

Cray Performance Measurement and

Analysis Tools

Jason Beech-Brandt

Introduction to the Cray Performance Tools

Cray Inc.
2

● Cray performance tools overview

● Steps to using the tools

● Performance measurement on the Cray XE system

● Using HW performance counters

● Profiling applications

● Visualization of performance data through pat_report

● New features in Cray Apprentice2

Overview

Design Goals

Cray Inc.
4

● Assist the user with application performance analysis and

optimization
● Help user identify important and meaningful information from

potentially massive data sets

● Help user identify problem areas instead of just reporting data

● Bring optimization knowledge to a wider set of users

● Focus on ease of use and intuitive user interfaces

● Automatic program instrumentation
● Automatic analysis

● Target scalability issues in all areas of tool development
● Data management

● Storage, movement, presentation

Strengths

Cray Inc.
5

Provide a complete solution from instrumentation to
measurement to analysis to visualization of data

● Performance measurement and analysis on large systems
● Automatic Profiling Analysis

● Load Imbalance

● HW counter derived metrics

● Predefined trace groups provide performance statistics for libraries
called by program (blas, lapack, pgas runtime, netcdf, hdf5, etc.)

● Observations of inefficient performance

● Data collection and presentation filtering

● Data correlates to user source (line number info, etc.)

● Support MPI, SHMEM, OpenMP, UPC, CAF

● Access to network counters

● Minimal program perturbation

Strengths (2)

Cray Inc.
6

● Usability on large systems
● Client / server

● Scalable data format

● Intuitive visualization of performance data

● Supports “recipe” for porting MPI programs to many-core
or hybrid systems

● Integrates with other Cray PE software for more tightly
coupled development environment

The Cray Performance Analysis Framework

Cray Inc.
7

● Supports traditional post-mortem performance analysis
● Automatic identification of performance problems

● Indication of causes of problems

● Suggestions of modifications for performance improvement

● pat_build: provides automatic instrumentation

● CrayPat run-time library collects measurements (transparent to the
user)

● pat_report performs analysis and generates text reports

● pat_help: online help utility

● Cray Apprentice2: graphical visualization tool

The Cray Performance Analysis Framework (2)

Cray Inc.
8

● CrayPat
● Instrumentation of optimized code

● No source code modification required

● Data collection transparent to the user

● Text-based performance reports

● Derived metrics

● Performance analysis

● Cray Apprentice2
● Performance data visualization tool

● Call tree view

● Source code mappings

Steps to Using the Tools

Application Instrumentation with pat_build

Cray Inc.
10

 pat_build is a stand-alone utility that automatically
instruments the application for performance collection

● Requires no source code or makefile modification
● Automatic instrumentation at group (function) level

● Groups: mpi, io, heap, math SW, …

● Performs link-time instrumentation
● Requires object files

● Instruments optimized code

● Generates stand-alone instrumented program

● Preserves original binary

Application Instrumentation with pat_build (2)

Cray Inc.
11

● Supports two categories of experiments
● asynchronous experiments (sampling) which capture values from the

call stack or the program counter at specified intervals or when a
specified counter overflows

● Event-based experiments (tracing) which count some events such as
the number of times a specific system call is executed

● While tracing provides most useful information, it can be
very heavy if the application runs on a large number of
cores for a long period of time

● Sampling can be useful as a starting point, to provide a
first overview of the work distribution

Program Instrumentation Tips

Cray Inc.
12

● Large programs
● Scaling issues more dominant

● Use automatic profiling analysis to quickly identify top time consuming
routines

● Use loop statistics to quickly identify top time consuming loops

● Small (test) or short running programs
● Scaling issues not significant

● Can skip first sampling experiment and directly generate profile

● For example:
% pat_build -u -g mpi my_program

Where to Run Instrumented Application

Cray Inc.
13

● MUST run on Lustre (/mnt/snx3/… , /lus/…,
/scratch/…,etc.)

● Number of files used to store raw data

● 1 file created for program with 1 – 256 processes

● √n files created for program with 257 – n processes

● Ability to customize with PAT_RT_EXPFILE_MAX

CrayPat Runtime Options

Cray Inc.
14

● Runtime controlled through PAT_RT_XXX environment
variables

● See intro_craypat(1) man page

● Examples of control
● Enable full trace

● Change number of data files created

● Enable collection of HW counters

● Enable collection of network counters

● Enable tracing filters to control trace file size (max threads, max call
stack depth, etc.)

Example Runtime Environment Variables

Cray Inc.
15

● Optional timeline view of program available
● export PAT_RT_SUMMARY=0

● View trace file with Cray Apprentice2

● Number of files used to store raw data:
● 1 file created for program with 1 – 256 processes

● √n files created for program with 257 – n processes

● Ability to customize with PAT_RT_EXPFILE_MAX

● Request hardware performance counter information:
● export PAT_RT_HWPC=<HWPC Group>

● Can specify events or predefined groups

pat_report

Cray Inc.
16

● Performs data conversion
● Combines information from binary with raw performance data

● Performs analysis on data

● Generates text report of performance results

● Formats data for input into Cray Apprentice2

Why Should I generate an “.ap2” file?

