
Optimising I/O on the Cray XE6

PDC/KTH Performance Workshop

12-14 Sep 2012

Primary File Systems on lindgren

● There are two primary types of filesystem on lindgren

Home Space

• At /afs/pdc.kth.se/home/… (AFS)

• Smaller size (GBs)

• Only available on the login nodes

Designed and optimised for

compilation, editing, long term

storage of critical files.

Work Space

• Mounted as /cfs/klemming (Lustre)

• Split to scratch and nobackup

• Large size (285TB total)

• IT IS NOT BACKED UP

• Available on the compute and login

nodes.

• Stage host cfs-aux-4.pdc.kth.se

Designed and optimised for scratch

large files and high bandwidth

transfers (e.g. scientific output,

restart files)

There are no local disks on the compute nodes

Concepts for reading or writing files to lustre

File System Fundamentals

Single Logical File

e.g. /work/example

File automatically

divided into stripes

Stripes are written/read

from across multiple drives

To achieve fast bandwidth reading

or writing to disk....

Thursday, 13 September 2012
5

● A scalable cluster file system for Linux

● Developed by Cluster File Systems -> Sun -> Oracle.

● Name derives from “Linux Cluster”

● The Lustre file system consists of software subsystems, storage,
and an associated network

● MDS – metadata server
● Handles information about files and directories

● OSS – Object Storage Server

● The hardware entity

● The server node

● Support multiple OSTs
● OST – Object Storage Target

● The software entity

● This is the software interface to the backend volume

Lustre

Client

Lustre

Client

Lustre

Client

Lustre

Client

Lustre

Client
Lustre

Client

Lustre

Client

Lustre

Client

Lustre

Client

Lustre

Client
Lustre

Client

Lustre

Client

Lustre

Client

Lustre

Client

Lustre

Client
Lustre

Client

Lustre

Client

Lustre

Client

Lustre

Client

Lustre

Client

Metadata

Server

(MDS)

Object Storage

Server (OSS) +

Object Storage

Target (OST)

Object Storage

Server (OSS) +

Object Storage

Target (OST)

Object Storage

Server (OSS) +

Object Storage

Target (OST)

Object Storage

Server (OSS) +

Object Storage

Target (OST)

name

permissions

attributes

location

Object Storage

Server (OSS) +

Object Storage

Target (OST)

High Performance Computing Interconnect

(Gemini)

Secondary Interconnect

(Inifiniband)

Multiple

OSSs and

OSTS

One MDS

per

filesystem

Lustre

Client

Object Storage

Server (OSS) +

Object Storage

Target (OST)

Object Storage

Server (OSS) +

Object Storage

Target (OST)

Open

name

permissions

attributes

location

Metadata

Server

(MDS)

OSTs

Lustre

Client

Read/write

Opening a file

The client sends a request to the MDS to

opening/acquiring information about the file

The MDS then passes back a list of OSTs

• For an existing file, these contain the

data stripes

• For a new files, these typically contain a

randomly assigned list of OSTs where

data is to be stored

Once a file has been opened no

further communication is required

between the client and the MDS

All transfer is directly between the

assigned OSTs and the client

File decomposition – 2 Megabyte Stripes

3-0 5-0 7-0 11-0 3-1 5-1 7-1 11-1

11-1

7-0
3-0 5-0

2MB

2MB

2MB

2MB

2MB

2MB

2MB

2MB

3-1

OST 3

Lustre

Client

7-1

OST 5
OST 7

OST

11
5-1

11-0

Controlling Lustre Striping

9

●lfs - the lustre utility for setting the stripe properties of new
files, or displaying the striping patterns of existing.

