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Overview 

•  ATLAS Tile Calorimeter 

•  Introduction 

•  Quality factor in 2011 data and pulse simulator 

•  Effect of pile-up on reconstructed amplitude 

•  Quality factor with out-of-time pile-up 

•  Detecting pile-up with quality factor 

•  Summary 
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ATLAS Tile Calorimeter 
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•  Tile Calorimeter is the central hadronic 

calorimeter (|η|<1.7). 

•  Identify and measure hadrons, jets, taus, 

missing energy and trigger. 

•  Cover dynamic range (energy per channel 

between ~30 MeV and ~1.6 TeV) with 2 outputs:              

high and low gain 

•  Sampling calorimeter (steel/scintillators),       

PMT readout using wave length shifting fibers. 
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supplies which power the readout are mounted in an external steel box, which has the cross-section
of the support girder and which also contains the external connections for power and other services
for the electronics (see section 5.6.3.1). Finally, the calorimeter is equipped with three calibration
systems: charge injection, laser and a 137Cs radioactive source. These systems test the optical
and digitised signals at various stages and are used to set the PMT gains to a uniformity of ±3%
(see section 5.6.2).

5.3.1.2 Mechanical structure
Photomultiplier

Wavelength-shifting fibre

Scintillator Steel

Source

tubes

Figure 5.9: Schematic showing how the mechan-
ical assembly and the optical readout of the tile
calorimeter are integrated together. The vari-
ous components of the optical readout, namely
the tiles, the fibres and the photomultipliers, are
shown.

The mechanical structure of the tile calorime-
ter is designed as a self-supporting, segmented
structure comprising 64 modules, each sub-
tending 5.625 degrees in azimuth, for each of
the three sections of the calorimeter [112]. The
module sub-assembly is shown in figure 5.10.
Each module contains a precision-machined
strong-back steel girder, the edges of which
are used to establish a module-to-module gap
of 1.5 mm at the inner radius. To maximise
the use of radial space, the girder provides both
the volume in which the tile calorimeter read-
out electronics are contained and the flux return
for the solenoid field. The readout fibres, suit-
ably bundled, penetrate the edges of the gird-
ers through machined holes, into which plas-
tic rings have been precisely mounted. These
rings are matched to the position of photomul-
tipliers. The fundamental element of the ab-
sorber structure consists of a 5 mm thick mas-
ter plate, onto which 4 mm thick spacer plates
are glued in a staggered fashion to form the
pockets in which the scintillator tiles are lo-
cated [113]. The master plate was fabricated
by high-precision die stamping to obtain the dimensional tolerances required to meet the specifica-
tion for the module-to-module gap. At the module edges, the spacer plates are aligned into recessed
slots, in which the readout fibres run. Holes in the master and spacer plates allow the insertion of
stainless-steel tubes for the radioactive source calibration system.

Each module is constructed by gluing the structures described above into sub-modules on a
custom stacking fixture. These are then bolted onto the girder to form modules, with care being
taken to ensure that the azimuthal alignment meets the specifications. The calorimeter is assembled
by mounting and bolting modules to each other in sequence. Shims are inserted at the inner and
outer radius load-bearing surfaces to control the overall geometry and yield a nominal module-
to-module azimuthal gap of 1.5 mm and a radial envelope which is generally within 5 mm of the
nominal one [112, 114].

– 122 –

ATLAS Tile Calorimeter  

• Central part (η<1.7) of the ATLAS Hadronic Calorimeter.

• Sampling calorimeter: iron/scintillating tiles, placed perpendicularly to particle 
directions; double PMT readout  using wave length shifting fibres. 

• 10K readout channels in 256 electronics “drawers”, data sent over fiber links.