Cray Inc.
17

● The “.ap2” file is a self contained compressed
performance file

● Normally it is about 5 times smaller than the “.xf” file

● Contains the information needed from the application
binary
● Can be reused, even if the application binary is no longer available or

if it was rebuilt

● It is the only input format accepted by Cray Apprentice2

Files Generated and the Naming Convention

Cray Inc.
18

File Suffix Description

a.out+pat Program instrumented for data collection

a.out…s.xf

Raw data for sampling experiment, available after

application execution

a.out…t.xf Raw data for trace (summarized or full) experiment,

available after application execution

a.out…st.ap2 Processed data, generated by pat_report, contains

application symbol information

a.out…s.apa Automatic profiling pnalysis template, generated by

pat_report (based on pat_build –O apa experiment)

a.out+apa Program instrumented using .apa file

MPICH_RANK_ORDER.Custom Rank reorder file generated by pat_report from

automatic grid detection an reorder suggestions

Program Instrumentation - Automatic Profiling
Analysis

Cray Inc.
19

● Automatic profiling analysis (APA)

● Provides simple procedure to instrument and collect performance data

for novice users

● Identifies top time consuming routines

● Automatically creates instrumentation template customized to
application for future in-depth measurement and analysis

Steps to Collecting Performance Data

Cray Inc.
20

● Access performance tools software

 % module load perftools

● Build application keeping .o files (CCE: -h keepfiles)

 % make clean
 % make

● Instrument application for automatic profiling analysis

● You should get an instrumented program a.out+pat

 % pat_build –O apa a.out

● Run application to get top time consuming routines

● You should get a performance file (“<sdatafile>.xf”) or
multiple files in a directory <sdatadir>

 % aprun … a.out+pat (or qsub <pat script>)

Steps to Collecting Performance Data (2)

Cray Inc.
 21

● Generate report and .apa instrumentation file

● % pat_report –o my_sampling_report [<sdatafile>.xf | <sdatadir>]

● Inspect .apa file and sampling report

● Verify if additional instrumentation is needed

APA File Example
You can edit this file, if desired, and use it

to reinstrument the program for tracing like this:

pat_build -O standard.cray-xt.PE-2.1.56HD.pgi-8.0.amd64.pat-5.0.0.2-
Oapa.512.quad.cores.seal.090405.1154.mpi.pat_rt_exp=default.pat_rt_hwpc=none.14999.xf.xf.ap
a

These suggested trace options are based on data from:

/home/users/malice/pat/Runs/Runs.seal.pat5001.2009Apr04/./pat.quad/homme/standard.cray-
xt.PE-2.1.56HD.pgi-8.0.amd64.pat-5.0.0.2-
Oapa.512.quad.cores.seal.090405.1154.mpi.pat_rt_exp=default.pat_rt_hwpc=none.14999.xf.xf.cd
b

--

HWPC group to collect by default.

 -Drtenv=PAT_RT_HWPC=1 # Summary with TLB metrics.

--

Libraries to trace.

 -g mpi

--

User-defined functions to trace, sorted by % of samples.

The way these functions are filtered can be controlled with

pat_report options (values used for this file are shown):

-s apa_max_count=200 No more than 200 functions are listed.

-s apa_min_size=800 Commented out if text size < 800 bytes.

-s apa_min_pct=1 Commented out if it had < 1% of samples.

-s apa_max_cum_pct=90 Commented out after cumulative 90%.

Local functions are listed for completeness, but cannot be traced.

 -w # Enable tracing of user-defined functions.

 # Note: -u should NOT be specified as an additional option.

31.29% 38517 bytes

 -T prim_advance_mod_preq_advance_exp_

15.07% 14158 bytes

 -T prim_si_mod_prim_diffusion_

9.76% 5474 bytes

 -T derivative_mod_gradient_str_nonstag_

. . .

2.95% 3067 bytes

 -T forcing_mod_apply_forcing_

2.93% 118585 bytes

 -T column_model_mod_applycolumnmodel_

Functions below this point account for less than 10% of samples.

0.66% 4575 bytes

-T bndry_mod_bndry_exchangev_thsave_time_

0.10% 46797 bytes

-T baroclinic_inst_mod_binst_init_state_

0.04% 62214 bytes

-T prim_state_mod_prim_printstate_

. . .

0.00% 118 bytes

-T time_mod_timelevel_update_

--

 -o preqx.cray-xt.PE-2.1.56HD.pgi-8.0.amd64.pat-5.0.0.2.x+apa
New instrumented program.

 /.AUTO/cray/css.pe_tools/malice/craypat/build/pat/2009Apr03/2.1.56HD/amd64/homme/pgi/pat-
5.0.0.2/homme/2005Dec08/build.Linux/preqx.cray-xt.PE-2.1.56HD.pgi-8.0.amd64.pat-5.0.0.2.x #
Original program.

Cray Inc. 22

Generating Profile from APA

Cray Inc.
23

● Instrument application for further analysis (a.out+apa)

% pat_build –O <apafile>.apa

● Run application

% aprun … a.out+apa (or qsub <apa script>)

● Generate text report and visualization file (.ap2)

% pat_report –o my_text_report.txt [<datafile>.xf |

<datadir>]

● View report in text and/or with Cray Apprentice2

% app2 <datafile>.ap2

HW Performance Counters

Hardware Performance Counters - MC

Cray Inc.
25

● AMD Family 10H Opteron Hardware Performance
Counters
● Each core has 4 48-bit performance counters

● Each counter can monitor a single event
● Count specific processor events

● the processor increments the counter when it detects an occurrence of the
event

● (e.g., cache misses)

● Duration of events

● the processor counts the number of processor clocks it takes to complete an
event

● (e.g., the number of clocks it takes to return data from memory after a cache
miss)

● Time Stamp Counters (TSC)
● Cycles (user time)

PAPI Predefined Events

Cray Inc.
26

● Common set of events deemed relevant and useful for
application performance tuning
● Accesses to the memory hierarchy, cycle and instruction counts,

functional units, pipeline status, etc.

