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1912: Victor Hess discovers cosmic rays —
Nobel Prize 1936

[1928: Paul Dirac predicts antimatter — Nobel
Prize (shared with Erwin Schrodinger) 1933]

1932: Carl Anderson discovers the positron
in cosmic rays using a cloud chamber
ng

d by [invented by C T R Wilson in 1911 - Nobel
ot " Prize 1927] - Nobel Prize 1936
Ce

[1935: Hideki Yukawa predicts the existence
of mesons — Nobel Prize 1949]

1937: Seth Neddermeyer & Carl Anderson
discover the muon in cosmic rays

1947: Cecil Powell discovers the pion in
cosmic rays — Nobel Prize 1950; George
Rochester & Clifford Butler discover the kaon

Figure 4. A historic cloud-chamber photograph taken by Carl Ander-
son in 1932 shows a positive particle, presumably from a cosmic-ray

poverenemsren e anngniecamees e [Patrick Maynard Stuart Blackett awarded

magnetic field, and losing energy in the lead plate. After traversing the
plate, the track is much too long for a proton of that curvature. Also,

theweskioniziondensiy dong e ek ndasspaide i Nlobel Prize 1948 “for his development of the
Wilson cloud chamber method’]

posed by Paul Dirac in 1928. (Adapted from ref. 10.)

Per Carlson (Physics Today, Feb 2012)



So there were indeed more fundamental discoveries in cosmic rays ... until accelerators tdgk
over the show in the ’60s - but what have cosmic rays done for high energy physics s@@hen?
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Abstract °\©&
The safety of colhﬁ at the Large Hadron Collider (LHC) was studied in 2003
by the LHC S{Q/ Study Group, who concluded that they presented no danger.
Here we w their 2003 analysis in light of additional experimental results
and @& ical understanding, which enable us to confirm, update and extend
th&@sdnclusions of the LHC Safety Study Group. The LHC reproduces in the
o %?boratory, under controlled conditions, collisions at centre-of-mass energies,
ess than those reached in the atmosphere by some of the cosmic rays that
Q& have been bombarding the Earth for billions of years. We recall the rates for
S the collisions of cosmic rays with the Earth, Sun, neutron stars, white dwarfs
@\ and other astronomical bodies at energies higher than the LHC. The stability
o of astronomical bodies indicates that such collisions cannot be dangerous.
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The safety of the LHC

The Large Hadron Collider (LHC) can achieve an energy that no other particle accelerators have reached before, but Nature routinely
produces higher energies in cosmic-ray collisions. Concerns about the safety of whatever may be created in such high-energy particle
collisions have been addressed for many years. In the light of new experimental data and theoretical understanding, the LHC Safety
Assessment Group (LSAG) has updated a review of the analysis made in 2003 by the LHC Safety Study Group, a group of independent

scientists.

The experiments that we will do with the LHC have been done
billions of times by cosmic rays hitting the earth. ... They're being
done continuously by cosmic rays hitting our astronomical
bodies, like the moon, the sun, like Jupiter and so on and so forth.
Awnd the earth's still here, the sun's still here, the moon's still here.

LHC collisions are not going to destroy the planet.
_John Ellis



J. Phys. G: Nucl. Part. Phys. 35 (2008) 115004 J Ellis et al
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Figure 1. The spectrum of ultra-high-energy cosmic rays, as measured by several experiments [4].
Every cosmic ray with an energy shown in this plot, namely above 10'7 eV, liberates in its collision

with the atmosphere more energy, in the centre-of-mass frame, than does a proton—proton collision
at the LHC.
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As seen in figure 1, the highest energy cosmic rays observed attain energies of around
10%° eV, and the total flux of cosmic rays with energies of 10'” eV or more that hit each square
centimetre of the Earth’s surface is measured to be about 5 x 10~ per second [4]. The area
of the Earth’s surface is about 5 x 10'® cm?, and the age of the Earth is about 4.5 billion years.
Therefore, over 3 x 10** cosmic rays with energies of 10'” eV or more, equal to or greater
than the LHC energy, have struck the Earth’s surface since its formation. This means” that
Nature has already conducted the equivalent of about a hundred thousand LHC experimental
programmes on Earth, and the planet still exists.

