
Cray Debugging Support Tools
 or

How to Debug Peta-scale
Applications

1

Cray XE6 Performance Workshop
PDC/KTH

12 – 14 September
Jason Beech-Brandt, Harvey Richardson,

Stephen Sachs
Cray

Bob Moench (rwm@cray.com)

Cray Debugging Support Tools

4/24/2012
2

● STAT (Stack Trace Analysis Tool)

● ATP (Abnormal Termination Processing)

● MRNet (Multicast/Reduction Network)

● FTD (Fast Track Debugging)
● Supported in lgdb and DDT

● Plus: ccdb (Cray Comparative Debugger)
● Actually separate from CDST

Stack Trace Analysis Tool (STAT)

-- My application hangs! --

4/24/2012
3

What is STAT?

4/24/2012
4

● Stack trace sampling and analysis for large scale
applications from Lawrence Livermore Labs and the
University of Wisconsin
● Creates a merged stack trace tree

● Groups ranks with common behaviors

● Fast: Collects traces for 100s of 1000s of cores in under a second

● Compact: Stack trace tree only a few mega bytes

● Extreme scale
Jaguar: 200K cores

Hopper: 125K cores

Merged stack trace trees

4/24/2012
5

● Sampling across ranks

● Sampling across time

● Scalable visualization
● Shows the big picture

● Pin points subset for heavy weight debuggers

Stack Trace Merge Example

6

2D-Trace/Space Analysis

7

Appl

Appl

Appl

Appl

Appl

…

NERSC Plasma Physics Application

4/24/2012
8

● Production, plasma physics PIC (Particle in Cell) code,
run with 120K cores on hopper, and using HDF5 for
parallel I/O

● Mixed MPI/OpenMP

● STAT helped them to see the big picture, as well as
eliminate code possibilities since they were not in the tree

statview

4/24/2012
9

statview

4/24/2012
10

statview…

4/24/2012
11

STAT: Since We Were Here Last Year

4/24/2012
12

● A new addition: STATGUI
● Work bench for repeated requests

● Change granularity

● Change sampling

● Continue then resample

● Launches or attaches

STAT 1.2.1.1

4/24/2012
13

● module load stat

● man STAT

● STAT <pid_of_aprun>

● Creates STAT_results/<app_name>/<merged_st_file>

● statview <merged_st_file>

● STATGUI

● Scaling no longer limited by number file
descriptors

My questions for you

4/24/2012
14

● How many of you are using STAT?
● Those of you who aren’t, why not?

● What would you like to see from STAT?

Abnormal Termination Processing (ATP)

-- My application crashes! --

4/24/2012
15

The Problem Being Solved

4/24/2012
16

● Applications on Cray systems use hundreds of thousands
of processes

● On a crash one, many, or all of them might trap

● No one wants that many core files

● No one wants that many stack backtraces

● They are too slow and too big.

● They are too much to comprehend

ATP Description

4/24/2012
17

● System of light weight back-end monitor processes on
compute nodes

● Coupled together as a tree with MRNet

● Automatically launched by aprun

● Leap into action on any application process trapping

● Stderr backtrace of first process to trap

● STAT like analysis provides merged stack backtrace tree

● Leaf nodes of tree define a modest set of processes to
core dump

● Or, a set of processes to attach to with a debugger

● To use….
● Set “ATP_ENABLED=1” in your job script prior to launch

ATP – Abnormal Termination Processing

4/24/2012 18

Write

Modify

Port

App runs
(verification)

Compile

& Link

App runs
(production)

Optimize

Debug

Normal

Termination

ATP

Stacktrace
(atpMergedBT

.dot)

STATview

Exit

Abnormal

Termination

ATP

STATview

Exit

Abnormal

Termination

Stacktrace
(atpMergedBT

.dot)

ATP Components

4/24/2012
19

● Application process signal handler (atpAppSigHandler)
o triggers analysis

● Back-end monitor (atpBackend)
o collects backtraces via StackwalkerAPI

o forces core dumps as directed using core_pattern

● Front-end controller (atpFrontend)
o coordinates analysis via MRNet

o selects process set that is to dump core

● Once initial set up complete, all components comatose

ATP Communications Tree

4/24/2012
20

FE

Front-end

Back-end

App

BE

App

BE

CP

App

BE

App

BE

App

BE

CP

App

BE

…

… …

ATP Since We Were Here Last Year

4/24/2012
21

● Added support for:
● Dynamic Applications

● Threaded Applications

● Medium memory model compiles

● Analysis on queuing system wall clock time out

● Eliminated use of LD_LIBRARY_PATH

● Numerous bug fixes.