● The “papi_avail” utility shows which predefined events are available on
the system – execute on compute node

● PAPI also provides access to native events
● The “papi_native_avail” utility lists all AMD native events available on the

system – execute on compute node

● PAPI uses perf_events Linux subsystem

● Information on PAPI and AMD native events
● pat_help counters

● man intro_papi (points to PAPI documentation: http://icl.cs.utk.edu/papi/)

● http://lists.eecs.utk.edu/pipermail/perfapi-devel/2011-January/004078.html

Hardware Counters Selection

Cray Inc.
27

● HW counter collection enabled with PAT_RT_HWPC
environment variable

● PAT_RT_HWPC <set number> | <event list>

● A set number can be used to select a group of predefined hardware
counters events (recommended)
● CrayPat provides 23 groups on the Cray XT/XE systems

● See pat_help(1) or the hwpc(5) man page for a list of groups

● Alternatively a list of hardware performance counter event names can
be used

● Hardware counter events are not collected by default

HW Counter Information Available in Reports

Cray Inc.
28

● Raw data

● Derived metrics

● Desirable thresholds

Predefined Interlagos HW Counter Groups

Cray Inc.
29

See pat_help -> counters -> amd_fam15h –> groups

 0: Summary with instructions metrics

 1: Summary with TLB metrics

 2: L1 and L2 Metrics

 3: Bandwidth information

 4: <Unused>

 5: Floating operations dispatched

 6: Cycles stalled, resources idle

 7: Cycles stalled, resources full

 8: Instructions and branches

 9: Instruction cache

 10: Cache Hierarchy (unsupported for IL)

Predefined Interlagos HW Counter Groups
(cont’d)

Cray Inc.
30

 11: Floating point operations dispatched

 12: Dual pipe floating point operations dispatched

 13: Floating point operations SP

 14: Floating point operations DP

 L3 (socket and core level) (unsupported)

 19: Prefetches

 20: FP, D1, TLB, MIPS <<-new for Interlagos

 21: FP, D1, TLB, Stalls

 22: D1, TLB, MemBW

 PAPI_TLB_DM Data translation lookaside buffer misses

 PAPI_L1_DCA Level 1 data cache accesses

 PAPI_FP_OPS Floating point operations

 DC_MISS Data Cache Miss

 User_Cycles Virtual Cycles

==

USER

--

 Time% 98.3%

 Time 4.434402 secs

 Imb.Time -- secs

 Imb.Time% --

 Calls 0.001M/sec 4500.0 calls

 PAPI_L1_DCM 14.820M/sec 65712197 misses

 PAPI_TLB_DM 0.902M/sec 3998928 misses

 PAPI_L1_DCA 333.331M/sec 1477996162 refs

 PAPI_FP_OPS 445.571M/sec 1975672594 ops

 User time (approx) 4.434 secs 11971868993 cycles 100.0%Time

 Average Time per Call 0.000985 sec

 CrayPat Overhead : Time 0.1%

 HW FP Ops / User time 445.571M/sec 1975672594 ops 4.1%peak(DP)

 HW FP Ops / WCT 445.533M/sec

 Computational intensity 0.17 ops/cycle 1.34 ops/ref

 MFLOPS (aggregate) 1782.28M/sec

 TLB utilization 369.60 refs/miss 0.722 avg uses

 D1 cache hit,miss ratios 95.6% hits 4.4% misses

 D1 cache utilization (misses) 22.49 refs/miss 2.811 avg hits

==

Example: HW counter data and Derived Metrics

Cray Inc.
31

PAT_RT_HWPC=1

 Flat profile data

 Raw counts

 Derived metrics

Profile Visualization with pat_report

and Cray Apprentice2

Examples of Recent Scaling Efforts

New .ap2 Format + Client/Server Model

Cray Inc.
34

● Reduced pat_report processing and report generation times

● Reduced app2 data load times

● Graphical presentation handled locally (not passed through ssh
connection)

● Better tool responsiveness

● Minimizes data loaded into memory at any given time

● Reduced server footprint on Cray XT/XE service node

● Larger data files handled (1.5TB .xf -> 800GB .ap2)

Scalable Data Format Reduced Processing
Times

Cray Inc.
35

● CPMD
● MPI, instrumented with pat_build –u, HWPC=1

● 960 cores

● VASP
● MPI, instrumented with pat_build –gmpi –u, HWPC=3

● 768 cores

Perftools 5.1.3 Perftools 5.2.0

.xf -> .ap2 88.5 seconds 22.9 seconds

ap2 -> report 1512.27 seconds 49.6 seconds

Perftools 5.1.3 Perftools 5.2.0

.xf -> .ap2 45.2 seconds 15.9 seconds

ap2 -> report 796.9 seconds 28.0 seconds

Old Client/Server (Cray Performance Tools
5.0.0)

Cray Inc.
36

● Log into Cray XT/XE login node
% ssh –Y kaibab

● Launch Cray Apprentice2 on Cray XT/XE login node
% app2 /lus/scratch/mydir/my_program.ap2

● User interface displayed on desktop via ssh X11 forwarding

● Entire .ap2 file loaded into memory on login node (can be Gbytes of
data)

Linux desktop Cray XT/XE login Compute nodes All data from

my_program.ap2 +

X11 protocol
app2

my_program.ap2

X Window

System

application
my_program+apa

Collected

performance

data

New Client/Server (Cray Performance Tools
5.2.0)

Cray Inc.
37

● Launch Cray Apprentice2 on desktop, point to data
% app2 kaibab:/lus/scratch/mydir/my_program.ap2

● User interface displayed on desktop via X Windows-based software

● Minimal subset of data from.ap2 file loaded into memory on login node
at any given time

● Only data requested sent from server to client

Linux desktop Cray XT/XE login Compute nodes User requested data

from

my_program.ap2 app2 server

my_program.ap2

X Window

System

application

app2 client
my_program+apa

Collected

performance

data

pat_report: Job Execution Information

Cray Inc.
38

CrayPat/X: Version 5.2.3.8078 Revision 8078 (xf 8063) 08/25/11 …

Number of PEs (MPI ranks): 16

Numbers of PEs per Node: 16

Numbers of Threads per PE: 1

Number of Cores per Socket: 12

Execution start time: Thu Aug 25 14:16:51 2011

System type and speed: x86_64 2000 MHz

Current path to data file:
 /lus/scratch/heidi/ted_swim/mpi-openmp/run/swim+pat+27472-34t.ap2