• Trigger analog signals from each tower to LVL1 trigger system.
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 see also talk from V.Rossetti

and M. Simonyan.  
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2 Energy Reconstruction and Quality Factor Definition

The goal of the energy reconstruction in TileCal is to compute the energy deposited in a TileCal cell
from the number of ADC counts measured in each of the two corresponding read out channels. For
each channel, 7 samples at 25 ns spacing are available, these samples are referred to as Si with i =
1� 7 and are in units of ADC counts. In order to maximize the dynamic range, either a low or a high
amplification (or gain) is used, depending on the pulse amplitude. The ratio between the low and the
high amplification is 64. The high gain is applied to pulses up to about 12 GeV, while the low gain is
applied for higher energies. One ADC count corresponds approximately to 12 MeV of deposited energy
in high gain and about 800 MeV in low gain. The exact correspondence is cell-dependent and requires
careful calibration [5].

The energy reconstruction combines the Si to first obtain the amplitude in ADC counts and thereafter
applies a calibration constant in MeV per ADC count. The Si are linearly combined to provide the pulse
amplitude Aopt , the phase with respect to the 40 MHz clock topt and the electronic pedestal Popt , as
follows:
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7
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The linear coefficients are optimized, using the autocorrelation matrix, to minimize the effect of the
noise on the reconstructed quantities. This method is called Optimal Filtering. Prior knowledge of
the normalized pulse shape function g(t) is required to determine the constants ai, bi, ci. The linear
coefficients are functions of the true phase of the pulse t with respect to the 40 MHz electronic clock.
The pulse shape function as well as the linear constants are stored in a dedicated (COOL) database.
Further information on the use of Optimal Filtering for signal reconstruction in TileCal can be found in
Ref. [6].

2.1 Optimal Filtering Offline

The Optimal Filtering used in this note is the same that is used to reconstruct offline the data of the
ATLAS TileCal in proton-proton collisions. The constants ai, bi, ci are functions of the actual phase
t of the pulse which is only approximately known a priori. Therefore the Optimal Filtering is applied
offline iteratively with an initial assumed value of the phase t , equal to the time of the maximum of the
Si. In later iterations, the phase is taken to be equal to topt from the previous iteration. In absence of
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ATLAS Tile Calorimeter  

• Central part (η<1.7) of the ATLAS Hadronic Calorimeter.

• Sampling calorimeter: iron/scintillating tiles, placed perpendicularly to particle 
directions; double PMT readout  using wave length shifting fibres. 

• 10K readout channels in 256 electronics “drawers”, data sent over fiber links.

• Trigger analog signals from each tower to LVL1 trigger system.
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 see also talk from V.Rossetti

and M. Simonyan.  

Study of Quality Factor 
•  Understand the distribution of QF w/o pile-up. 

•  Develop pulse simulator that reproduces QF 
distribution in data. 

•  Implement and study QF with pile-up using 
developed pulse simulator. 

•  Goal is to use QF to flag channels with pile-up 
(both online and offline). 

26-Nov-12 Pawel Klimek, Partikeldagarna 2012 



Quality factor in 2011 data and pulse simulator 

26-Nov-12 

•  Data collected with jet or missing energy trigger.  

•  Developed and tuned pulse simulator that covers whole amplitude range, 34 – 1024 ADC. 

•  Effects taken into account: electronic noise, energy distribution, pulse shape deviations, 

channel to channel phase variations. 

•  Offline iterative Optimal Filtering method, high gain. 

•  Fair agreement between data and pulse simulator in the case of no out-of-time pile-up. 
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Amplitude dependence of quality factor 
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•  Demonstrated that the non-ideal pulse 

shapes in the detector cause energy 

dependence of quality factor. 

•  The simulator can reproduce energy 

dependence if non-ideal pulse shapes 

are assumed. 
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•  Quality factor is very sensitive                        

to the difference between expected              

and real pule shape in the detector. 

•  Scales linearly with the pile-up amplitude. 

•  Can be used to flag cells with presence             

of out-of-time pile-up. 
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Effect of pile-up on reconstructed amplitude 
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•  Deviation of reconstructed               

amplitude AOFL from the true in-time 

amplitude Ain as a function of the true 

amplitude of out-of-time pulse Aout. 

•  The purple line corresponds to mean value  

of relative difference. 

•  Maximal average effect on the reconstructed 

amplitude is 11% in all Ain bins if Aout<Ain. 