Other astronomical bodies are even larger. For example, the radius of Jupiter is about ten
times that of the Earth, and the radius of the Sun is a factor of 10 larger still. The surface
area of the Sun is therefore 10 000 times that of the Earth, and Nature has therefore already
conducted the LHC experimental programme about one billion times* via the collisions of
cosmic rays with the Sun, and the Sun still exists.

Moreover, our Milky Way galaxy contains about 10'! stars with sizes similar to our Sun,
and there are about 10'! similar galaxies in the visible Universe. Cosmic rays have been
hitting all these stars at rates similar to collisions with our own Sun. This means that Nature
has already completed about 10°' LHC experimental programmes since the beginning of the
Universe. Moreover, each second, the Universe continues to repeat about 3 x 10! complete
LHC experiments. There is no indication that any of these previous ‘LHC experiments’ has
ever had any large-scale consequences. The stars in our galaxy and others still exist, and
conventional astrophysics can explain all the detected astrophysical black holes.

Thus, the continued existence of the Earth and other astronomical bodies can be used to

constrain or exclude speculations about possible new particles that might be produced by the
LHC.

4 This estimate would be reduced by a factor approximately equal to A if all the ultra-high-energy cosmic rays were
nuclei with an atomic number A, since the cosmic-ray spectrum falls like 1/ E3 at high energies, as seen in figure 1.




The Pierre Auger Observatory
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Telescope Array (TA)

Middle Drum: based on HiRes || 507 surface detectors:
s 3x O s double-layer scintillators

(grid of 1.2 km, 680 km?)

Va0 Teee

Ll
AT errwe ¢
LI DAR -T."x-;'--:r'm » T ;'
Laser facility T

(N RN N N NSRS
| & N ) ‘l L N N e e W s TeSt setuP for
e e w e w ™ ggwyw| radar reflection
(RS BN RN NS EEEL :
LR RN A NN S S R R E R
L R R N R B b L o Eor e — 7]
(AR RN E R rrv_-ur N R SN AR
(NN S S N R R R CE e
LR N N NS NN RN B 'rr N e
YTy nrr' S P AR R R
Ty Yy ey r W
L BN ALl & WS L
' N R N R R e e P B N NS
oAy Y wwe il‘lill"‘ltll"’i’l’""‘
il AL NS N N R R R R
(A NN E N NS 8 NS e i*i“m -#
LR BN B R N R RN N L
e W frfr-r L
e T e
et R R R N A N e S N LA A
"'i"Lr IR B

N
e

Infill array and high
elevation telescopes
under construction

’[

Electron light source
(ELS): ~40 MeV

3 fluorescence detectors

(2 new, one station HiRes Il)
C

.!“' .

Northern hemisphere: Utah, USA



All experiments measuring UHE cosmic rays now give consistent results
(after suitable rescaling of the energy scale within estimated uncertainties)

Y. Tsunesada et al. @ UHECR 2012
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Auger event simulation for surface array
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TA event simulation for surface array
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But these energy/flux estimates are based on gross extrapolations of known physics

... how have air shower simulations fared against the LHC forward physics data?
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Basic Observables
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@ Pseudorapidity

<% emission angle of a particle from
Interaction point (“mid-rapidity” : n=0) :

6 1 Pl + P
= - a — — —l
n In [tan (2)] 5 (lpl .

<%» when the mass of the pa'r‘(i'cle is known
the rapidity is used :

1 E +py
= -1
73 H(E—PL)

-» for EAS development, “forward” particles
(with large n) are most important

@ Transverse momentum
% p,=\p,+p,
@ Multiplicity

<% number of particles in a given n and p;
range

Pierog, ISVHECRI 2012



Comparisons with data from ATLAS, CMS, ALICE, LHCb, LHC-f and TOTEM

show that the air shower models work (surprisingly) well

Pseudorapidity Distributions

@ No model with perfect prediction : but data well bracketed
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It seems that the air shower simulations are really not so bad after all
.. QGSJET-Il (Ostapchenko) and EPOS (Werner) do rather well on the whole
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Pseudorapidity Distributions

No model with perfect prediction : but better than HEP MC
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In fact they give a better description (for soft physics) than the standard LHC event generators!

