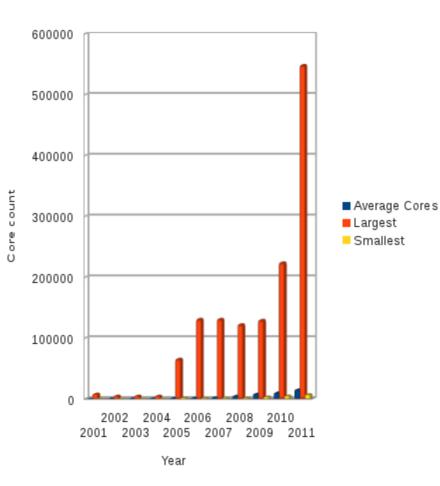
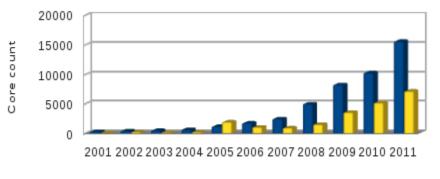
alinea Leaders in parallel software development tools

Allinea DDT Intelligence Within

14 September 2012



- Introduction
- Allinea DDT overview
- Conclusion



What is happening ? Extreme Machine Size

Growth in HPC core counts

HPC core counts

Average Cores Smallest

- Scientific progress requires
 more CPU hours
 - Maximum machine size is exploding
 - Average machine size grows exponentially

The Company

- Development tools company
 - Leading in HPC software tools market worldwide
 - Global customer base
 - Blue-chip engineering, government and academic research
- Allinea DDT
 - The leading debugger in parallel computing
 - Production use from desktop to extreme scale
 - World's only scalable debugger
 - Record holder for debugging software on largest machines
 - First at Petascale and first for GPUs and ARM support!
- Allinea OPT
 - Profiling tool for parallel applications

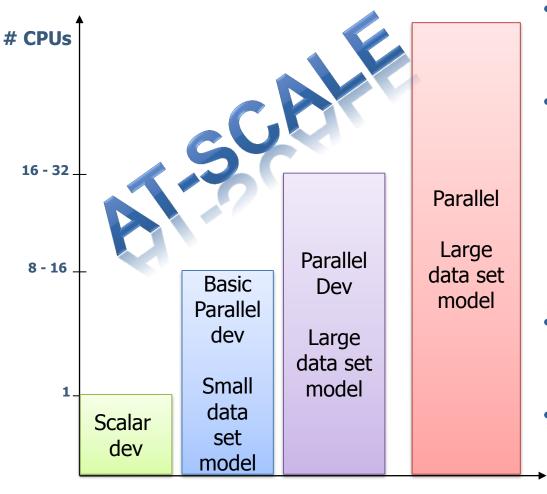
Collaboration – National Labs

Partnership to develop Petascale debugger with NVIDIA support, with Cray and Caps Entreprise

Partnership on Full Scale debugging on IBM Blue Gene /P & /Q

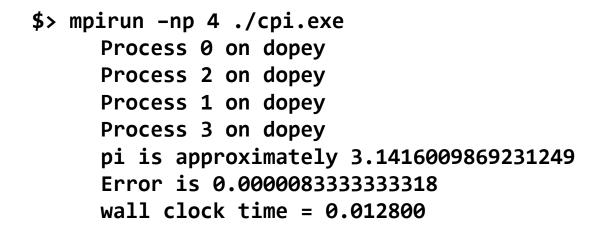
Partnership with CEA French Atomic Energy Authority on scalable programming, CUDA and Allinea OPT

European partnership to develop techniques and solutions which address the exascale challenges


Partnership with BSC through its utilization of ARM technology to develop energy efficient HPC systems

allinea DDT

Application Development Life Cycles



- Bugs are present at any stage
- Bugs get more and more tricky
 - More threads/processes
 - More data
 - Easy bugs already found
- Time to debug increases
- Debugging at scale : this is what you mostly do !

www.allinea.com

Code Life cycle

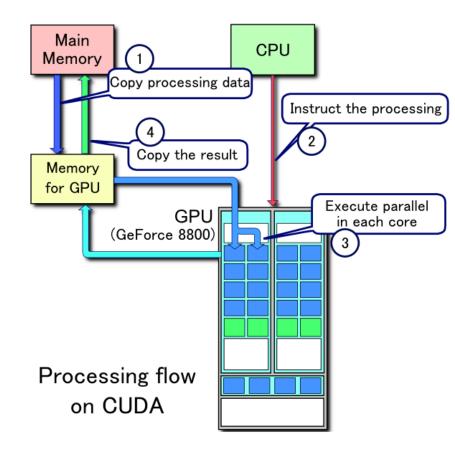
Example

Deadlock !!