•  “significant” out-of-time pulses are those 

with amplitude above 34 ADC. 
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Quality factor with out-of-time pile-up 
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•  Amplitude of in-time-pulse follows amplitude 

distribution in data (jet, missing energy trigger) 

•  3 energy bins: 
–  Bin 1: 34 ADC – 84 ADC (400 MeV – 1 GeV) 
–  Bin 2: 84 ADC – 417 ADC (1 GeV – 5 GeV) 
–  Bin 3: 417 ADC – 1024 ADC (5 GeV – 12 GeV) 

•  Amplitude of out-of-time-pulse follows 

amplitude distribution in data (zero bias trigger) 

•  Out-of-time pulses (50 ns) above 34 ADC counts 

(400 MeV) 

•  Good separation between pile-up                  

and non-pile-up cases 

 

 



Quality factor with out-of-time pile-up 
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QF/Amp with out-of-time pile-up 
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•  The same studies performed for QF/Amp. 

•  The observed separation between pile-up 

and non-pile-up cases is worse. 
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Detecting pile-up with quality factor 

•  Since there is a linear dependence of the out-of-time pulse amplitude on quality 

factor, three different selection criteria are defined for three different amplitude bins. 

•  The level of pile-up rejection can be adjusted depending on the available bandwidth. 

•  The fake rate is defined as a fraction of non-out-of-time pile-up events wrongly 

selected as a pile-up events. 

•  The efficiency is defined as a fraction of out-of-time pile-up events correctly selected 

as pile-up events. 
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that for significant out-of-time pile-up pulses the distribution of quality factor is quite di↵erent in case of403

out-of-time compared to no out-of-time pile-up. There is a clear separation between the two cases.404

As it has been shown that the quality factor is linearly increasing with the amplitude of the pulses,405

further studies of quality factor divided by amplitude (QFOFL/AOFL) were performed. For this purpose406

exactly the same simulation model was used. Fig. 18 compares QFOFL/AOFL in the absence (black) and407

presence of out-of-time pile-up (purple) obtained for this model in three reconstructed amplitude bins.408

In this case, also good separation is observed. Nevertheless, the best separation between the pile-up and409

non-pile-up scenarios is obtained by using the quality factor, rather than the quality factor divided by the410

amplitude as can be seen in Fig. 17. Based on these results possible criteria to select pile-up channels is411

proposed in the next section.412

6 Optimization of the Selection to Detect Pile-up413

Using the quality factor distributions presented in Fig. 17 one can propose selections to detect out-of-time414

pile-up based on a cut on quality factor. Since there is a linear dependence of the amplitude of out-of-time415

pulse on quality factor, three di↵erent selection criteria are defined for three di↵erent amplitude bins. The416

amplitude bins presented in Fig. 17 correspond to the reconstructed amplitude AOFL. Therefore, these417

results can be used directly to propose the cuts on the quality factor.418

Table 1 shows proposed cuts on the quality factor for three reconstructed amplitude bins. The first419

column shows reconstructed amplitude range in ADC counts in particular bin, second column shows420

reconstructed energy in MeV in each bin (the calibration factor is approximately 12 MeV per ADC421

count), third column shows proposed cuts on quality factor, fourth column shows fake rate in per cent422

and last column shows the e�ciency in per cent. A fake rate is defined as a fraction of non out-of-time423

pile-up events that were wrongly selected as a pile-up events. The e�ciency is defined as a fraction424

of out-of-time pile-up events correctly selected as pile-up events. If necessary, one can apply di↵erent425

reconstructed amplitude bins based on the information from Fig. 16.426

In case of the first bin (34 < AOFL < 84 ADC) a cut of QFOFL > 8.8 ADC counts allows the427

selection of all pile-up events with less than 1% of non-pile-up events wrongly selected. The same result428

can be obtained in second bin (84 < AOFL < 417 ADC) with cut of QFOFL > 11.6. In case of third429

bin (417 < AOFL < 1024 ADC) the separation becomes slightly worse due to larger tail in distribution430

of quality factor in non-pile-up events. The tail is present in highest amplitude bin due to quality factor431

amplitude dependence described in Section 4.2.1. Therefore, three di↵erent cuts on quality factor are432

presented. Cut of QFOFL > 29.7 ADC allows to limit fake rate to less than 1% with 85.03% e�ciency.433