Current Release on Lindgren: ATP 1.4.4

4/24/2012
22

● Automatic
● ATP module loaded by default

● Signal handler added to application and registered

● Aprun launches ATP in parallel with application launch

● Run time enabled/disabled via ATP_ENABLED environment variable
(can be set by site)

● Provides:
● backtrace of first crash to stderr

● merged backtrace trees

● dumps core file set (if limit/ulimit allows)

What’s Next for ATP?

4/24/2012
23

● Support for Checkpoint/Restart

● Support higher scale

● Improved output file naming system

● E-mail on crash, if user requesting HOLD

My questions for you

4/24/2012
24

● Who is from a site that does not run ATP as the default?
● Why don’t you?

● What problems are you seeing with ATP?

● Would a comprehensive list of signal per rank be useful?

● What would you like to see from ATP?

The Cray Comparative Debugger

-- My application gives the wrong
answer! --

4/24/2012
25

What is ‘ccdb’?

4/24/2012
26

● Cray Comparative Debugger
● ccdb: A command line, parallel debugger, leveraging gdb

● Typical debugger commands: break, continue, step, where, print, etc.

● Process sets: restrict focus

● ccdb: A comparative debugger

What is a comparative debugger?

4/24/2012
27

● Originally from Monash University in Australia

● Uses a working application to find bugs in a failing version
● Compares data for two simultaneous runs

● Stops and announces when data fails to compare

● Data centric – no additional complexity as scale increases

● Well, not for the user, but…
● Cray and Monash are working together under a grant from the

Australian government on scalability research.

CD Scenarios

4/24/2012
28

● What common scenarios provide a working and non-
working application?
● Yesterday vs. today

● Varying scale: small parallel vs. larger parallel

● Varying libraries: new vs. old release

● Varying optimizations: -O2 vs. –O3, scalar vs. vector

● Port from serial to parallel

● Language port: C vs. Fortran

● Varying architectures: IBM vs. Cray

Assertions

4/24/2012
29

● Data assertions are the heart of comparative debugging.

● Assert that data1 at location1 matches data2 at location2.

● The debugger verifies this assertion as the applications
execute.

● When the assertion fails, one now has a specific region of
the failing application to inspect.
● This often means that the user iterates with a refined assertion to

further narrow the search area.

● Assertions can be simple (scalar to scalar) or more
complex (serial to parallel multidimensional arrays),

Data decomposition

● Mapping one app’s data
layout to another’s.
● In particular, mapping the

data associated with the
processes.

● Blockmap uses HPF
syntax
● Block
● Cyclic
● *

4/24/2012
30

(block, *) decomposition

ccdb updates

4/24/2012
31

● Focus has been on the DARPA/Cascade requirements
● Added MRNet and response aggregation for scalability

● Added FORTRAN support

● Extended Blockmap for more complex decompositions

● Tuned up array slicing for decomposition halo support

● Numerous bug fixes and usability improvements.

CCDB 1.0.0.7

4/24/2012
32

● Prototype currently on our internal systems
● load module ccdb

● Man ccdb

● Scales to over two, 4K application

My questions for you

4/24/2012
33

● What scenarios are most important to you?

● How important is debugging C++?

● Application idioms
● How common are non-uniform data decompositions?

● How common are FORTRAN automatic arrays with runtime computed
sizes?

● Is thread local data commonly used?

Fast Track Debugging

4/24/2012
34

The Problem

4/24/2012
35

● Debug compiles eliminate optimizations
● Today's machines really need optimizations

● Slows down execution

● Problem might disappear

● Fast Track Debugging addresses this problem

What is "Fast Track Debugging"?

4/24/2012
36

● Compile such that both debug and non-debug (optimized)
versions of each routine are created

● Linkage such that optimized versions are used by default

● Debugger overrides default linkage when setting
breakpoints and stepping into functions

A Closer Look at How FTD Works

4/24/2012
37

subrountine difuze(…)

call difuze(…)

call interf(…)

subrountine interf(…)

source code
difuze()

call difuze(…)

call interf(…)

interf()

optimized binary code

dbg$difuze()

dbg$interf()

call difuze(…)

call interf(…)

debug code

Jmp inserted as part of breakpoint planting

Breakpoint requested in interf(),

placed in interf_debug()

Where Things Stand Today

4/24/2012
38

● Only currently supported in CCE
● Compile code with -Gfast

● Fully supported in Allinea's DDT

Tera TF Execution Time

4/24/2012
39

0

100

200

300

400

500

600

700

800

 -O3 -Gfast -g

–Gfast is 320% faster than –g

Cost

4/24/2012
40

● Compiles are slower

● Executable uses more disk space

● Inlining turned off
● 1.7% average slow down of all SPEC2007MPI tests

● Range of slight speedup to 19.5% slow down

● Uses more memory
● 4% larger at start up

● 0.0001% larger after computation

Questions?

● What other debugging tools are you using – on Lindgren
or other systems
● DDT?

● Totalview?

● GDB?

● Others?