\$> mpirun -np 8 ./cpi.exe Process 5 on dopey Process 1 on dopey Process 4 on dopey Process 6 on dopey Process 3 on dopey Process 0 on dopey Process 2 on dopey Process 7 on dopey

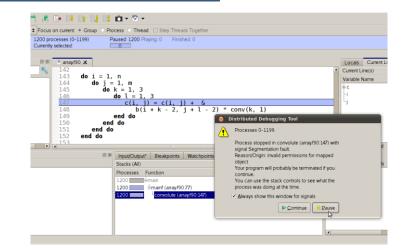
^Cmpirun: killing job...

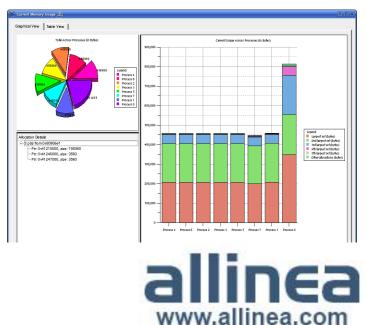
How to debug At-Scale ?


- Natural reflex : printf !
- No fully integrated solution : time consuming
 - Problems do not appear at smaller scale
 - Takes time to move the problems to a smaller size
 - Need to use multiple tools for multiple needs
 - More cores means more bugs...
 - ... And more debugging information available

What can we do ... ?

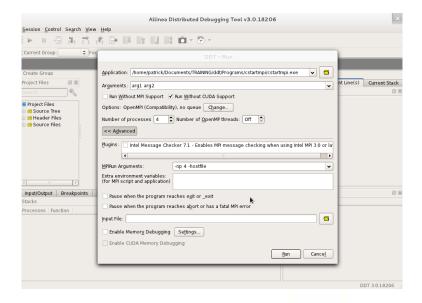
HPC's current challenge


- GPUs a rival to traditional processors
 - AMD, Intel, ARM
 - NVIDIA, OpenCL, CUDA
- A big challenge for HPC developers
 - Data transfer
 - Several memory levels
 - Grid/block layout and thread scheduling
 - Synchronization
- New languages, compilers, potential standards



Allinea DDT In a Nutshell

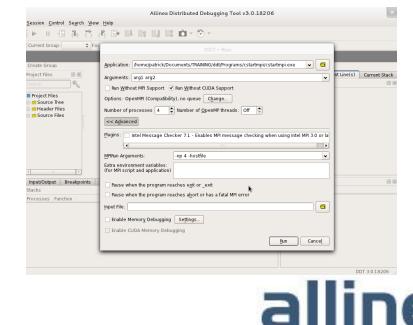
- Graphical debugger designed for:
 - C/C++, Fortran, UPC, CUDA
 - Multithreaded code
 - Single address space
 - Multiprocess code
 - Interdependent or independent processes
 - GPU codes
 - Hybrid software
 - Any mix of the above
- Managing concurrency
 - Emphasizing differences
 - Collective control
- Strong feature set
 - Memory debugging
 - Data analysis



Allinea DDT

Gather, Sort and Display information

- User and administrator friendly
- Flow control
- Data monitoring
- Many environments



Allinea DDT

Gather, Sort and Display information

User and administrator friendly

- Get started easily
- Fast, reliable, simple and intuitive GUI interface
- Offline debugging
- Flow control
- Data monitoring
- Many environments

