the compilation (-c) command lines
● The compiler backend (inliner, optimizer, code generator) is invoked for all

source files when the link line is specified.
● While –hwp might have a negative affect on overall compile time due to

increased inlining, it is most usually a compile time shift, where –c
compilations become quite fast and the time spent on the link step
increases.

● Setting the environment variable “NPROC” to a number greater than 1
instructs the compiler to invoke NPROC backend processes concurrently.
The backend invocations are independent of each other and setting
NPROC to a level that is appropriate for the host build machine can
improve compile time.

● Whole-program mode (-hwp) allows the inliner to see all inline

candidates in the application.
● This option makes cross file inlining automatic

● Removes the need for –h ipafrom =
● Inlining heuristics are still controlled by –h/-O ipan

Recommended CCE Compilation Options

51

● Use default optimization levels
● It’s the equivalent of most other compilers –O3 or –fast
● It is also our most thoroughly tested configuration

● Use –O3,fp3 (or –O3 –hfp3, or some variation)

● -O3 only gives you slightly more than –O2
● We also test this thoroughly
● -hfp3 gives you a lot more floating point optimization, esp. 32-bit

● If an application is intolerant of floating point reassociation, try

a lower –hfp number – try –hfp1 first, only –hfp0 if absolutely
necessary
● Might be needed for tests that require strict IEEE conformance
● Or applications that have ‘validated’ results from a different compiler

● Do not use –Oipa5, -Oaggress, and so on – higher numbers are
not always correlated with better performance

What Exactly Does –hfp3 Do?

52

● We recommend using –O3 –hfp3 if the application runs
cleanly with these options

● -hfp3 primarily improves 32-bit floating point performance
on the x86

● A partial list of what happens at –hfp3 is:
● Use of fast 32-bit inline division, reciprocal, square root, and reciprocal

square root algorithms (with some loss of precision)

● Use of a fast 32-bit inline complex absolute value algorithm

● Starting with CCE 8.0, more aggressive reassociation (pre-8.0 –hfp2
behavior)

● Various assumptions about floating point trap safety

● Somewhat more aggressive about NaN assumptions

● Assumes standard-compliant Fortran exponentiation (x**y)

Cray compiler flags

53

● Overall Options
● -ra creates a listing file with optimization info

● -rm produces a source listing with loopmark
 information

● Preprocessor Options
● -eZ runs the preprocessor on Fortran files

● -F enables macro expansion throughout
 the source file

● Optimisation Options
● -O2 optimal flags [enabled by default]

● -O3 aggressive optimization

● -O ipa<n> inlining, n=0-5

Cray compiler flags

54

● Language Options
● -f free process Fortran source using freeform

● -s real64 treat REAL variables as 64-bit

● -s integer64 treat INTEGER variables as 64-bit

● Parallelization Options
● -O omp Recognize OpenMP directives [default]

● -O thread<n> n=0-3, aggressive parallelization, default n=2

=> man crayftn
http://docs.cray.com/cgi-bin/craydoc.cgi?mode=View;id=S-3901-

71;idx=books_search;this_sort=;q=3901;type=books;title=Cray%20Fortran%20Reference%20Manual

http://docs.cray.com/cgi-bin/craydoc.cgi?mode=View;id=S-3901-71;idx=books_search;this_sort=;q=3901;type=books;title=Cray Fortran Reference Manual
http://docs.cray.com/cgi-bin/craydoc.cgi?mode=View;id=S-3901-71;idx=books_search;this_sort=;q=3901;type=books;title=Cray Fortran Reference Manual
http://docs.cray.com/cgi-bin/craydoc.cgi?mode=View;id=S-3901-71;idx=books_search;this_sort=;q=3901;type=books;title=Cray Fortran Reference Manual
http://docs.cray.com/cgi-bin/craydoc.cgi?mode=View;id=S-3901-71;idx=books_search;this_sort=;q=3901;type=books;title=Cray Fortran Reference Manual
http://docs.cray.com/cgi-bin/craydoc.cgi?mode=View;id=S-3901-71;idx=books_search;this_sort=;q=3901;type=books;title=Cray Fortran Reference Manual
http://docs.cray.com/cgi-bin/craydoc.cgi?mode=View;id=S-3901-71;idx=books_search;this_sort=;q=3901;type=books;title=Cray Fortran Reference Manual
http://docs.cray.com/cgi-bin/craydoc.cgi?mode=View;id=S-3901-71;idx=books_search;this_sort=;q=3901;type=books;title=Cray Fortran Reference Manual