● The most used options are :
● setstripe – Set striping properties of a directory or new file
● getstripe – Return information on current striping settings
● osts – List the number of OSTs associated with this file system
● df – Show disk usage of this file system

● For help execute lfs without any arguments
 $ lfs

 lfs > help

 Available commands are:
 setstripe
 find
 getstripe
 check

 ……….

lfs setstripe

10

● Sets the stripe for a file or a directory

● lfs setstripe <file|dir> <-s size> <-i start> <-c count>
● size: Number of bytes on each OST (0 filesystem default)

● start: OST index of first stripe (-1 filesystem default)

● count: Number of OSTs to stripe over (0 default, -1 all)

● Comments

● Can use lfs to create an empty file with the stripes you want (like the
touch command)

● Can apply striping settings to a directory, any children will inherit
parent’s stripe settings on creation.

● The stripes of a file is given when the file is created. It is not possible
to change it afterwards.

Spokesperson

● One process performs I/O.

● Data Aggregation or Duplication

● Limited by single I/O process.

● Easy to program

● Pattern does not scale.

● Time increases linearly with
amount of data.

● Time increases with number of
processes.

● Care has to be taken when doing
the “all to one“-kind of
communication at scale

● Can be used for a dedicated IO
Server (not easy to program)

Lustre

Client
Bottlenecks

Multiple Writers – Multiple Files

● All processes perform I/O
to individual files.

● Limited by file system.

● Easy to program
● Requires job to always run on

the same number of cores

● Pattern does not scale at
large process counts.

● Number of files
creates bottleneck with
metadata operations.

● Number of
simultaneous disk
accesses creates
contention for file
system resources.

Multiple Writers – Single File

● Each process performs I/O
to a single file which is
shared.

● Performance

● Data layout within the
shared file is very
important.

● At large process counts
contention can build for
file system resources.

● Not all programming
languages support it

● C/C++ can work with
fseek

● No real Fortran
standard

Collective IO to single or multiple files

● Aggregation to a processor
in a group which processes
the data.

● Serializes I/O in group.

● I/O process may access
independent files.

● Limits the number of files
accessed.

● Group of processes perform
parallel I/O to a shared file.

● Increases the number of
shares to increase file system
usage.

● Decreases number of
processes which access a
shared file to decrease file
system contention.

Special Case : Standard Output and Error

● Standard Output and Error
streams are effectively
serial I/O.

● All STDIN, STDOUT, and
STDERR I/O serialize
through aprun

● Disable debugging
messages when running in
production mode.

● “Hello, I’m task 32,000!”

● “Task 64,000, made it
through loop.”

● ...

aprun

CRAY IO Software stack

HDF5

Application

NETCDF
MPI-IO

POSIX I/O

Lustre File System

Optimising I/O in Applications

18

Any easy and non-invasive approach

Select best striping values

● Selecting the striping values will have an impact on the I/O

performance of your application

● Rule of thumb :

1. # files > # OSTs => Set stripe_count=1

You will reduce the lustre contension and OST file locking this way

and gain performance

2. #files==1 => Set stripe_count=#OSTs

Assuming you have more than 1 I/O client

3. #files<#OSTs => Select stripe_count so that you use all OSTs

Example : You have 8 OSTs and write 4 files at the same time, then

select stripe_count=2

Always allow the system to choose OSTs at random!
(Ensures even loading of the OSTs and prevents accidental contention)

Case Study 1 : Spokesman

● 32 MB per OST (32 MB – 5 GB) and 32 MB Transfer Size
● Unable to take advantage of file system parallelism

● Access to multiple disks adds overhead which hurts performance

● Note : XE6 numbers might be better

0

20

40

60

80

100

120

1 2 4 16 32 64 128160

W
ri

te
 (

M
B

/s
)

Stripe Count

Single Writer
Write Performance

1 MB Stripe

32 MB
Stripe

Lustre

Client

Case Study 2 : Parallel I/O into a single file

● A particular code both reads and writes a 377 GB file.
Runs on 6000 cores.
● Total I/O volume (reads and writes) is 850 GB.

● Utilizes parallel HDF5

● Default Stripe settings:
count =4, size=1M, index =-1.
● 1800 s run time (~ 30 minutes)

● Stripe settings: count=-1, size=1M, index =-1.
● 625 s run time (~ 10 minutes)

● Results
● 66% decrease in run time.