User and administrator friendly Getting started

- Quick creation of runs
- Well integrated in workload schedulers

 ✓ Submit job through queue or configure own "mpirul Submitsion template file: /opt/allinea/ddt-3.0.18206 Submit command: bsub Regexp for job id: ^Job <(\d+)> .*is submitted Cancel command: bkill JOB_ID_TAG Display command: bjobs Template Uses 		nmpi qtf
Display command: bjobs		
NUM_PROCS_TAG	Wall Clock Limit:	Dueue Submission Parameters
PROCS_PER_NODE_TAG: 2 🕞	Account:	Сок С
		Edit Queue Submission Parameters

plication: /home/patrick/Documents/TRAINING/ddt/Programs/cstartmpi/cstartmpi.exe 🖌 🕤
uments: arg1 arg2
Run <u>W</u> ithout MPI Support 🗹 Run <u>W</u> ithout CUDA Support
tions: OpenMPI (Compatibility), no queue C <u>h</u> ange
mber of processes 4 🔷 Number of OpenMP threads: Off 🛓
< A <u>d</u> vanced
gins: 🗌 Intel Message Checker 7.1 - Enables MPI message checking when using Intel MPI 3.0 or la
Run Arguments: -np 4 -hostfile 🗸
ra environment variables: r MPI script and application)
Pause when the program reaches exit or _exit
Pause when the program reaches a ${ m \underline{b}}$ ort or has a fatal MPI error
ut File:
Enable Memory Debugging Settings
Enable CUDA Memory Debugging
<u>B</u> un Cance <u>I</u>
- 112

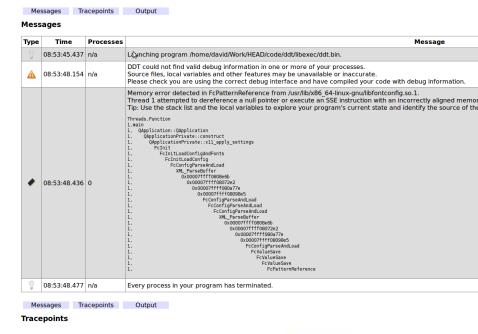
User and administrator friendly Intuitive GUI interface

Intelligent GUI that adapts to the environment
 From workstation to large scale clusters

Stacks (/					
Processe	s Function				
150120	📥 start				
150120	iibc_st	art_main			
150120	i main				
150120	i pop (POP.f90:81)			
150120	📃 🗄 init	ialize_pop (initia	al.f90:119)		
150120	i i	nit_communicate	e (communicate.f9	0:87)	
150119 [create_ocn_con	nmunicator (comn	nunicate.f90:300)	
1		create_ocn_con	nmunicator (comn	nunicate.f90:303)	
					• •• •• ••
	0 1 2	3	Current Group AI	+ Focus on current:) Group	O Process O Thread
	0	C		200004 processes (0-200003)	Pausec: 200004 Running ()
			All	Currently selected	
	1 2 3]	Create Group		à
					alli

User and administrator friendly Intuitive GUI interface

Intelligent GUI that adapts to the environment
 – Even in CUDA environments


us on current: 🕤 Process 🔿 Thread 🔎 Step Threads Together		
Block 0 🗧 0 😴 Thread 0 🗧 0 🗧 0 🗧 Go Grid size: 8×1 Block size	9: 64×1×1	
<pre></pre>	Locals Curre Locals Variable Name 	ent Line(s) Value 0 0×100800 500 0×100000 1
67 <<<(0,0),(0,0,0)>>> <<<(7,0),(63,0,0)>>> (512 threads) ▼	 Type: @register ir	nt

all

User and administrator friendly Offline debugging

- Using a workload scheduler
 - Machines are available when the scheduler decides (by night ?)
 - Can be tricky to get a big cluster exactly when the developer wants it
- Offline debugging : printf replacement
 - Tracepoints and offline debugging
 - Job runs without debugger interface and record variables
- Worlds first scalable batch debugger
 - Set tracepoints, breakpoints, and run !
 - Memory debugging errors, crashes
 - Reports in HTML or plain text

Allinea DDT Off-line Log

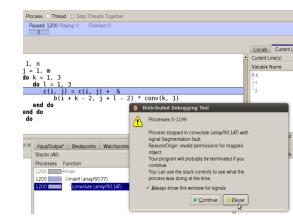
Allinea DDT and Offline Debugging Using the CLI

• General Options :

- -offline <YYY> : activate offline mode -n <XXX> : the number of MPI processes -memory : enable memory debugging -ddtsession : the session file to use (if exists)
- Create breakpoints : -break-at LOCATION[,N:M:P]
 Example:

\$> ddt -offline myjob.html -break-at main.c:22,-:2:-,x myapp

Create tracepoints : -trace-at LOCATION[,N:M:P],VAR1,VAR2...
 Example:


\$> ddt -offline myjob.html -trace-at trisol.F90:14, -:-:3,x myapp

Allinea DDT

Gather, Sort and Display information

- User and administrator friendly
- Flow control
 - Static analysis
 - Control progress at scale
 - Understand deadlocks
 - Start investigation
- Data monitoring
- Many environments

Flow control Static analysis

- Fix those errors before they bite !
- Static analysis
 - Integrated with cppcheck
 - Also includes ftncheck

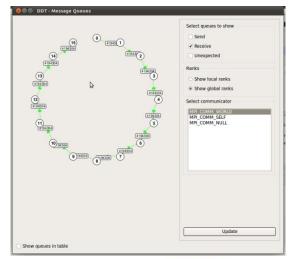
```
29
   30
          threads = calloc(sizeof(pthread t), nthreads);
          ids = calloc(sizeof(int), nthreads);
   31
   32
   33
          init mutex();
   34
   35
          pthread mutex lock(mutley);
   36
          for (i = 0; i < nthreads; ++i) {</pre>
   37
               ids[i] = i;
   38
               pthread create (threads + i, NULL, &thread,
   39
   40
          pthread mutex unlock(mutley);
          for (i = 0; i < nthreads; ++i)</pre>
   41
   42
               pthread join (threads[i], NULL);
   43
   44
          return 0:
 error Memory leak: threads
                      oid *q)
 error Memory leak: ids
   40 1
   49
          volatile int busy = 0;
          volatile int locker = 0;
0
  50
                                        /* to be amended by
   51
          int i, j;
          double k = 1;
A 52
          int tid = *(int*) q;
   53
   54
55
          usleep(rand() % 31);
   56
```


Flow control Controlling progress at scale

- Bulk control is essential for multicore debugging
 - Group processes together
 - Play, step, reach breakpoints... Based on groups
 - Change interleaving order by stepping/playing selectively

<u>S</u> ession <u>C</u> ontrol Se <u>a</u> rch <u>V</u> iew <u>H</u> elp	
🕨 🔲 🖶 🔿 💦 🗗 💷 🖬 💷 😫 I	Create a group with these processes:
Current Group: All	3-4,7 37% Select All x2 x0.5 1%
All 0 1 2 3 4 5 6 7	Crepte Group
Group 1 0 1 2	

			Allinea Distribute	d Debugging Tool v3.0.18206
<u>S</u> ession <u>C</u> ontrol Se <u>a</u> rch <u>V</u>	(iew <u>H</u> elp			
🕨 🔳 🖷 🚯 🐔	} { ₽ } ₽• ₽ ↓ ₽	1 2 1	Create a group with these	processes:
Current Group: All	Focus on current: 🖲 Gro	up 🔿 Proces:	4-6,2 50%	Select All x2 x0.5 1%
All	8 processes (0-7)	Paused: 8		Create Group Cancel
Show processes	Currently selected:	3	*	
Group 1	3 processes (1-3)	Paused: 3	Playing: 0 Finished: 0	