OpenMP

55

● OpenMP is ON by default
● Optimizations controlled by –Othread#

● To shut off use –Othread0 or –xomp or –hnoomp

● Autothreading is NOT on by default;
● -hautothread to turn on

● Modernized version of Cray X1 streaming capability

● Interacts with OpenMP directives

● If you do not want to use OpenMP and have OMP
directives in the code, make sure to shut off OpenMP at
compile time

Performing Endian Conversion on
Cray XE Series Systems

56

● Cray Compiling Environment (CCE)
● -hbyteswapio: forces byte-swapping of all input and output

 files for direct and sequential unformatted I/O

Cray programming environment: assign

57

● Assigns options for library file open processing

● assign [assign options] assign_object

● Interesting assign options
● -R removes all assign options for

assign_object

● -N <numcon> specifies foreign numeric conversion

● swap_endian the endianess of data is swapped during
 unformatted input and output.

● assign object used to specify the object of
 assign options
● f:<filename> applies to filename

● u:<unit> applies to Fortran unit number

● g:su applies to all Fortran sequential
unform. files

How to handle byte-swapped files with CCE

58

● Explicit usage of assign
● Can control which files are byte-swapped

 export FILENV=.assign

 assign -R

 assign -N swap_endian f:aof

 aprun a.out

● Link the application with –hbyteswapio
● This is equivalent to set

 assign -N swap_endian g:su all sequential unformatted

 assign -N swap_endian g:du <-all direct unformatted

● “man assign“ (when PrgEnv-cray loaded)

CCE Directives

59

● Cray compiler supports a full and growing set of directives
and pragmas

● !dir$ concurrent

● !dir$ ivdep

● !dir$ interchange

● !dir$ unroll

● !dir$ loop_info [max_trips] [cache_na] ... Many more

● !dir$ blockable

● man directives

● man loop_info

Loopmark/Compiler Feedback

60

●ftn –rm … or cc –hlist=m …
●Compiler can generate an ‘.lst’with

annotated listing of your source code with
letter indicating important optimizations

Loopmark: Compiler Feedback

61

● Compiler can generate a filename.lst file.
● Contains annotated listing of your source code with letter indicating

important optimizations

%%% L o o p m a r k L e g e n d %%%

Primary Loop Type Modifiers

------- ---- ---- ---------

 a - vector atomic memory operation

A - Pattern matched b – blocked

C - Collapsed f – fused

D - Deleted i – interchanged

E - Cloned m - streamed but not partitioned

I - Inlined p - conditional, partial and/or computed

M - Multithreaded r – unrolled

P - Parallel/Tasked s – shortloop

V - Vectorized t - array syntax temp used

W - Unwound w - unwound

Example: Cray loopmark messages

62

● ftn –rm … or cc –hlist=m …

29. b-------< do i3=2,n3-1

30. b b-----< do i2=2,n2-1

31. b b Vr--< do i1=1,n1

32. b b Vr u1(i1) = u(i1,i2-1,i3) + u(i1,i2+1,i3)

33. b b Vr * + u(i1,i2,i3-1) + u(i1,i2,i3+1)

34. b b Vr u2(i1) = u(i1,i2-1,i3-1) + u(i1,i2+1,i3-1)

35. b b Vr * + u(i1,i2-1,i3+1) + u(i1,i2+1,i3+1)

36. b b Vr--> enddo

37. b b Vr--< do i1=2,n1-1

38. b b Vr r(i1,i2,i3) = v(i1,i2,i3)

39. b b Vr * - a(0) * u(i1,i2,i3)

40. b b Vr * - a(2) * (u2(i1) + u1(i1-1) + u1(i1+1))

41. b b Vr * - a(3) * (u2(i1-1) + u2(i1+1))

42. b b Vr--> enddo

43. b b-----> enddo

44. b-------> enddo

Example: Cray loopmark messages…

November, 2011 Luiz DeRose © Cray Inc.
63

 ftn-6289 ftn: VECTOR File = resid.f, Line = 29

 A loop starting at line 29 was not vectorized because a recurrence was found on

"U1" between lines 32 and 38.

ftn-6049 ftn: SCALAR File = resid.f, Line = 29

 A loop starting at line 29 was blocked with block size 4.

ftn-6289 ftn: VECTOR File = resid.f, Line = 30

 A loop starting at line 30 was not vectorized because a recurrence was found on

"U1" between lines 32 and 38.

ftn-6049 ftn: SCALAR File = resid.f, Line = 30

 A loop starting at line 30 was blocked with block size 4.

ftn-6005 ftn: SCALAR File = resid.f, Line = 31

 A loop starting at line 31 was unrolled 4 times.

ftn-6204 ftn: VECTOR File = resid.f, Line = 31

 A loop starting at line 31 was vectorized.

ftn-6005 ftn: SCALAR File = resid.f, Line = 37

 A loop starting at line 37 was unrolled 4 times.

ftn-6204 ftn: VECTOR File = resid.f, Line = 37

 A loop starting at line 37 was vectorized.