Notes for table 1:
…

pat_report: Table Notes

Cray Inc.
39

Notes for table 1:

 Table option:
 -O profile
 Options implied by table option:
 -d ti%@0.95,ti,imb_ti,imb_ti%,tr -b gr,fu,pe=HIDE
 Other options:
 -T

 Options for related tables:
 -O profile_pe.th -O profile_th_pe
 -O profile+src -O load_balance
 -O callers -O callers+src
 -O calltree -O calltree+src

 The Total value for Time, Calls is the sum for the Group values.
 The Group value for Time, Calls is the sum for the Function values.
 The Function value for Time, Calls is the avg for the PE values.
 (To specify different aggregations, see: pat_help report options s1)

 This table shows only lines with Time% > 0.

 Percentages at each level are of the Total for the program.
 (For percentages relative to next level up, specify:
 -s percent=r[elative])

pat_report: Additional Information

Cray Inc.
40

…
Instrumented with:
 pat_build -gmpi -u himenoBMTxpr.x

Program invocation:
 ../bin/himenoBMTxpr+pat.x

Exit Status: 0 for 256 PEs

CPU Family: 15h Model: 01h Stepping: 2

Core Performance Boost: Configured for 0 PEs
 Capable for 256 PEs

Memory pagesize: 4096

Accelerator Model: Nvidia X2090 Memory: 6.00 GB Frequency: 1.15 GHz

Programming environment: CRAY

Runtime environment variables:
 OMP_NUM_THREADS=1
…

Sampling Output (Table 1)

Cray Inc.
41

Notes for table 1:

...

Table 1: Profile by Function

 Samp % | Samp | Imb. | Imb. |Group
 | | Samp | Samp % | Function
 | | | | PE='HIDE'

 100.0% | 775 | -- | -- |Total
|---
| 94.2% | 730 | -- | -- |USER
||--
|| 43.4% | 336 | 8.75 | 2.6% |mlwxyz_
|| 16.1% | 125 | 6.28 | 4.9% |half_
|| 8.0% | 62 | 6.25 | 9.5% |full_
|| 6.8% | 53 | 1.88 | 3.5% |artv_
|| 4.9% | 38 | 1.34 | 3.6% |bnd_
|| 3.6% | 28 | 2.00 | 6.9% |currenf_
|| 2.2% | 17 | 1.50 | 8.6% |bndsf_
|| 1.7% | 13 | 1.97 | 13.5% |model_
|| 1.4% | 11 | 1.53 | 12.2% |cfl_
|| 1.3% | 10 | 0.75 | 7.0% |currenh_
|| 1.0% | 8 | 5.28 | 41.9% |bndbo_
|| 1.0% | 8 | 8.28 | 53.4% |bndto_
||==
| 5.4% | 42 | -- | -- |MPI
||--
|| 1.9% | 15 | 4.62 | 23.9% |mpi_sendrecv_
|| 1.8% | 14 | 16.53 | 55.0% |mpi_bcast_
|| 1.7% | 13 | 5.66 | 30.7% |mpi_barrier_
|===

pat_report: Flat Profile

Cray Inc.
42

Table 1: Profile by Function Group and Function

 Time % | Time |Imb. Time | Imb. | Calls |Group

 | | | Time % | | Function

 | | | | | PE='HIDE'

 100.0% | 104.593634 | -- | -- | 22649 |Total

|--

| 71.0% | 74.230520 | -- | -- | 10473 |MPI

||---

|| 69.7% | 72.905208 | 0.508369 | 0.7% | 125 |mpi_allreduce_

|| 1.0% | 1.050931 | 0.030042 | 2.8% | 94 |mpi_alltoall_

||===

| 25.3% | 26.514029 | -- | -- | 73 |USER

||---

|| 16.7% | 17.461110 | 0.329532 | 1.9% | 23 |selfgravity_

|| 7.7% | 8.078474 | 0.114913 | 1.4% | 48 |ffte4_

||===

| 2.5% | 2.659429 | -- | -- | 435 |MPI_SYNC

||---

|| 2.1% | 2.207467 | 0.768347 | 26.2% | 172 |mpi_barrier_(sync)

||===

| 1.1% | 1.188998 | -- | -- | 11608 |HEAP

||---

|| 1.1% | 1.166707 | 0.142473 | 11.1% | 5235 |free

|==

pat_report: Message Stats by Caller

Cray Inc.
43

Table 4: MPI Message Stats by Caller

 MPI Msg |MPI Msg | MsgSz | 4KB<= |Function

 Bytes | Count | <16B | MsgSz | Caller

 | | Count | <64KB | PE[mmm]

 | | | Count |

 15138076.0 | 4099.4 | 411.6 | 3687.8 |Total

|--

| 15138028.0 | 4093.4 | 405.6 | 3687.8 |MPI_ISEND

||---

|| 8080500.0 | 2062.5 | 93.8 | 1968.8 |calc2_

3| | | | | MAIN_

||||---

4||| 8216000.0 | 3000.0 | 1000.0 | 2000.0 |pe.0

4||| 8208000.0 | 2000.0 | -- | 2000.0 |pe.9

4||| 6160000.0 | 2000.0 | 500.0 | 1500.0 |pe.15

||||===

|| 6285250.0 | 1656.2 | 125.0 | 1531.2 |calc1_

3| | | | | MAIN_

||||---

4||| 8216000.0 | 3000.0 | 1000.0 | 2000.0 |pe.0

4||| 6156000.0 | 1500.0 | -- | 1500.0 |pe.3

4||| 6156000.0 | 1500.0 | -- | 1500.0 |pe.5

||||===

. . .