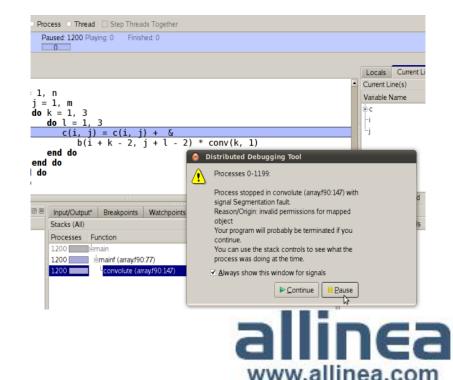


Flow control Resolving MPI issues

loop.c x	Locals Current Line(s)
10 11 void passIt0n()	Current Line(s) Variable Name Value Lercepived 2 6/16 processes equal
<pre>16 int *send buffer; 7 MPI Status status; 18 from = (myid + numprocs; - 1) % numprocs; 19 to = (myid + 1) % numprocs; 20 buffer = malloc(sizeof(int)*BUFSIZE); 21</pre>	
<pre>22 MPI Recv(buffer, BUFSIZE, MPI_INT, from, 0, MPI_COMM_WORLD, &status); 23 received = received + 1; 24 25 send buffer = malloc(sizeof(int)*BUFSIZE); 26 memcöv(send buffer. sizeof(int)*BUFSIZE);</pre>	
<pre>27 MPI_Send(send buffer, BUFSIZE, MPI_INT, to, 0, MPI_COMM_WORLD); 28 free(send_buffer); 29 } 30 31 32 int main(int argc, char** argv)</pre>	
	ype: none selected
ir Input/Output Breakpoints Watchpoints Tracepoints Stacks (All) Stacks (All)	
Jacks (m) iProcesses Threads Function 16 16 1-main (loop.c:48)	

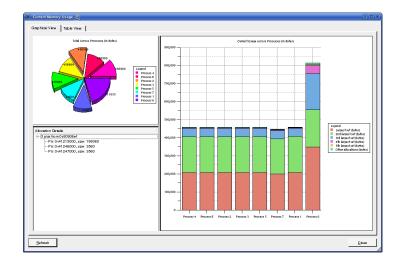
- Find cycles or blockage in message queue display
 - Parallel stacks
 - Variables
- More details than examining variables and processes alone

- We can see messages
 - MPI standard exists for debugging message queues
- Integrates with MPI correctness tools
 - Check correctness of the messages
 - Intel MPI Checker ; Marmot



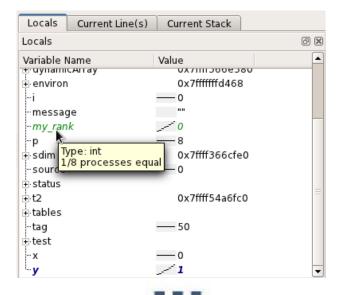
Flow control Understanding what happens

- Application crashes
 - Threads/processes can be anywhere
 - Impossible to scroll through them individually
- Finding where processes crashed is essential
 - Allinea DDT merges stacks from processors and threads into a tree
 - Common faults patterns instantly evident
 - Divergence, deadlocks...
 - Information scalable without overload


Function
📋 main (ddt.cpp:1216)
📄 🗄 exec (ddt.cpp:1227)
QCoreApplication::exec
QEventLoop::exec
main (licenceserver.cpp:202)
QCoreApplication::exec (qcoreapplication.cpp:1008)
QEventLoop::exec (qeventloop.cpp:197)
QEventLoop::processEvents (geventloop.cpp:149)

Allinea DDT

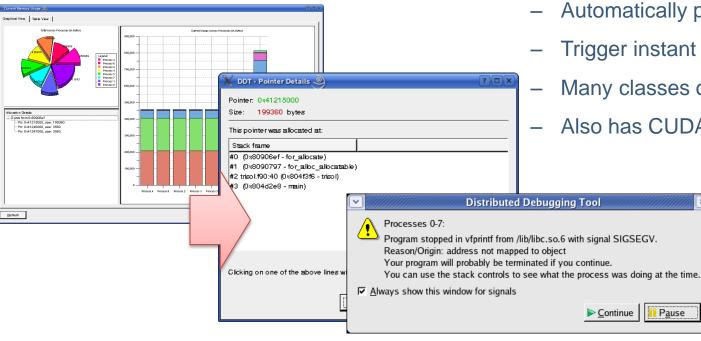
Gather, Sort and Display information


- User and administrator friendly
- Flow control
- Data monitoring
 - Monitor variables
 - Detect memory errors
 - Check the calculation data
- Many environments

Data monitoring Monitor variables

- Developers need to see data
 - Too many variables to trawl them manually
 - Too many tasks or thread to display them at the same time
- Intelligent data management inside the debugger
 - Automatic monitoring of the data
 - Subtle highlights differences
 - Sparklines and smart display
- Even more detailed analysis if needed
 - Cross process comparison
 - Historical values of variables