Compiler man Pages

64

● The cc(1), CC(1), and ftn(1) man pages contain information
about the compiler driver commands

● The pgcc(1), pgCC(1), and pgf95(1) man pages contain
descriptions of the PGI compiler command options

● The craycc(1), crayCC(1), and crayftn(1) man pages contain
descriptions of the Cray compiler command options

● The gcc(1), g++(1), and gfortran(1) man pages contain
descriptions of the GNU compiler command options

● To verify that you are using the correct version of a compiler,
use:
● -V option on a cc, CC, or ftn command with PGI and CCE

● --version option on a cc, CC, or ftn command with GNU

Cray and PGI compiler flags

65

Feature PGI Cray

Listing -Mlist -ra

Diagnostic -Minfo -Mneginfo (produced by -ra)

Free format -Mfree -f free

Preprocessing -Mpreprocess -eZ -F

Suggested

Optimization

-fast (default)

Aggressive

Optimization

-Mipa=fast,inline -O3, fp3

Variables size -r8 –i8 -s real64 –s

integer64

Byte swap -byteswapio -h byteswapio

OpenMP recognition -mp=nonuma (default)

Automatic

parallelization

-Mconcur -h autothread

Other programming environments

66

● GNU (PrgEnv-gnu)
● Suggested options: -O3 –ffast-math –funroll-loops

● Compiler feedback: -ftree-vectorize -verbose=2

● OpenMP: -fopenmp

● Man pages: gcc, gfortran, g++

Cross Compiling Environment

67

● Compiling on a Linux login node

● Generating an executable for a CLE compute node

● Do not use pgf90, pgcc, gcc, g++, ..., unless you want a
Linux executable for the service node
● Use ftn, cc, or CC instead

Scalable Software Architecture

6

8

Microkernel on Compute nodes, full

featured Linux on Service nodes.

Service PEs specialize by function

Software Architecture eliminates OS

“Jitter”

Software Architecture enables

reproducible run times

 Service Partition

Compute

Partition

Specialized

Linux

nodes

Scalable Software Architecture: CLE

69

Trimming OS – Standard Linux Server

70

Linux Kernel

Portmap

sshd

slpd

nscd

resmgrd

powersaved

cupsd

kdm

cron mingetty(s)

qmgr master

pickup

ndbd

…

init

klogd

Linux on a Diet – CLE

71

Linux Kernel

ALPS

client
syslogd

Lustre

Client init

klogd

Cray XE I/O architecture

72

● All I/O is offloaded to service nodes

● Lustre
● High performance parallel I/O file system

● Direct data transfer between compute nodes and files

● DVS
● Virtualization service

● Allows compute nodes to access NFS mounted on service node

● Applications must execute on file systems mounted on compute nodes

● No local disks

● /tmp is a MEMORY file system, on each login node

Scaling Shared Libraries with DVS

73

Diskless

Compute

Node 0

/dvs

Diskless

Compute

Node 1

/dvs

Diskless

Compute

Node N

/dvs

Diskless

Compute

Node 2

/dvs

Diskless

Compute

Node 3

/dvs

DVS

Server

Node 0

 Requests for shared libraries (.so files)
are routed through DVS Servers

 Provides similar functionality as NFS, but
scales to 1000s of compute nodes

 Central point of administration for
shared libraries

 DVS Servers can be “re-purposed”
compute nodes

Cray

Interconnect

NFS

Shared

Librarie

s

September 12, 2012 Slide 73 Cray Proprietary

DSL : Dynamic shared libraries

74

● Benefit: root file system environment available to
applications

● Shared root filesystem is made available to compute
nodes

● Standard libraries / tools will be in the standard places

● Able to deliver customer-provided root file system to
compute nodes

● Programming environment supports static and dynamic
linking

● Performance impact negligible, due to scalable
implementation

● Link with “ftn –dynamic” to create a dynamically linked
executable (or set XTPE_LINK_TYPE)