MPI Rank Placement Suggestions

Automatic Communication Grid Detection

Cray Inc.
45

● Analyze runtime performance data to identify grids in a
program to maximize on-node communication
● Example: nearest neighbor exchange in 2 dimensions

● Sweep3d uses a 2-D grid for communication

● Determine whether or not a custom MPI rank order will
produce a significant performance benefit

● Grid detection is helpful for programs with significant
point-to-point communication

● Doesn’t interfere with MPI collective communication
optimizations

Automatic Grid Detection (cont’d)

Cray Inc.
46

● Tools produce a custom rank order if it’s beneficial based
on grid size, grid order and cost metric

● Summarized findings in report

● Available if MPI functions traced (-g mpi)

● Describe how to re-run with custom rank order

Example: Observations and Suggestions

Cray Inc.
47

MPI Grid Detection: There appears to be point-to-point MPI

 communication in a 22 X 18 grid pattern. The 48.6% of the total

 execution time spent in MPI functions might be reduced with a rank

 order that maximizes communication between ranks on the same node.

 The effect of several rank orders is estimated below.

 A file named MPICH_RANK_ORDER.Custom was generated along with this

 report and contains the Custom rank order from the following table.

 This file also contains usage instructions and a table of

 alternative rank orders.

 Rank On-Node On-Node MPICH_RANK_REORDER_METHOD

 Order Bytes/PE Bytes/PE%

 of Total

 Bytes/PE

 Custom 7.80e+06 78.37% 3

 SMP 5.59e+06 56.21% 1

 Fold 2.59e+05 2.60% 2

 RoundRobin 0.00e+00 0.00% 0

MPICH_RANK_ORDER File Example

Cray Inc.
48

The 'Custom' rank order in this file targets nodes with multi-core

processors, based on Sent Msg Total Bytes collected for:

Program: /lus/nid00030/heidi/sweep3d/mod/sweep3d.mpi

Ap2 File: sweep3d.mpi+pat+27054-89t.ap2

Number PEs: 48

Max PEs/Node: 4

To use this file, make a copy named MPICH_RANK_ORDER, and set the

environment variable MPICH_RANK_REORDER_METHOD to 3 prior to

executing the program.

The following table lists rank order alternatives and the grid_order

command-line options that can be used to generate a new order.

…

Example 2 - Hycom

Cray Inc.
49

================ Observations and suggestions ========================

MPI grid detection:

 There appears to be point-to-point MPI communication in a 33 X 41

 grid pattern. The 26.1% of the total execution time spent in MPI

 functions might be reduced with a rank order that maximizes

 communication between ranks on the same node. The effect of several

 rank orders is estimated below.

 A file named MPICH_RANK_ORDER.Custom was generated along with this

 report and contains the Custom rank order from the following table.

 This file also contains usage instructions and a table of

 alternative rank orders.

 Rank On-Node On-Node MPICH_RANK_REORDER_METHOD

 Order Bytes/PE Bytes/PE%

 of Total

 Bytes/PE

 Custom 1.20e+09 32.21% 3

 SMP 8.70e+08 23.27% 1

 Fold 3.55e+07 0.95% 2

 RoundRobin 1.99e+05 0.01% 0

================ End Observations ====================================

Example 2 - Hycom

Cray Inc.
50

● Run on 1353 MPI ranks, 24 ranks per node

● Overall program wallclock:
● Default MPI rank order: 1450s

● Custom MPI rank order: 1315s

● ~10% improvement in execution time!

● Time spent in MPI routines:
● Default rank order: 377s

● Custom rank order: 303s

Loop Work Estimates

Loop Work Estimates

Cray Inc.
52

● Helps identify loops to optimize (parallelize serial loops):
● Loop timings approximate how much work exists within a loop

● Trip counts can be used to help carve up loop on GPU

● Enabled with CCE –h profile_generate option
● Should be done as separate experiment – compiler optimizations are

restricted with this feature

● Loop statistics reported by default in pat_report table

● Next enhancement: integrate loop information in profile
● Get exclusive times and loops attributed to functions

Collecting Loop Statistics

Cray Inc.
53

● Load PrgEnv-cray software

● Load perftools software

● Compile AND link with –h profile_generate

● Instrument binary for tracing
● pat_build –u my_program or

● pat_build –w my_program

● Run application

● Create report with loop statistics
● pat_report my_program.xf > loops_report

Example Report – Loop Work Estimates

Cray Inc.
54

Table 1: Profile by Function Group and Function

 Time% | Time | Imb. | Imb. | Calls |Group

 | | Time | Time% | | Function

 | | | | | PE=HIDE

 | | | | | Thread=HIDE

 100.0% | 176.687480 | -- | -- | 17108.0 |Total

|--

| 85.3% | 150.789559 | -- | -- | 8.0 |USER

||---

| 85.0% | 150.215785 | 24.876709 | 14.4% | 2.0 | jacobi_.LOOPS

||===

| 12.2% | 21.600616 | -- | -- | 16071.0 |MPI

||---

| 11.9% | 21.104488 | 41.016738 | 67.1% | 3009.0 | mpi_waitall

||===

| 2.4% | 4.297301 | -- | -- | 1007.0 |MPI_SYNC

||---

| 2.4% | 4.166092 | 4.135016 | 99.3% | 1004.0 | mpi_allreduce_(sync)

|==

Example Report – Loop Work Estimates (2)

Cray Inc.
55

Table 3: Inclusive Loop Time from -hprofile_generate

 Loop Incl | Loop | Loop | Loop |Function=/.LOOP[.]