Data monitoring Smart displays : tracepoints


- "printf" is still mostly used but serious drawbacks:
 - Need to recompile the code
 - Information randomly printed on screen (depending on interleaving)
 - One line per process
- Scalable and advanced printf :
 - First step to reconcile printf and GUI
 - Information sorted by steps
 - Merged by groups of processes
 - No information overload
 - Possibility to filter the printed values
 - Save output for offline analysis

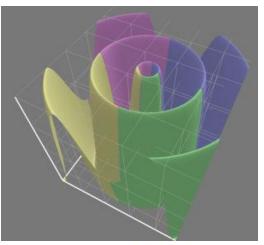
Tracepoint	Processes	
cstartmpi.c:98	4, ranks 0-3	x: 0
cstartmpi.c:98	4, ranks 0-3	x: 10
cstartmpi.c:98	4, ranks 0-3	x: 20
cstartmpi.c:98	4, ranks 0-3	x: 30
cstartmpi.c:98	4, ranks 0-3	x: 40
cstartmpi.c:98	4, ranks 0-3	x: 50

Data monitoring Memory debugging

- Random errors are sneaky
 - Can't fix a bug that doesn't repeat
 - Often caused by memory issues
- Memory debugging can force the bug
 - Better to happen every time, than _ only during product demos

- Memory debugging :
 - Places agent between memory library and user process
 - Communicates problems to the debuggers
 - Monitors usage : detect memory leaks
 - Automatically protects ends of arrays
 - Trigger instant stop on touching memory
 - Many classes of errors can be checked

www.allinea.com


Also has CUDA support

P<u>a</u>use

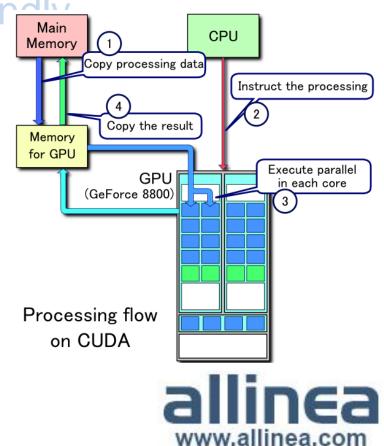
Data monitoring Searching haystacks

- Arrays are the building blocks of HPC
 - Largest jobs accumulate TB of data
 - Usually 2GB or 4GB per core
- Integrated visualization tool
 - Search data across all tasks or threads
 - Data displayed on a picture as requested by the user
 - Export at runtime

		bigArra									•
istribut	ed Array D	Dimensio	ns: 1	÷ Ho	wdolv	iew dist	ributed a	arrays?			
Range	of \$x (Dist	ributed)	Rang	je of \$i						Auto-u	pdat
Fr <u>o</u> m:	0	¢	Fron	n: 0		•				<u>E</u> valua	te
To:	7	÷	<u>T</u> o:	999	9	÷				Cance	eļ
<u>D</u> isplay	Rows	; ‡	Disp	lav: C	olumns	•					
Dispidy		· •	J <u>D</u> isp	luy. C	olamito	•					
							amples				
Only	show if:	\$value	1			See Exa	ampies				
			1			See EX	ampies				
<u>O</u> nly Data Ta		\$value	1			See Exa	ampies				
]	See Exa					
			3011	3185	4704	5343	6795	7881	9108	9467	
	a <u>b</u> le <u>S</u> t	atistics]	3185				7881	9108	9467	
Data Ta	a <u>b</u> le <u>S</u> t	atistics]					7881	9108	9467	
Data Ta	a <u>b</u> le <u>S</u> t	atistics	3011	3185					9108	9467	
Data Ta x 0 1 2 3	i 2444 1	atistics	3011						9108	9467	
Data Ta	i 2444	2733	3011		4704					9467	
Data Ta x 0 1 2 3	i 2444 1	atistics	3011						9108	9467	

Data Monitoring Unified Parallel C

- New programming models
 - Support for Cray UPC
 - Support for Cray Co-Array Fortran


Evaluate	Inp	ut/Output*	ľ	Breakpoints	Watchpoir
Evaluate					
Expression		Value			
⁶ (&array [11	999])	3	_	*) (0×744dcc, shared [25] ir	