Running an application on the
Cray XE6

Running an application on the Cray XE
 ALPS + aprun

76

● ALPS : Application Level Placement Scheduler

● aprun is the ALPS application launcher
● It must be used to run application on the XE compute nodes:

interactively and in a batch job

● If aprun is not used, the application is launched on the Mom node
(and will most likely fail)

● aprun man page contains several useful examples

● at least 3 important parameters to control:
● The total number of PEs : -n

● The number of PEs per node: -N

● The number of OpenMP threads: -d
More precise : The ‘stride’ between 2 PEs in a node

Some Definitions

77

● ALPS is always used for scheduling a job on the compute nodes. It
does not care about the programming model you used. So we need
a few general ‘definitions’ :

● PE : Processing Elements
Basically an Unix ‘Process’, can be a MPI Task, CAF image, UPC
tread, …

● numa_node
The cores and memory on a node with ‘flat’ memory access,
basically one of the 4 Dies on the Opteron and the direct attach
memory.

● Thread
A thread is contained inside a process. Multiple threads can exist
within the same process and share resources such as memory,
while different PEs do not share these resources.
Most likely you will use OpenMP threads.

Running an application on the Cray XE6
 some basic examples

78

● Assuming a XE6 MC12 system (24 cores per node)

● Pure MPI application, using all the available cores in a node
 $ aprun –n 24 ./a.out

● Pure MPI application, using only 1 core per node
● 24 MPI tasks, 24 nodes with 24*24 core allocated

● Can be done to increase the available memory for the MPI tasks
 $ aprun –N 1 –n 24 –d 24./a.out

(we’ll talk about the need for the –d24 later)

● Hybrid MPI/OpenMP application, 4 MPI ranks per node
● 32 MPI tasks, 6 OpenMP threads each

● need to set OMP_NUM_THREADS
 $ export OMP_NUM_THREADS=6

 $ aprun –n 32 –N 4 –d $OMP_NUM_THREADS

aprun CPU Affinity control

79

● CLE can dynamically distribute work by allowing PEs and threads to
migrate from one CPU to another within a node

● In some cases, moving PEs or threads from CPU to CPU increases
cache and translation lookaside buffer (TLB) misses and therefore
reduces performance

● CPU affinity options enable to bind a PE or thread to a particular
CPU or a subset of CPUs on a node

● aprun CPU affinity option (see man aprun)

● Default settings : -cc cpu
PEs are bound a to specific core, depended on the –d setting

● Binding PEs to a specific numa node : -cc numa_node
PEs are not bound to a specific core but cannot ‘leave’ their
numa_node

● No binding : -cc none

● Own binding : -cc 0,4,3,2,1,16,18,31,9,…

Memory affinity control

80

● Cray XE6 systems use dual-socket compute nodes with
4 dies
● Each die (6 cores) is considered a NUMA-node

● Remote-NUMA-node memory references, can adversely
affect performance.
Even if you PE and threads are bound to a specific
numa_node, the memory used does not have to be ‘local’

● aprun memory affinity options (see man aprun)
● Suggested setting is –ss

a PE can only allocate the memory local to its assigned NUMA
node. If this is not possible, your application will crash.

Running an application on the Cray XE - MPMD

● aprun supports MPMD – Multiple Program Multiple Data

● Launching several executables on the same
MPI_COMM_WORLD
$ aprun –n 128 exe1 : -n 64 exe2 : -n 64 exe3

● Notice : Each exacutable needs a dedicated node, exe1
and exe2 cannot share a node.
Example : The following commands needs 3 nodes
$ aprun –n 1 exe1 : -n 1 exe2 : -n 1 exe3

● Use a script to start several serial jobs on a node :
$ aprun –a xt –n 3 script.sh

81

>cat script.sh

./exe1&

./exe2&

./exe3&

wait

>

Core specialization

● System ‘noise’ on compute nodes may significantly
degrade scalability for some applications

● Core Specialization can mitigate this problem
● 1 core per node will be dedicated for system work (service core)

● As many system interrupts as possible will be forced to execute
on the service core

● The application will not run on the service core

● Use aprun -r to get core specialization
 $ aprun –r –n 100 a.out

● apcount provided to compute total number of cores required
 $ qsub -l mppwidth=$(apcount -r 1 1024 16) job

 $ aprun -n 1024 -r 1 a.out

82

Questions?

83

● Cray documentation (docs.cray.com)