Case Study 3 : Single File Per Process

● 128 MB per file and a 32 MB Transfer size, each file has a
stripe_count of 1

0

2000

4000

6000

8000

10000

12000

0 2000 4000 6000 8000 10000

W
ri

te
 (

M
B

/s
)

Processes or Files

File Per Process
Write Performance

1 MB
Stripe

32 MB
Stripe

Asynchronous I/O

Majority of data is output, allow computation to overlap

Double buffer arrays to allow computation to continue while
data flushed to disk

1. Use asynchronous POSIX calls
● Only covers the I/O call itself, any packing/gathering/encoding still

has to be done by the compute processors

● Not currently supported by Lustre (calls become synchronous)

2. Use 3rd party libraries
● Typical examples are MPI-IO (see later)

● Again, packing/gathering/encoding still done by compute processors

3. Add I/O Servers to the application
● Add processors dedicated to performing time consuming operations

● More complicated to implement than other solutions

● Portable across platforms (works on any parallel platform)

Asynchronous I/O

Compute I/O Compute I/O Compute I/O Compute I/O

Time

Standard Sequential I/O

Compute

I/O

Compute

I/O

Compute

I/O

Compute

I/O

Asynchronous I/O

Naive IO Server Pseudo Code

Compute Node

do i=1,time_steps

 compute(j)

 checkpoint(data)

end do

subroutine checkpoint(data)

 MPI_Wait(send_req)

 buffer = data

 MPI_Isend(IO_SERVER, buffer)

end subroutine

I/O Server

do i=1,time_steps

 do j=1,compute_nodes

 MPI_Recv(j, buffer)

 write(buffer)

 end do

end do

User more nodes to act as I/O Servers

IO Servers

● Successful strategy deployed in multiple codes.

● Strategy has become more successful as number of

nodes has increased.

● Addition of extra nodes only cost 1-2% in resources

● Requires additional development that can pay off for

codes that generate large files.

● Typically still only one or a small number of writers

performing I/O operations (not necessarily reaching

optimum bandwidth).

I/O Performance : To keep in mind

29

● There is no “One Size Fits All” solution to the I/O

problem.

● Many I/O patterns work well for some range of

parameters.

● Bottlenecks in performance can occur in many

locations. (Application and/or File system)

● Going to extremes with an I/O pattern will typically

lead to problems.

● I/O is a shared resource. Expect timing variation

Change how the application handles I/O

30

A simple MPI-IO program in C

MPI_File fh;

MPI_Status status;

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

MPI_Comm_size(MPI_COMM_WORLD, &nprocs);

bufsize = FILESIZE/nprocs;

nints = bufsize/sizeof(int);

MPI_File_open(MPI_COMM_WORLD, ‘FILE’,

 MPI_MODE_RDONLY, MPI_INFO_NULL, &fh);

MPI_File_seek(fh, rank * bufsize, MPI_SEEK_SET);

MPI_File_read(fh, buf, nints, MPI_INT, &status);

MPI_File_close(&fh);

And now in Fortran using explicit offsets

use mpi ! or include 'mpif.h‘

integer status(MPI_STATUS_SIZE)

integer (kind=MPI_OFFSET_KIND) offset ! Note : might be integer*8

call MPI_FILE_OPEN(MPI_COMM_WORLD, ‘FILE’, &

 MPI_MODE_RDONLY, MPI_INFO_NULL, fh, ierr)

nints = FILESIZE / (nprocs*INTSIZE)

offset = rank * nints * INTSIZE

call MPI_FILE_READ_AT(fh, offset, buf, nints, MPI_INTEGER, status,

ierr)

call MPI_GET_COUNT(status, MPI_INTEGER, count, ierr)

print *, 'process ', rank, 'read ', count, 'integers‘

call MPI_FILE_CLOSE(fh, ierr)

● The *_AT routines are thread safe (seek+IO operation in
one call)

Write instead of Read

● Use MPI_File_write or MPI_File_write_at

● Use MPI_MODE_WRONLY or MPI_MODE_RDWR as the

flags to MPI_File_open

● If the file doesn’t exist previously, the flag

MPI_MODE_CREATE must be passed to MPI_File_open

● We can pass multiple flags by using bitwise-or ‘|’ in C, or

addition ‘+’ or IOR in Fortran

● If not writing to a file, using MPI_MODE_RDONLY might

have a performance benefit. Try it.