Allinea DDT

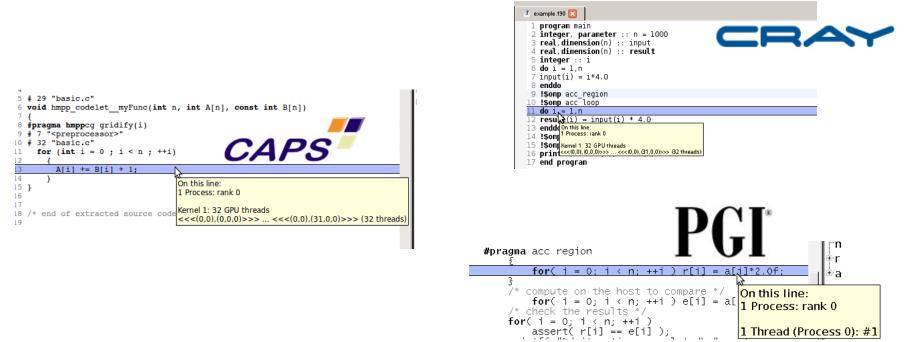

Gather, Sort and Display information

- User and administrator frier Alix
- Flow control
- Data monitoring
- Many environments
 - Debugging at scale
 - GPU Debugging

Allinea DDT and Scalability Simplifies debugging for everyone

- At scale : new problems appear
 - Small and medium environments : multiple tools
 - More cores means more bugs...
 - ... And more debugging information available

- How can the design of Allinea DDT help your debugging whatever the size of your cluster (workstation or cluster) ?
- High-end architecture (in any Allinea DDT version)
 - Data consolidation (merged and sorted)
 - Highlight differences
 - Very low footprint


Allinea DDT and GPU Successful add-on

- Built on vendors low level efforts
 - Nvidia cuda-gdb, compiler
 - Cray compiler
- Execution model is unusual
 - GUI supports blocks and grids
 - Support 32 thread units (warps)
- Mixed GPU/CPU in one interface
 - Interaction with CPUs
 - Easy to switch between contexts (stacks, threads, data...)
 - Support multiple nodes

Current Group: All	Focus on current: Group O Process O Thread Step Threads Together St	ep C
All	0 1 2 3 4 5 6 7	
Create Group CUDA Threads (Process 0	, simpleMPiKernel) Block 0 + 0 + 0 + 0 + 0 + 0 + 0 +	-
Project Files 🛛 🖉 🗵	simpleMPI.cpp 🗶 🖉 simpleMPI.cu 🎗	
Search (Ctrl+K)	30	mber
	for(int i = 0. i < dataSize. i++)	,
Input/Outp Breakpo	oints Watchpoi Tracepoints Tracepoint Out Stacks (All) Kernel Progres	s Vi.
Stacks (All)		6
Processes Threads	GPU Thread Function	
8 8	0 main (simpleMPI.cpp:92)	
8 8	172032 simpleMPIKernel (simpleMPI.cu:40)	
8 8	169984 simpleMPIKernel (simpleMPI.cu:39)	
8 8	-simpleMPIKernel (simpleMPI.cu:41)	
8 8 8	256 simpleMPIKernel (simpleMPI.cu:42)	
/autofs/na1_home/1 8 Processes: ranks 0-7	ecomber/NVIDIA/C/src/simpleMPI/simpleMPI.cu:42	

Many environments Directives support

- Wide range of partnerships
 - Support the environments you use for hybrid development
 - You swiftly benefit from the latest updates
 - Read our latest white papers available with PGI and CAPS

Many environments Directives support - OpenACC

- OpenACC : New parallel programming standard led by
 CAPS Enterprise, Cray, Nvidia and PGI
- Fully supported within Allinea DDT
 - CAPS and PGI : still adapting their software to the new standard
 - Same mechanisms and features for CUDA programs
 - First implementation to be supported: Cray OpenACC
- You benefit from our partnerships

Summary

- Bugs happen at all stage of the development and during the entire life of the code
- An intelligent debugger is now available to fix bugs quickly
 - Other methods have limited success and issues at scale
 - Intelligence makes debugging easier and faster for the developer
- Allinea DDT scales in both performance and interface
 Breaking all records and making problems now manageable

alinea Leaders in parallel software development tools

Thank you

Your contacts :

- Technical Support team :
- Sales team :

support@allinea.com sales@allinea.com