Lower cut of QFOFL > 22.9 ADC increase e�ciency to 99.04% and fake rate to 3.75%. Using cut434

of QFOFL > 11.7 ADC one can select all pile-up events with fake rate of 26.55%. Depending on the435

constrains of available bandwidth one of the proposed cut can be chosen in this amplitude bin.436

AOFL [ADC] EOFL [GeV] QFOFL cut [ADC] Fake rate [%] E�ciency [%]
34 — 84 0.4 — 1 8.8 0.973 ± 0.004 100.0 (> 99.9% at 95% CL)

84 — 417 1 — 5 11.6 0.985 ± 0.006 100.0 (> 99.9% at 95% CL)
417 — 1024 5 — 12 29.7 0.99 ± 0.01 85.03 ± 0.03
417 — 1024 5 — 12 22.9 3.75 ± 0.03 99.04 ± 0.01
417 — 1024 5 — 12 11.7 26.55 ± 0.06 100.0 (> 99.8% at 95% CL)

Table 1: Proposed cuts on QFOFL for three reconstructed amplitude bins, together with the corresponding
fake rates and e�ciencies, in di↵erent bins of the reconstructed amplitude. A set of 10 millions events
was used to calculate fake rates and e�ciencies. The quoted errors are statistical.



Summary 

26-Nov-12 

•  The simulator of the ATLAS Tile Calorimeter pulses has been developed. 

•  Using this model, the distribution of the quality factor in the presence of 

out-of-time pile-up is calculated. 

•  It shows that when amplitude of the out-of-time pile-up is large enough to 

affect the amplitude measurement, significant discrimination between the 

presence and the absence of out-of-time pile-up can be achieved thanks to 

the the quality factor. 

•  Adequate cuts on quality factor in three various reconstructed amplitude 

bins are proposed in order to identify channels with out-of-time pile-up. 

•  ATLAS INT Note: ATL-COM-TILECAL-2012-025 

•  2011 IEEE NSS-MIC proceedings: 10.1109/NSSMIC.2011.6154599 

•  2012 CALOR proceedings: ATL-TILECAL-PROC-2012-007 
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Amplitude dependence of quality factor 

26-Nov-12 

•  Formula for quality factor: 

•  Actual pulse shape is: 

•  Each sample is: 

•  Therefore, quality factor becomes: 

•  In absence of the noise and with pedestal perfectly reconstructed: 

•  Therefore, quality factor formula reduces to: 

•  In presence of the noise quality factor become: 

•  Imperfect pulses shapes are obtained by warring the width of pulse shape 

function: 
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the phase is taken to be equal to tOFL from the previous iteration. In absence of pile-up the iterative120

algorithm always converges to the true value of the phase with an accuracy better than 0.5 ns1[7].121

At the end of the iterative procedure, a quality factor QFOFL is computed to verify that the resulting122

AOFL, tOFL and POFL together with the pulse shape g(t) do model the data S i accurately. In case of123

deviation between the actual shape and the expected shape, then QFOFL takes large values which can be124

used to detect problems in the reconstruction procedure. The quality factor is defined after convergence125

as follows:126

QFOFL =

vut 7X

i=1

(S i � AOFL · gi � POFL)2 (4)

where the gi are the values of the normalized pulse shape computed at the time of the 7 samples S i.127

Figure 1 shows the relative di↵erence between reconstructed AOFL and true amplitude ATrue as a function128

of true amplitude. Figure 2 shows the relative di↵erence between reconstructed tOFL and true time tTrue129

as a function of a true time. Figures 1 and 2 show that there is no bias introduced in the energy and time130

reconstruction by the Optimal Filtering. One can also note that the precision of the reconstructed energy131

and time deteriorate as expected at low amplitudes where the analog noise and sampling errors become132

important. Number of iterations to converge as a function of true time of the pulse is shown on Fig. 3.133

Figure 1: Relative di↵erence between reconstructed and true amplitude as a function of true amplitude
in TileCal pulse simulator. This is shown for high gain (left) and low gain (right). Amplitude is re-
constructed with Optimal Filtering with iterations in absence of out-of-time pile-up. The purple line
corresponds to the linear fit to mean value of the relative di↵erence.