MPI_File_set_view

● MPI_File_set_view assigns regions of the file to separate
processes

● Specified by a triplet (displacement, etype, and filetype)
passed to MPI_File_set_view
● displacement = number of bytes to be skipped from the start of the file

● etype = basic unit of data access (can be any basic or derived
datatype)

● filetype = specifies which portion of the file is visible to the process

● Example :
MPI_File fh;

for (i=0; i<BUFSIZE; i++) buf[i] = myrank * BUFSIZE + i;

MPI_File_open(MPI_COMM_WORLD, "testfile",MPI_MODE_CREATE |

 MPI_MODE_WRONLY, MPI_INFO_NULL, &fh);

MPI_File_set_view(fh, myrank * BUFSIZE * sizeof(int), MPI_INT,

 MPI_INT, ‘native’, MPI_INFO_NULL);

MPI_File_write(fh, buf, BUFSIZE, MPI_INT, MPI_STATUS_IGNORE);

MPI_File_close(&fh);

MPI_File_set_view (Syntax)

● Describes that part of the file accessed by a single MPI
process.

● Arguments to MPI_File_set_view:
● MPI_File file

● MPI_Offset disp

● MPI_Datatype etype

● MPI_Datatype filetype

● char *datarep

● MPI_Info info

Collective I/O with MPI-IO

● MPI_File_read_all, MPI_File_read_at_all, …

● _all indicates that all processes in the group specified by

the communicator passed to MPI_File_open will call this

function

● Each process specifies only its own access information –

the argument list is the same as for the non-collective

functions

● MPI-IO library is given a lot of information in this case:

● Collection of processes reading or writing data

● Structured description of the regions

● The library has some options for how to use this data

● Noncontiguous data access optimizations

● Collective I/O optimizations

2 Techniques : Sieving and Aggregation

● Data sieving is used to combine lots of small accesses

into a single larger one

● Reducing # of operations important (latency)

● A system buffer/cache is one example

● Aggregation/Collective Buffering refers to the concept of

moving data through intermediate nodes

● Different numbers of nodes performing I/O (transparent to the user)

● Both techniques are used by MPI-IO and triggered with

HINTS

Lustre problem : “OST Sharing“

● A file is written by several tasks :

● The file is stored like this (one single stripe per OST for all
tasks) :

● => Performance Problem (like ‚False Sharing‘ in
thread progamming)

● Flock mount option needed. Only 1 task can write to
an OST any time

OST 2 OST 3 OST 1 OST 0

Task

1

Task

2

Task

3

Task

4

MPI-IO Interaction with Lustre

● Included in the Cray MPT library.

● Environmental variable used to help MPI-IO optimize

I/O performance.

● MPICH_MPIIO_CB_ALIGN Environmental Variable. (Default 2)

- sets collective buffering behaviour

● MPICH_MPIIO_HINTS Environmental Variable

● Can set striping_factor and striping_unit for files created with

MPI-IO.

● If writes and/or reads utilize collective calls, collective buffering

can be utilized (romio_cb_read/write) to approximately stripe align

I/O within Lustre.

● HDF5 and NETCDF are both implemented on top of

MPI-IO and thus also uses the MPI-IO env. Variables.

MPICH_MPIIO_CB_ALIGN

● If set to 2, an algorithm is used to divide the I/O workload into
Lustre stripe-sized pieces and assigns them to collective
buffering nodes (aggregators), so that each aggregator always
accesses the same set of stripes and no other aggregator
accesses those stripes.
If the overhead associated with dividing the I/O workload can in
some cases exceed the time otherwise saved by using this
method.