CMS and LHCf Fo_l:ward Spectra

Pierog, ISVHECRI 2012
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It is reassuring that energy estimates from air shower simulations are robust
... results from modern cosmic ray experiments can indeed be trusted!

e e s e e
Testing Models on Hybrid Events

* Hybrid events are well constrained

* Test models by matching the signals measured in SD and FD

* Find simulations which match measured FD profiles

* Compare the ground signals between the simulations and data
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Only anomaly at present is a factor of ~2 overproduction of muons



Moreover Auger has provided new measurement of #-secns (test Glauber model)

Inelastic Proton-Proton Cross Section

Extended Glauber conversion + propagation of parameter uncertainties
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The GZK cutoff has supposedly been seen ... if the primaries are protons and the
sources accelerate them to energies >10%° eV and are homogeneously distributed
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... if so, we have the “guaranteed” cosmogenic neutrino flux
| Engel, Seckel, Stanev (2001) |

a R

GZK mechanism :
|—D P + B- + !73

Ptgg YA It
I—'ﬂ{'l'”ﬂ

19 T + 7]
\ETHRESH.~6><10 eV I—b-e -|-ye+u“)

WWWWWW

<
o

lllll[lll[lllllllllllll

-16

=17

-18

log E dN/JE, per cm?.s.ster

-19

Illllllllllllllllllllll

+ Uncertainties 1n flux calculations :
» UHECR luminosity: p__(local) # <p __=

-16
total

— — — \,1

v

- Injection spectrum -

» cosmological evolution of sources

» IRB & optical density of sources -18

log E dN/dE, per cm? s, ster

But the shape of the energy spectrum
constrains the injection and evolution
parameters ... as do observational 20 o e 010 ,o;n 102
constraints on the associated y-ray cascade

-19

Illllllll]llll[llll]llll

lllllllllllllllll[l[lll

Ev, eV

Additional uncertainties if the primaries are heavy nuclei (Hooper et al 2004, Ave et al 2004)



The sources of cosmic rays must also be neutrino sources

Waxman-Bahcall Bound :

*» 1/ E? injection spectrum (Fermi shock). COSMIC BEAM DUMP : SCHEMATIC
¢ Neutrinos from photo-meson interactions in

the source. accelerator

* Energy in V's related to energy in CR's : e.g. black hole
T
[E2d,lwp ~ (3/8)&z€xtn %E@R ‘;22;‘ P’°‘°"
|
Fraction of CR primary ?lg.l ;1(11'755-(1){)2%:5 > target
energy converted to neutrinos + e.g. radiation
Hubble time

~ 23x10 %€, €7 CGeVem 2 tar?

D & ' directional
=» Making a reasonable estimate for €_ allows magnetic ' beam

this to be converted into a flux prediction flelds

... would be higher if extragalactic cosmic rays become dominant at energies well
below the ‘ankle’ as in Berezinsky et al’s model of the ‘dip’ as due to e*e” production



There is also a GZK photon flux from n® decay, pair production etc ...
challenging target for air shower arrays (Gelmini, Kalashev, Semikoz 2007)
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Auger has set stringent limits and may ultimately have the sensitivity to detect
this flux (blue line above) ... alternatively can wait for the photons to be
degraded to lower energies and then detect them with e.g. Fermi-LAT



10%

107° }

1076 t

1077

E [GeV]

10720.1 1 10 10% 103 104 10° 106 107 108 109 01010“1012

Ahlers, Anchordoqui, Gonzalez-Garcia, Halzen,

Sarkar, Astropart. Phys. 34:106,2010

This is well constrained by the
measurement by Fermi-LAT of the
extragalactic diffuse y-ray bkgd.
(well below older EGRET estimate)
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background at ~GeV to TeV
energies ... we calculate
this taking into account all
EM interactions on CMB
and EBL (IR and optical)
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We can fit the observed spectrum for various combinations of injection spectral index,

maximum energy et cetera, as well as the ‘cross-over energy at which the
extragalactic cosmic rays begin to dominate over the galactic component
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The corresponding cosmogenic flux can then be calculated ... imposing
the Fermi-LAT constraint, its maximum value is severely restricted
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The Ahlers et al (2011) best-fit with the Fermi-LAT constraint is shown as GZK 6



A similar argument can be applied to constrain neutrinos
from e.g. Gamma-Ray Bursts (‘fireball model’)