 Time | Hit | Trips | Trips | PE=HIDE

 Total | | Min | Max |

|---

…

| 175.676881 | 2 | 0 | 1003 |jacobi_.LOOP.07.li.267

| 0.917107 | 1003 | 0 | 260 |jacobi_.LOOP.08.li.276

| 0.907515 | 129888 | 0 | 260 |jacobi_.LOOP.09.li.277

| 0.446784 | 1003 | 0 | 260 |jacobi_.LOOP.10.li.288

| 0.425763 | 129888 | 0 | 516 |jacobi_.LOOP.11.li.289

| 0.395003 | 1003 | 0 | 260 |jacobi_.LOOP.12.li.300

| 0.374206 | 129888 | 0 | 516 |jacobi_.LOOP.13.li.301

| 126.250610 | 1003 | 0 | 256 |jacobi_.LOOP.14.li.312

| 126.223035 | 127882 | 0 | 256 |jacobi_.LOOP.15.li.313

| 124.298650 | 16305019 | 0 | 512 |jacobi_.LOOP.16.li.314

| 20.875086 | 1003 | 0 | 256 |jacobi_.LOOP.17.li.336

| 20.862715 | 127882 | 0 | 256 |jacobi_.LOOP.18.li.337

| 19.428085 | 16305019 | 0 | 512 |jacobi_.LOOP.19.li.338

|===

Other Interesting Performance Data

Program Instrumentation – Sampling

Cray Inc.
 57

● Sampling is useful to determine where the program
spends most of its time (functions and lines)

● The environment variable PAT_RT_EXPERIMENT allows
the specification of the type of experiment prior to
execution
● samp_pc_time (default)

● Samples the PC at intervals of 10,000 microseconds
● Measures user CPU and system CPU time
● Returns total program time and absolute and relative times each program

counter was recorded
● Optionally record the values of hardware counters specified with

PAT_RT_HWPC

● samp_pc_ovfl
● Samples the PC at a given overflow of a HW counter
● Does not allow collection of hardware counters

● samp_cs_time
● Sample the call stack at a given time interval

-g tracegroup (subset)

Cray Inc.
58

● blas Basic Linear Algebra subprograms
● CAF Co-Array Fortran (Cray CCE compiler only)
● HDF5 manages extremely large and complex data

collections
● heap dynamic heap
● io includes stdio and sysio groups
● lapack Linear Algebra Package
● math ANSI math
● mpi MPI
● omp OpenMP API
● omp-rtl OpenMP runtime library
● pthreads POSIX threads
● shmem SHMEM
● sysio I/O system calls
● system system calls
● upc Unified Parallel C (Cray CCE compiler only)

For a full list, please see man pat_build

Specific Tables in pat_report

Cray Inc.
59

heidi@kaibab:/lus/scratch/heidi> pat_report -O –h

pat_report: Help for -O option:

Available option values are in left column, a prefix can be

specified:

 ct -O calltree

 defaults <Tables that would appear by default.>

 heap -O heap_program,heap_hiwater,heap_leaks

 io -O read_stats,write_stats

 lb -O load_balance

 load_balance -O lb_program,lb_group,lb_function

 mpi -O mpi_callers

 D1_D2_observation Observation about Functions with low

D1+D2 cache hit ratio

 D1_D2_util Functions with low D1+D2 cache hit ratio

 D1_observation Observation about Functions with low D1

cache hit ratio

 D1_util Functions with low D1 cache hit ratio

 TLB_observation Observation about Functions with low TLB

refs/miss

 TLB_util Functions with low TLB refs/miss

Heap Statistics

Cray Inc.
60

● -g heap
● calloc, cfree, malloc, free, malloc_trim, malloc_usable_size, mallopt,

memalign, posix_memalign, pvalloc, realloc, valloc

● -g heap

● -g sheap

● -g shmem
● shfree, shfree_nb, shmalloc, shmalloc_nb, shrealloc

● -g upc (automatic with –O apa)
● upc_alloc, upc_all_alloc, upc_all_free, uc_all_lock_alloc,

upc_all_lock_free, upc_free, upc_global_alloc, upc_global_lock_alloc,
upc_lock_free

Heap Statistics

Cray Inc.
61

Notes for table 5:

 Table option:
 -O heap_hiwater
 Options implied by table option:
 -d am@,ub,ta,ua,tf,nf,ac,ab -b pe=[mmm]

 This table shows only lines with Tracked Heap HiWater MBytes > 0.

Table 5: Heap Stats during Main Program

 Tracked | Total | Total | Tracked | Tracked |PE[mmm]
 Heap | Allocs | Frees | Objects | MBytes |
 HiWater | | | Not | Not |
 MBytes | | | Freed | Freed |

 9.794 | 915 | 910 | 4 | 1.011 |Total
|---
| 9.943 | 1170 | 1103 | 68 | 1.046 |pe.0
| 9.909 | 715 | 712 | 3 | 1.010 |pe.22
| 9.446 | 1278 | 1275 | 3 | 1.010 |pe.43
|===

CrayPat API - For Fine Grain Instrumentation

Cray Inc.
62

● Fortran
include “pat_apif.h”

…

call PAT_region_begin(id, “label”, ierr)

do i = 1,n

…

enddo

call PAT_region_end(id, ierr)

● C & C++
include <pat_api.h>

…

ierr = PAT_region_begin(id, “label”);

< code segment >

ierr = PAT_region_end(id);

PGAS (UPC, CAF) Support

PGAS Support

Cray Inc.
64

● Profiles of a PGAS program can be created to show:

● Top time consuming functions/line numbers in the code

● Load imbalance information

● Performance statistics attributed to user source by default

● Can expose statistics by library as well
● To see underlying operations, such as wait time on barriers

● Data collection is based on methods used for MPI library

● PGAS data is collected by default when using Automatic Profiling Analysis
(pat_build –O apa)