● If set to 1, an algorithm is used that takes into account physical
I/O boundaries and the size of I/O requests in order to determine
how to divide the I/O workload when collective buffering is
enabled.
However, unlike mode 2, there is no fixed association between
file stripe and aggregator from one call to the next.

● If set to zero or defined but not assigned a value, an algorithm is
used to divide the I/O workload equally amongst all aggregators
without regard to physical I/O boundaries or Lustre stripes.

MPI-IO Hints (part 1)

● MPICH_MPIIO_HINTS_DISPLAY – Rank 0 displays the
name and values of the MPI-IO hints

● MPICH_MPIO_HINTS – Sets the MPI-IO hints for files
opened with the MPI_File_Open routine
● Overrides any values set in the application by the MPI_Info_set

routine

● Following hints supported:

direct_io

romio_cb_read

romio_cb_write

cb_buffer_size

cb_nodes

cb_config_list

romio_no_indep_rw

romio_ds_read

romio_ds_write

ind_rd_buffer_size

Ind_wr_buffer_size

striping_factor

striping_unit

Env. Variable MPICH_MPIO_HINTS (part 2)

● If set, override the default value of one or more MPI I/O hints. This also
overrides any values that were set by using calls to MPI_Info_set in the
application code. The new values apply to the file the next time it is opened
using a MPI_File_open() call.

● After the MPI_File_open() call, subsequent MPI_Info_set calls can be used
to pass new MPI I/O hints that take precedence over some of the
environment variable values.
Other MPI I/O hints such as striping factor, striping_unit, cb_nodes, and
cb_config_list cannot be changed after the MPI_File_open() call, as these
are evaluated and applied only during the file open process.

● The syntax for this environment variable is a comma-separated list of
specifications. Each individual specification is a pathname_pattern followed
by a colon-separated list of one or more key=value pairs. In each key=value
pair, the key is the MPI-IO hint name, and the value is its value as it would
be coded for an MPI_Info_set library call.

● Example:
MPICH_MPIIO_HINTS=file1:direct_io=true,file2:romio_ds_write=
disable,/scratch/user/me/dump.*:romio_cb_write=enable:cb_nod
es=8

IOR benchmark 1,000,000 bytes

MPI-IO API , non-power-of-2 blocks and transfers, in this case blocks and

transfers both of 1M bytes and a strided access pattern. Tested on an

XT5 with 32 PEs, 8 cores/node, 16 stripes, 16 aggregators, 3220

segments, 96 GB file

0

200

400

600

800

1000

1200

1400

1600

1800

M
B

/S
e
c

IOR benchmark 10,000 bytes

MPI-IO API , non-power-of-2 blocks and transfers, in this case blocks and

transfers both of 10K bytes and a strided access pattern. Tested on an

XT5 with 32 PEs, 8 cores/node, 16 stripes, 16 aggregators, 3220

segments, 96 GB file

M
B

/S
e
c

0

20

40

60

80

100

120

140

160

HYCOM MPI-2 I/O

On 5107 PEs, and by application design, a subset of the PEs(88), do the

writes. With collective buffering, this is further reduced to 22 aggregators

(cb_nodes) writing to 22 stripes. Tested on an XT5 with 5107 PEs, 8

cores/node

M
B

/S
e
c

0

500

1000

1500

2000

2500

3000

3500

4000

HDF5 format dump file from all PEs

Total file size 6.4 GiB. Mesh of 64M bytes 32M elements, with work divided

amongst all PEs. Original problem was very poor scaling. For example, without

collective buffering, 8000 PEs take over 5 minutes to dump.

Tested on an XT5, 8 stripes, 8 cb_nodes

S
e

c
o

n
d

s

PEs

1

10

100

1000

w/o CB

CB=0

CB=1

CB=2

MPI-IO Example

Storing a distributed Domain into a single
File

Problem we want to solve
● We have 2 dim domain on a 2 dimensional processor grid

● Each local subdomain has a halo (ghost cells).