2.2 Optimal Filtering Online134

The Optimal Filtering is also run online by the TileCal Digital Signal Processors (DSP) which perform135

the above linear combinations in real time. Above a trigger rate of 50 kHz the Optimal Filtering must be136

performed without iterations due to insu�cient processing time in the DSP. It was also found that in the137

presence of out-of-time pile-up it is better not to perform the iterations. This is due to the fact that the138

phase needed to compute ai, bi, ci is known from timing calibration within a few nanoseconds. On the139

other hand, the presence of out-of-time pile up can lead to tOFL values far from nominal and thus bias140

the energy reconstruction. For this reason only non-iterative optimal filtering is currently applied online.141

1The algorithm is iterated until the di↵erence between the input phase and tOFL of Eq. 2 is less than 0.5 ns or the number
of iteration reaches 5.
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Therefore the shape functions describing the pulses can simply be scaled by the pulse amplitude. In this179

case one can write S i = A · hi + P = A · gi + A · �i + P, where P is the actual pedestal and A is the actual180

amplitude. Thus the quality factor of Eq. 4 can be reexpressed as:181

QFOFL =

vut 7X

i=1

(A · gi + A · �i + P � AOFL · gi � POFL)2 (5)

In the absence of noise and with the pedestal perfectly reconstructed, POFL = P and AOFL = A. In this182

case Eq. 5 reduces to183

QFOFL = AOFL ·

vut 7X

i=1

(�i)2 (6)

This limit corresponds to large signals where the electronic noise and pedestal uncertainties are negligi-184

ble. Therefore at large signal amplitudes one can expect the quality factor to depend linearly upon the185

amplitude of the pulse and the slope depends on the di↵erence between the ideal pulse shape and the186

actual pulse shape in the detector. A deviation from a linear dependence between the qualitify factor187

and the amplitude could be used to detect deviations from linearity. Figure 6 left panel shows QFOFL188

as function of the pulse amplitude in collision data, in absence of out-of-time pile-up. The purple line189

corresponds to the linear fit to mean value of the quality factor. The dependence of the quality factor on190

the energy appears clearly. In the 2004 test beam analysis a quadratic trend of the �2 of the fit method191

was observed as function of the energy [8]. This observation is also compatible, since there is a square192

root in the formula of quality factor which gives linear amplitude dependence. For comparison, Fig. 6193

right panel shows the quality factor in the simulator if we assume that the measured S i follow the ideal194

pulse shape. In the case of perfect pulse shape only the timing and noise e↵ects contribute to QFOFL195

which takes a constant value as a function of the energy as shown in the right panel of Fig. 6. Therefore196

the quality factor can be written as:197

QOFL = Q0
OFL + AOFL ·

vut 7X

i=1

(�i)2 (7)

where Q0
OFL is the value of the quality factor at low energy when it is dominated by noise and timing198

e↵ects. The value of Q0
OFL was determined from data i.e. using the linear fit (the purple line in left the199

panel of Fig. 6) the value of quality factor at AOFL = 0 ADC was calculated. Figure 7 left panel shows200

(QFOFL � Q0
OFL)/AOFL in collision data. The purple line corresponds to the linear fit to mean value.201

The distribution is flat as a function of amplitude with a mean value around zero (purple line). This is202

consistent with Eq. 7.203

In order to reproduce the quality factor observed in data, the simulator must use a pulse shape that is204

di↵erent from the ideal pulse shape. The pulse shapes in data are modeled by the normalized ideal pulse205

shapes, with a modified width. Widened or narrowed pulses are obtained by using a new pulse shape206

given by:207

h(t) = g(↵t) (8)

where g is the ideal pulse shape used earlier and ↵ is a factor close to one. A value of ↵ equals to one208

gives the ideal pulse shape, while ↵ < 1 corresponds to a narrower pulse and ↵ > 1 corresponds to a209

wider pulse. During the early studies the ↵ factor was taken to follow a Gaussian distribution with a mean210

value of 1 and a standard deviation of � = 0.01. These values were observed during previous studies211
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to reproduce the characteristics of the digitized pulse in data. The model is adjusted to reproduce the164

electronic high frequency noise, channel to channel phase variations, pulse shape variations, quality165

factor, correlation between quality factor and pulse amplitude observed in the data. In Section 5 the166

pulse simulator is used to derive the expected QFOFL distribution for out-of-time pulses.167