● Predefined wrappers for runtime libraries (caf, upc, pgas) enable attribution of
samples or time to user source

● UPC and SHMEM heap tracking available
● -g heap will track shared heap in addition to local heap

PGAS Default Report Table 1

Cray Inc.
65

Table 1: Profile by Function

 Samp % | Samp | Imb. | Imb. |Group

 | | Samp | Samp % | Function

 | | | | PE='HIDE'

 100.0% | 48 | -- | -- |Total

|--

| 95.8% | 46 | -- | -- |USER

||---

|| 83.3% | 40 | 1.00 | 3.3% |all2all

|| 6.2% | 3 | 0.50 | 22.2% |do_cksum

|| 2.1% | 1 | 1.00 | 66.7% |do_all2all

|| 2.1% | 1 | 0.50 | 66.7% |mpp_accum_long

|| 2.1% | 1 | 0.50 | 66.7% |mpp_alloc

||===

| 4.2% | 2 | -- | -- |ETC

||---

|| 4.2% | 2 | 0.50 | 33.3% |bzero

|==

PGAS Default Report Table 2

Cray Inc.
66

Table 2: Profile by Group, Function, and Line

 Samp % | Samp | Imb. | Imb. |Group

 | | Samp | Samp % | Function

 | | | | Source

 | | | | Line

 | | | | PE='HIDE'

 100.0% | 48 | -- | -- |Total

|--

| 95.8% | 46 | -- | -- |USER

||---

|| 83.3% | 40 | -- | -- |all2all

3| | | | | mpp_bench.c

4| | | | | line.298

|| 6.2% | 3 | -- | -- |do_cksum

3| | | | | mpp_bench.c

||||---

4||| 2.1% | 1 | 0.25 | 33.3% |line.315

4||| 4.2% | 2 | 0.25 | 16.7% |line.316

||||===

PGAS Report Showing Library Functions with
Callers

Cray Inc.
67

Table 1: Profile by Function and Callers, with Line Numbers

 Samp % | Samp |Group

 | | Function

 | | Caller

 | | PE='HIDE’

 100.0% | 47 |Total

|---------------------------

| 93.6% | 44 |ETC

||--------------------------

|| 85.1% | 40 |upc_memput

3| | | all2all:mpp_bench.c:line.298

4| | | do_all2all:mpp_bench.c:line.348

5| | | main:test_all2all.c:line.70

|| 4.3% | 2 |bzero

3| | | (N/A):(N/A):line.0

|| 2.1% | 1 |upc_all_alloc

3| | | mpp_alloc:mpp_bench.c:line.143

4| | | main:test_all2all.c:line.25

|| 2.1% | 1 |upc_all_reduceUL

3| | | mpp_accum_long:mpp_bench.c:line.185

4| | | do_cksum:mpp_bench.c:line.317

5| | | do_all2all:mpp_bench.c:line.341

6| | | main:test_all2all.c:line.70

||==========================

OpenMP Support

OpenMP Data Collection and Reporting

Cray Inc.
69

● Measure overhead incurred entering and leaving
● Parallel regions

● Work-sharing constructs within parallel regions

● Show per-thread timings and other data

● Trace entry points automatically inserted by Cray and PGI
compilers
● Provides per-thread information

● Can use sampling to get performance data without API
(per process view… no per-thread counters)
● Run with OMP_NUM_THREADS=1 during sampling

● Watch for calls to omp_set_num_threads()

OpenMP Data Collection and Reporting (2)

Cray Inc.
70

● Load imbalance calculated across all threads in all ranks
for mixed MPI/OpenMP programs
● Can choose to see imbalance to each programming model separately

● Data displayed by default in pat_report (no options
needed)
● Focus on where program is spending its time

● Assumes all requested resources should be used

Imbalance Options for Data Display
(pat_report –O …)

Cray Inc.
71

● profile_pe.th (default view)
● Imbalance based on the set of all threads in the program

● profile_pe_th
● Highlights imbalance across MPI ranks

● Uses max for thread aggregation to avoid showing under-performers

● Aggregated thread data merged into MPI rank data

● profile_th_pe
● For each thread, show imbalance over MPI ranks

● Example: Load imbalance shown where thread 4 in each MPI rank
didn’t get much work

Profile by Function Group and Function (with –
T)

Cray Inc.
72

Table 1: Profile by Function Group and Function

 Time % | Time |Imb. Time | Imb. | Calls |Group

 | | | Time % | | Function
 | | | | | PE.Thread='HIDE'

 100.0% | 12.548996 | -- | -- | 7944.7 |Total
|--
| 97.8% | 12.277316 | -- | -- | 3371.8 |USER
||---
|| 35.6% | 4.473536 | 0.072259 | 1.6% | 498.0 |calc3_.LOOP@li.96
|| 29.1% | 3.653288 | 0.070551 | 1.9% | 500.0 |calc2_.LOOP@li.74

|| 28.3% | 3.545677 | 0.056303 | 1.6% | 500.0 |calc1_.LOOP@li.69
. . .
||===

| 1.2% | 0.155028 | -- | -- | 1000.5 |MPI_SYNC
||---
|| 1.2% | 0.154899 | 0.674518 | 82.0% | 999.0 |mpi_barrier_(sync)

|| 0.0% | 0.000129 | 0.000489 | 79.8% | 1.5 |mpi_reduce_(sync)
||===
| 0.7% | 0.082943 | -- | -- | 3197.2 |MPI

||---
|| 0.4% | 0.047471 | 0.158820 | 77.6% | 999.0 |mpi_barrier_
|| 0.1% | 0.015157 | 0.295055 | 95.9% | 297.1 |mpi_waitall_