● The data (without halo) is going to be stored in a single file,
which can be re-read by any processor count

● Here an example with 2x3 procesor grid :

nx

px

ny

py

lnx

lny

Approach for writing the file

● First step is to create the MPI 2 dimensional processor
grid

● Second step is to describe the local data layout using a
MPI datatype

● Then we create a “global MPI datatype” describing how
the data should be stored

● Finally we do the I/O

Basic MPI setup

nx=512; ny=512 ! Global Domain Size

call MPI_Init(mpierr)

call MPI_Comm_size(MPI_COMM_WORLD, mysize, mpierr)

call MPI_Comm_rank(MPI_COMM_WORLD, myrank, mpierr)

dom_size(1)=2; dom_size(2)=mysize/dom_size(1)

lnx=nx/dom_size(1); lny=ny/dom_size(2) ! Local Domain size

periods=.false. ; reorder=.false.

call MPI_Cart_create(MPI_COMM_WORLD, dim, dom_size,

 periods, reorder, comm_cart, mpierr)

call MPI_Cart_coords(comm_cart, myrank, dim, my_coords,

 mpierr)

halo=1

allocate (domain(0:lnx+halo, 0:lny+halo))

Creating the local data type

gsize(1)=lnx+2; gsize(2)=lny+2

lsize(1)=lnx; lsize(2)=lny

start(1)=1; start(2)=1

call MPI_Type_create_subarray(dim, gsize, lsize, start,

 MPI_ORDER_FORTRAN, MPI_INTEGER, type_local, mpierr)

call MPI_Type_commit(type_local, mpierr)

lnx

lny

(1,1)

And now the global datatype

gsize(1)=nx; gsize=ny

lsize(1)=lnx; lsize(2)=lny

start(1)=lnx*my_coords(1); start(2)=lny*my_coords(2)

call MPI_Type_create_subarray(dim, gsize, lsize, start,

 MPI_ORDER_FORTRAN, MPI_INTEGER, type_domain, mpierr)

call MPI_Type_commit(type_domain, mpierr)

nx

px

ny

py

Now we have all together

call MPI_Info_create(fileinfo, mpierr)

call MPI_File_delete('FILE', MPI_INFO_NULL, mpierr)

call MPI_File_open(MPI_COMM_WORLD, 'FILE',

 IOR(MPI_MODE_RDWR,MPI_MODE_CREATE), fileinfo, fh, mpierr)

disp=0 ! Note : INTEGER(kind=MPI_OFFSET_KIND) :: disp

call MPI_File_set_view(fh, disp, MPI_INTEGER, type_domain

 'native', fileinfo, mpierr)

call MPI_File_write_all(fh, domain, 1, type_local, status,

 mpierr)

call MPI_File_close(fh, mpierr)

I/O Performance Summary

54

● Buy sufficient I/O hardware for the machine

● As your job grows, so does your need for I/O bandwidth

● You might have to change your I/O implementation when scaling

● Lustre

● Minimize contention for file system resources.

● A single process should not access more than 4 OSTs, less might
be better

● Performance

● Performance is limited for single process I/O.

● Parallel I/O utilizing a file-per-process or a single shared file is
limited at large scales.

● Potential solution is to utilize multiple shared file or a subset of
processes which perform I/O.

● A dedicated I/O Server process (or more) might also help

● Did not really talk about the MDS

References

● http://docs.cray.com
● Search for MPI-IO : “Getting started with MPI I/O“,

“Optimizing MPI-IO for Applications on CRAY XT Systems“

● Search for lustre (a lot for admins but not only)

● Message Passing Toolkit

● Man pages (man mpi, man <mpi_routine>, ...)

● mpich2 standard :
http://www.mcs.anl.gov/research/projects/mpich2/

http://docs.cray.com/
http://www.mcs.anl.gov/research/projects/mpich2/

