PoGOLite: a hard X-ray polarimeter

Elena Moretti KTH (OKC post-doc) On behalf of the PoGOLite collaboration

The Protagonists:

The collaboration:

PI: Mark Pearce (KTH)

Sweden: KTH & SU;

Japan: Hiroshima University, ISAS, Waseda University, Tokyo Institute of Technology;

USA: SLAC/KiPAC, University of Hawaii;

External collaborators:

DST Control in Linköping (attitude control system);

SSC Esrange (gondola, power and communication systems and campaign phase);

KTH Alfvén Laboratory (Auroral monitor);

The collaboration:

KTH: Mark Pearce, Miranda Jackson, Stefan Rydström, Mozsi Kiss, Elena Moretti, Merlin Kole and many MCs students which gave important contributions;

SU: Göran Olofsson, Hans-Gustav Floren;

Japan: Tune Kamae, Hiromitsu Takahashi;

External collaborators:

DST Control: team led by Jan-Erik Strömberg;

SSC Esrange: team led by Torbjörn Eld;

KTH Alfvén Laboratory: team led by Nickolay Ivchenko;

The subject

-

Preparing the polarimeter

The collaboration has worked on the preparation and development of the instrument: from the inner detector to the read out electronics, from the cooling system to the pressurised structure.

Preparing the Polarimeter

5 ... not only advanced technology...

The detection idea

Klein-Nishina description of a Compton scattering for polarised photons:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{\mathrm{r}_{\mathrm{o}}^2}{2} \frac{\mathrm{E}'^2}{\mathrm{E}^2} \left(\frac{\mathrm{E}'}{\mathrm{E}} + \frac{\mathrm{E}}{\mathrm{E}'} - 2\sin^2\theta\cos^2\phi \right)$$

==> the photon spatial distribution depends on the polarisation:

Angular resolution using a segmented detector

Applying the detection idea with fast scintillators in a hexagonal-geometry array.

The signal is amplified from -photomultiplier tubes.

Slow scintillator tubes collimate the received signal.

Applying the detection idea with fast scintillators in a nexagonal-geometry array.

The signal is amplified from -photomultiplier tubes.

Slow scintillator tubes collimate the received signal.

BGO crystals create and anti-coincidence shield

Applying the detection idea with fast scintillators in a hexagonal-geometry array.

The signal is amplified from photomultiplier tubes.

Slow scintillator tubes collimate the received signal.

BGO crystals create and anti-coincidence shield

Applying the detection idea with fast scintillators in a hexagonal-geometry array.

The signal is amplified from -photomultiplier tubes.

A passive neutron shield in polyethylene surrounds the detector 13

Detector facts

Energy range: 25 – 100 KeV Effective area: 200cm² @ 50 keV Field of view: 2.5 deg

Attitude Control System and Flight train attaches here gondola

Elevation motor

The story

- 2003 \rightarrow first idea;
- 2005 → proposal;
- 2006 2010 → development;
- 2010 → engineering flight planned but canceled;
- 2011 \rightarrow 5 day long flight planned;

- 2011 \rightarrow flight duration 5h;
- 2012 → 5 day long flight planned;
- 2012 → No launch opportunities due to weather;
- 2013 → new launch attempt for long7 flight;

Why do we keep doing this after all this bad luck?

1. The instrument works as expected!

Distribution of scattering angles

Ground measurement of a ≈100% polarised source (not bkg subtracted)

1. The instrument works as expected!

1. The instrument works as expected!

2. The science is at the frontier

In the past:

 Good measurements in optical (450-950nm): pol degree and angle change with the phase;
 Old measurement (1976) @ 2.6keV, 5.2keV;
 Measurements at 200-800keV but not a "real" polarimeter → high systematics & bad timing resolution.

With PoGoLite:

First measurement of the Crab Nebula in hard X-ray with a dedicated polarimeter (low systematics and good time resolution) ==> Independent information on the particle acceleration mechanisms and the geometry in the Nebula

2. The science is at the frontier

First measurement of the Crab Nebula in hard X-ray with a dedicated polarimeter (low systematics and good time resolution) ==> Independent information on the particle acceleration mechanisms in the Nebula

Possible measurement of the Crab pulsar ==> complementary information to distinguish among acceleration-emission models

Possible measurement of the polarisation of the binary system Cygnus-X1 ==> In which case this system emits polarised light? What is the geometry of the system?

Stay tuned!

I hope to see you next year with the happy ending

For references and more information check www.particle.kth.se/pogolite

Join us?

Postdoctoral scholarship in astroparticle physics at KTH (2 years) Application deadline: 2012–12–10. Ph.D. position in astroparticle physics at KTH in Stockholm. Application deadline: 2012–12–17.

The positions concern polarised X-ray astrophysics – focussing on balloon-borne hard X-ray polarimetry (PoGOLite) and the development of new instrumentation.

*English: http://www.kth.se/en/om/work-at-kth/vacancies *Swedish: http://www.kth.se/om/work-at-kth/lediga-anstallningar

Thank you

1.00

-

-

100

Crab nebula past measurements

Instrument	Energy	Pol. degree	Pol. angle
	450-950 nm,	Peaks: low	Peaks: rapidly
OPTIMA	$\sim 13~\mathrm{eV}$	polarization,	changing,
	(Optical)	\sim 5–10%	\sim 70–170°
OSO-8	2.6 keV (X-rays)	$(19.2 \pm 1.0)\%$	$(156.4 \pm 1.4)^{\circ}$
	5.2 keV (X-rays)	$(19.5 \pm 2.8)\%$	$(152.6 \pm 4.0)^{\circ}$
		Peaks: little or	Peaks:
INTEGRAL	$0.2{-}0.8~{ m MeV}$	no polarization	N/A
(IBIS)	(Gamma-rays)	Off-pulse:	Off-pulse:
		$>\!\!88\%$ pol.	$(122 \pm 7.7)^{\circ}$
INTEGRAL	$0.1{-}1~{ m MeV}$	Off-pulse:	Off pulse:
(SPI)	(Gamma-rays)	$(46 \pm 10)\%$	$(123 \pm 11)^{\circ}$

ACS performances