— Protons from n-decay fitted to observed UHE cosmic ray spectrum

— Photons from m®-decay ‘cascade’ down in energy through scattering on the on the CMB
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IceCube begins to challenge GRBs as major sources of UHE cosmic rays
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STOP PRESS: Now we do have ...
2 v_-like PeV events in IceCube 86

Found in search for cosmogenic neutrinos with IC79 & IC86 (May 2010 — May 2012)

2 events / 672.7 days - background (atm. pu + conventional atm. v) expectation 0.14 events
preliminary p-value: 0.0094 (2.36c)

Run119316-Event36556705 Run118545-Event63733662
Jan 3 2012 August 9% 2011

NPE 9.628x101 NPE 6.9928x10*

Number of Optical Sensors 312 Number of Optical Sensors 354

Aya Isihara, Neutrino 2012; See talk by Eike Middell at this meeting, ISVHECRI2012
Gaisser, ISVHECRI 2012




Electron neutrinos

Event rates: v, per km?3 yr
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These are unlikely
to be due to charm

(in the atmospheric
neutrino flux) ...

< 0.1 event per year at PeV
Look for charm at ~¥100 TeV

(E')dE

Cross sections (average of v, anti-v): Cooper-Sarkar, Mertsch, Sarkar (2011)

Tom Gaisser

Gaisser, ISVHECRI 2012




... and their energies are well below the Glashow resonance

NPE and energy distributions
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Can they be cosmogenic (from decay of
neutrons produced by photodissociation
of heavy cosmic ray primaries)?
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Middel, ISVHECRI 2012



Auger data on the depth of air shower maximum + fluctuations do
indicate increasingly heavier composition at E > 1018 eV

Mass Composition: mean X_., and its RMS

G. Pinto, P.Facal @ ICRC 2011
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6744 hybrid events (Dec 2004 — Sept 2010) E> 10¥ eV
break of the elongation rate at around 2.4 10" eV (close to the ankle)

Xmax distributions become narrower with energy

- increase of the mean mass with the energy
- interpretation depends on hadronic interaction models

This conflicts with results from HiRes/TA which are consistent with protons



... oris it due to a change in UHE interactions?
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Joint working group (Auger+TA) formed to investigate this vexed issue

(Ulrich, Engel, Unger, PRD 83:054026,2011)



Puzzle: correlation of Auger arrival directions at E > 4x10%° eV (within
~few degrees) with nearby AGNs suggests the primaries are protons

Abreu et al [Auger collab.] AP 34:314,2010

BUT If the primaries were heavy nuclei with Z >>1 (and protons and nuclei ~equally
abundant at source), then would expect increased anisotropy at E ~ 4x101°/Z eV
... contrary to observation! (Lemoine & Waxman JCAP 11:009,2009)



The photodisintegration of UHECR nuclei on the CIB can be studied analytically

dN1(E) No(L,En)  Nn-1(L,En_1) Nao(L, Es) , /L’ " Nn(L,E,)
dL Lo(En) ' Lo-1(BEn-1) LiE) — EE)= | m; Ln(Em)

Obtain solution in excellent agreement with Monte Carlo simulations:
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FIG. 4: The ultra-high energy cosmic ray spectrum (left) and average composition (right) calculated using both analytic and
Monte Carlo techniques. These results are for the case of iron nuclei injected from a homogeneous distribution of sources with
a spectrum of AN /dN o« E~2 up to a maximum energy of 5 x 10%! eV.



E2 dN/DE [eV cm? s sr]

E2 dN/dE eV em? ! sr"]

The data can be well fitted if the primaries are heavy nuclei

(NB: When propagated through the cosmic infrared background,
photodisintegration results in a mixed composition at Earth)
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This is not the GZK cutoff, so t production and v, flux will be suppressed
... but the v, flux from neutron decay may be boosted

Hooper & Taylor, AP 33:151,2010
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In order to contribute to the
cosmogenic v flux, the photo-
disassociated protons must
exceed the GZK cutoff in energy,
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:‘0 10-17 —
£ g Hence the (high energy) v, fluxis
g F suppressed but the (lower energy)
z L v, flux is boosted (sensitive to E__ !)
- 10718 |—

10

Hooper, Sarkar & Taylor, AP 23:11,2005



But when normalised
to the Auger/HiRes
energy spectrum,
the cosmogenic v,
flux is not enhanced
relative to the value
for proton primaries
... and the v fluxis
suppressed too

So detection may
require ~10%3 km3
volume ... might be

possible using radio
(e.g. ARA, ARIANNA)

Is it worth it just to
confirm that there is
a cosmogenic flux?
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~2 CCONC ) ) . . .
0oy _GyME [ M; v-N deep inelastic scattering
dx oy 0 Q? + ]\Jf

.

