Search for long-lived particles in final states with a muon and displaced vertex at ATLAS

<u>Hyeon Jin Kim</u> and David Milstead Stockholm University Partikeldagarna, Nov. 26, 2012

Stockholm University

Outline

- Introduction : R-parity violation SUSY
- Search for displaced vertex (DV) with 2011 data
- Data and simulation
- Vertex reconstruction
- Signal selections
- Signal Efficiency
- Systematic corrections and uncertainties
- Background estimation
- Result
- Summary

Introduction : R-parity violation SUSY

- ✤ R-parity: $R = (-1)^{3(B-L)+2S}$ → R = +1 for SM particles
 -1 for SUSY particles
- ✤ R-parity violation (RPV) is part of superpotential.

 $W_{RpV} = \lambda_{ijk}L_iL_jE_k + \lambda'_{ijk}L_iQ_jD_k + \varepsilon_iL_iH_u$ bilinear terms + $\lambda''_{ijk}U_iD_jD_k$ - B-number violating term

 RPV couplings may lead to a wide range of signatures: decaying LSP with many leptons; No MET;

Displaced vertices.

For small RPV couplings, the Lightest Supersymmetric Particle (LSP) can decay away from the Interaction Point (IP).

Search for displaced vertex with 2011 data

- Particles with average lifetimes up to a few nanoseconds could decay within the Inner dectector, giving rise to displaced vertices.
- Standard Model processes do not produce displaced multi-track vertices at large distance from IP.
- The result presented today is based on 2011 data, non-zero λ' with muon final state.
- Neutralino decays to muon plus jets.
 - Muon is useful for triggering and background rejection.
 - High track multiplicity helps vertex reconstruction.

Data and simulation

Data

- ◆ ATLAS recorded 5.3 fb⁻¹ data in 2011.
- After "all good" data quality requirements, used about 4.4 fb⁻¹.
- ✤ MC samples are generated by pythia6.
 - Squark-squark, squark-antisquark production.
 - $\, \bullet \, \tilde{q}\tilde{q}(\tilde{q}\tilde{\tilde{q}}) \rightarrow \tilde{\chi}^0_{\rm I}q \rightarrow \mu q q q$
 - Several squark and neutralino masses are used.

Label	Mode	$m_{\tilde{\chi}^0}$ [GeV]	$m_{\tilde{q}}$ [GeV]	λ'_{211}	$c\tau_{MC}$ [mm]	$<\beta\gamma>$	X-sec [pb]	Nevt
"MH"	114006	494	700	3×10^{-6}	78	1.0	0.066	60K
"ML"	106499	108	700	150×10^{-6}	101	3.1	0.066	60K
"HH"	118554	494	1500	15×10^{-6}	82	1.9	2.0×10^{-4}	25K

Vertex Reconstruction

- Standard ATLAS tracking is highly optimized for tracks coming from the primary interaction point (IP).
- To increase efficiency for secondary tracks, we re-run Silicon-seeded tracking algorithm, with looser cuts on transverse impact parameter, using "left-over" hits from Standard tracking.

- Select tracks with $p_T > 1$ GeV and |d0| > 2mm wrt first primary vertex in event.
- Make 2-track "seed" vertices.
- Make all possible N-track combinations, then iteratively split, merge, remove tracks etc. until there are no tracks shared between vertices.

 r_{DV} is the distance of DV from middle of ATLAS.

Selections

Event selection

- Triggered by high-pT muon trigger, with no inner detector track requirement.
- At least one primary vertex, with a z position in the range |z_{PV}| < 200 mm and at least 5 tracks in it.</p>
- At least a muon with p_T >50 GeV and |d0|>1.7 mm.
- Veto events where leading two muons are back-to-back.
- Vertex selection
 - $|r_{DV}| > 180$ mm and $|z_{DV}| > 300$ mm, roughly corresponding to pixel barrel.
 - $|r_{PV} r_{DV}| < 4 \text{ mm} (r_{PV} : \text{ radial position of primary vertex}).$
 - With a muon passing within 0.5 mm of reconstructed vertex.
 - Outside material region (material veto).
 - Associated muon not back-to-back with any of tracks in the vertex.
 - At least 5 tracks in vertex and mass m_{DV} > 10 GeV (signal region).

Signal efficiency

- Use Toy MC (based on η-vs- $\beta\gamma$ (p/m) distributions of signal samples) to get decay position distributions for different values of $c\tau$.
- Combine with 2D efficiency maps to get vertex efficiency-vs- $c\tau$.
- ♦ Convert to event-level efficiency: $ε_{ev} = 2 ε_{DV} − ε_{DV}^2$

Systematic correction and uncertainty

- The following corrections are applied:
 - Difference in z_{PV} distributions between data and MC.
 - Pile-up and data period reweighting from PileupReweightingTool.
 - Trigger efficiency difference between data and MC from Tag &Probe study on Z $\rightarrow \mu\mu$.
 - Muon reconstruction efficiency differences between data and MC and comparison of d0 distribution in cosmics and signal MC.
- Systematic uncertainties on efficiency from statistics, muon reco efficiency, trigger efficiency and tracking efficiency.

Background estimation

- Fully data driven methods.
- Purely random combinations of tracks.
 - ♦ Arise inside of beam pipe.
 - Determine control samples with
 - i) jet-triggered events
 - ii) vertices with $4 < m_{DV} < 10$ GeV
- High-mass vertices from hadronic interactions.
 - Arise outside beam pipe.
 - Random track (real or fake) crossing at large angle.
 - Obtain m_{DV} distributions of i) n-track vertices without large-angle tracks and ii) (n-1)-track vertices plus four-momentum of a randomly-selected track.
 - Obtain the numbers of vertex in non-material regions from maximum likelihood fit.
 - Normalize the m_{DV} distribution with the number from the previous procedure.
- Total estimate is $(4^{+60}_{-4})^*10^{-3}$ vertices in signal region.

Example of high-mass vertex forming with lowmass vertex from hadronic interactions and a highpT track at large angle.

Result

- Signal region is defined by high multiplicity and high mass.
- Set limits on the product of the production cross-section and the branching ratio of the neutralino to the selected decay mode.

• Limits are established as a function of the $c\tau$ of the neutralino.

Summary

- A search of neutralino decaying to a muon and two hadronic jets is presented with 4.4 fb-1 2011 data.
 - submitted to PLB : arXiv:1210.7451.
- There are no events observed.
- Limits are calculated on the product of di-squark production cross section and decay chain branching fraction.
 - ◆ The limits are presented as a function of the neutralino lifetime.