. . .
||===
| 0.3% | 0.033683 | -- | -- | 374.5 |OMP

||---
|| 0.1% | 0.013098 | 0.078620 | 86.4% | 125.0 |calc2_.REGION@li.74(ovhd)
|| 0.1% | 0.010298 | 0.052760 | 84.3% | 124.5 |calc3_.REGION@li.96(ovhd)

|| 0.1% | 0.010287 | 0.068428 | 87.6% | 125.0 |calc1_.REGION@li.69(ovhd)
||===
| 0.0% | 0.000027 | 0.000128 | 83.0% | 0.8 |PTHREAD

| | | | | | pthread_create
|==

OpenMP overhead is

normally small and is

filtered out on the default

report (< 0.5%). When

using “–T” the filter is

deactivated

OpenMP Parallel DOs

<function>.<region>@<line>

automatically instrumented

Hardware Counters Information at Loop Level

Cray Inc.
73

==

USER / calc3_.LOOP@li.96

--

 Time% 37.3%

 Time 6.826587 secs

 Imb.Time 0.039858 secs

 Imb.Time% 0.6%

 Calls 72.9 /sec 498.0 calls

 DATA_CACHE_REFILLS:

 L2_MODIFIED:L2_OWNED:

 L2_EXCLUSIVE:L2_SHARED 64.364M/sec 439531950 fills

 DATA_CACHE_REFILLS_FROM_SYSTEM:

 ALL 10.760M/sec 73477950 fills

 PAPI_L1_DCM 64.973M/sec 443686857 misses

 PAPI_L1_DCA 135.699M/sec 926662773 refs

 User time (approx) 6.829 secs 15706256693 cycles 100.0%Time

 Average Time per Call 0.013708 sec

 CrayPat Overhead : Time 0.0%

 D1 cache hit,miss ratios 52.1% hits 47.9% misses

 D1 cache utilization (misses) 2.09 refs/miss 0.261 avg hits

 D1 cache utilization (refills) 1.81 refs/refill 0.226 avg uses

 D2 cache hit,miss ratio 85.7% hits 14.3% misses

 D1+D2 cache hit,miss ratio 93.1% hits 6.9% misses

 D1+D2 cache utilization 14.58 refs/miss 1.823 avg hits

 System to D1 refill 10.760M/sec 73477950 lines

 System to D1 bandwidth 656.738MB/sec 4702588826 bytes

 D2 to D1 bandwidth 3928.490MB/sec 28130044826 bytes

==

Caveats

Cray Inc.
74

● No support for nested parallel regions
● To work around this until addressed disable nested regions by setting

OMP_NESTED=0

● Watch for calls to omp_set_nested()

● If compiler merges 2 or more parallel regions, OpenMP
trace points are not merged correctly
● To work around this until addressed, use –h thread1

● We need to add tracing support for barriers (both implicit
and explicit)
● Need support from compilers

Questions
??

Cray Performance Measurement and

Analysis Tools

Heidi Poxon
Manager & Technical Lead, Performance

Tools
Cray Inc.

PE Workshop January 24-25, 2012

Trace Analysis

Tracing

Cray Inc.

● Only true function calls can be traced
● Functions that are inlined by the compiler or that have local scope in a

compilation unit cannot be traced

● Enabled with pat_build –g, -u, -T or –w options

● Full trace (sequence of events) enabled by setting
PAT_RT_SUMMARY=0
● Warning: trace files are not scalable

● Tend to generate huge performance files

78

Suggestions for Controlling Large Traces

Cray Inc.

Several environment variables are available to limit trace
files to a more reasonable size:

● PAT_RT_CALLSTACK

● Limit the depth to trace the call stack

● PAT_RT_HWPC
● Avoid collecting hardware counters (unset)

● PAT_RT_RECORD_PE
● Collect trace for a subset of the PEs

● PAT_RT_TRACE_FUNCTION_ARGS
● Limit the number of function arguments to be traced

● PAT_RT_TRACE_FUNCTION_LIMITS
● Avoid tracing indicated functions

● PAT_RT_TRACE_FUNCTION_MAX
● Limit the maximum number of traces generated for all functions for a

single process

79

Suggestions for Controlling Large Traces (2)

Cray Inc.

● PAT_RT_TRACE_THRESHOLD_PCT
● Specifies a % of time threshold to enforce when executing in full trace

mode

● PAT_RT_TRACE_THRESHOLD_TIME
● Specifies a time threshold to enforce when executing in full trace

mode

● Set PAT_RT_EXPFILE_MAX to the number of ranks (or any
larger number)
● Data for only 1 MPI rank stored in each .xf file

● Use pat_region API to start and stop tracing within a
program

80

Controlling large traces - Additional API
Functions

Cray Inc.

● int PAT_state (int state)
● State can have one of the following:

● PAT_STATE_ON

● PAT_STATE_OFF

● PAT_STATE_QUERY

● int PAT_record (int state)
● Controls the state for all threads on the executing PE. As a rule, use

PAT_record() unless there is a need for different behaviors for
sampling and tracing
● int PAT_sampling_state (int state)

● int PAT_tracing_state (int state)

● int PAT_trace_function (const void *addr, int state)
● Activates or deactivates the tracing of the instrumented function

● int PAT_flush_buffer (void)

81

Trace On / Trace Off Example

Cray Inc.

 include "pat_apif.h“

 ! Turn data recording off at the beginning of execution.

 call PAT_record(PAT_STATE_OFF, istat)

 ...

 ! Turn data recording on for two regions of interest.

 call PAT_record(PAT_STATE_ON, istat)

 …

 call PAT_region_begin(1, "step 1", istat)

 ...

 call PAT_region_end(1, istat)

 …

 call PAT_region_begin(2, "step 2", istat)

 ...

 call PAT_region_end(2, istat)

 …

 ! Turn data recording off again.

 call PAT_record(PAT_STATE_OFF, istat)

 …

82

Questions

??