5 W+

1+ (1 —-19)? _cenc o Y _ceNC 2
[ > Fy (z,Q )_?FL T (2, Q)
2 - " hadrons
g <1 — %) ;ltFS.CC’NC(;lr, QQ)] p/n e
Most of the contrib. to #-secn is from:
M2 .; 1_ T T T
Q2~M2 and x ~ W Q> =10 GeV?
" M E |
So for cosmogenic vs with E ~ 1019 GeV, the -

kinematic region of x ~ 10° is being probed ZZBi

The HERA experiments showed that the gluon 0.4:
structure function rises steeply at low x N
... but it cannot keep rising indefinitely! vap S
Saturation/screening must set in (exactly R | _
how this happens is an open question) e




S zeuswes At leading order, structure functions are given by:
6 4 ZEUS 1998-99 (Prel.) =
10° mm zEUsBPT 1997 Fé/:x(u-l—d—l—Qs—l—Qb—l—ﬂ—l—d-l—Qé),
O ZEUS SVX 1995
103 ZEUS ISR 1996 (Prel.) FZ — O y
NMC —
BCDMS QIFé/:a?(U-I-d-l-QS—I—Qb—ﬂ—d—QE),
2 CCFR

E665

... more complicated at NLO (which we adopt)

10 . . .
| The kinematic region relevant for

cosmogenic vs has not been directly
explored at colliders - so parameterise as:

0! 2g = 9(1— 2)" P (x)

10° 107 10° 107 107 10 xl S =279 (1 —x)" Ps(x)

.. evolve, using the DGLAP equations, to scale of measurement: 9,2 = 02
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DGLAP evolution of measured PDFs to very low-x then yields the v-N #-section

... the (perturbative SM) uncertainty is

estimated accounting for all experimental and:

model uncertainties (excluding all unphysical
extrapolations leading to negative F,, xF;, F})

All modern PDF sets (e.g. PDF4LHC recommended)
give consistent results (excluding ‘rogue’ members)
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But this extrapolation cannot be right at low x ...
must sum In(1/x) terms (“BFKL”) and allow for
screening/saturation =* color glass condensate?

Y =1In1/x}

Saturation
InQ%(Y)=AY

Dilute system

BFKL

|

&

DGLAP

—

2 >
In AZ,, InQ

The UHE neutrino #-section is sensitive to such non-perturbative effects in the SM (as
well as to beyond-Standard-Model physics e.g. new dimensions at TeV scale) so a
direct measurement of cosmogenic v scattering will probe new fundamental physics



Search for neutrinos

Muonic component of the shower

Regular proton shower

DG v, interacting

. 2 Deep DG v shower
in the mountains

E-M component of the shower
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Important for neutrino detection: observable only if almost horizontal
Neutrino signature: an inclined shower with large electromagnetic component

Deeply penetrating showers (all flavour) rate oc cosmic neutrino flux and to v-N cross-section

Earth-skimming showers (v, — 7) rate oc neutrino flux, but independent of v-N #-section



Beyond HERA: probing low-x QCD with cosmic UHE neutrinos

Neutrino—Nucleon cross—section (pb)
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The ratio of quasi-horizontal (all
flavour) and Earth-skimming (v,)
events measures the #-section

400

Anchordoqui, Cooper-Sarkar, Hooper, Sarkar, Phys.Rev.D74:043008,2006

To do this with the cosmogenic neutrino flux will require >100 x Auger exposure



Perhaps such a measurement be done by JEM-EUSO?
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Summary

“The existence of these high energy rays is a
puzzle, the solution of which will be the
discovery of new fundamental physies or

astrophgsios ” __ji.m. Cronin (199%)

“On what can we now place our hopes of solving the
many riddles which still exist as to the origin and
composition of cosmic rays? It must be emphasized
here above all that to attain really decisive progress
greater funds must be made available”

Victor Francis Hess (1936)