4.2 Input to the Model168

4.2.1 Pulse shape169

As shown in Eq. 4 the quality factor is a measure of the di↵erence between the ideal pulse shape used to170

derive the Optimal Filtering coe�cients and the actual pulse shapes in the real detector. It is shown in171

Fig. 5 that the pulse shapes in TileCal are consistent with the ideal pulse shapes [6]. Nevertheless, even172

small pulse shape di↵erences will be enlarged by signal amplitudes causing higher quality factor.173
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Figure 5: Pulse-shapes in low (a) and high (b) gain reconstructed with the optimal filtering algorithm
averaged over all good channels and full energy range in TileCal. The solid lines are the reference
pulse-shapes used for reconstruction. The bottom part of the plots show the deviation between data and
reference pulses in units of standard deviations. σ is the standard deviation of Ai.

2. Channel-by-channel variations in the pulse-shape.

3. Effect from timing resolution, especially at low energies where the timing resolution is poorer.

4. Poor energy reconstruction at low energies.

In Sec. 5 channel-to-channel variations of the pulse-shape are studied and the first alternative is ruled
out as no such outliers in pulse-shape are found. The effect of the timing resolution has been studied using
a simple Monte Carlo method. Pseudo-events with energies following the energy distribution observed
in data and with peak time smeared with the energy dependent resolution of the cell time measured in
data (Ref. [8]):

σT =

�

p20+

�
p21�
E

�2
+

�
p22
E

�2
(7)

where p0 = 0.22 ns, p1 = 1 ns·GeV1/2 and p2 = 19 ns·GeV for low gain and p0 = 0.82 ns, p1 =
0 ns·GeV1/2 and p2 = 2.3 ns·GeV for high gain. The timing resolution in equation (7) is defined for
cell time which is the average of the time of the two PMTs connected to the cell. Therefore the timing
resolution of one single PMT is a factor

�
2 larger. However this does not change the spread of data points

considerably. The amplitude of each sample is smeared with the electronic noise. This corresponds to an
average pulse-shape in a single channel. Figure 6 shows the resulting averaged Monte Carlo pulse-shape.
This plot is consistent with data observed in single channels, such as Fig. 4. The Monte Carlo shows
that the timing resolution is not enough to explain the large errors seen in Fig. 5. Section 6 shows that
the spread is very large at low energies and hence it is concluded that the pulse-shape variations are due
to channel-by-channel variations and poor energy reconstruction at low energies where the amplitude
normalization of the pulse-shape is more uncertain.

7

Figure 5: Pulse shape reconstructed with the Optimal Filtering averaged over all good channels and full
energy range in high gain in the TileCal from data 2010. Overlaid in red is the reference high gain pulse
shape used for reconstruction. Bottom: Deviation between data and reference pulses in units of standard
deviations. � is the standard deviation of the data [6].

The normalized ideal pulse shape used in the Optimal Filtering is denoted g(t), or gi at the times of174

the S i where the pulse is sampled. The function h(t) denotes the normalized real pulse shape in an actual175

TileCal channel. One can thus write h(t) = g(t)+ �(t) or hi = gi + �i at the times of the samples S i, where176

� quantifies the deviation between the ideal pulse shape and the actual pulse shape in the detector. The177

TileCal electronics is linear and no deviations from linearity has been observed in data or test beam [4].178
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Therefore the shape functions describing the pulses can simply be scaled by the pulse amplitude. In this179

case one can write S i = A · hi + P = A · gi + A · �i + P, where P is the actual pedestal and A is the actual180

amplitude. Thus the quality factor of Eq. 4 can be reexpressed as:181

QFOFL =

vut 7X

i=1

(A · gi + A · �i + P � AOFL · gi � POFL)2 (5)

In the absence of noise and with the pedestal perfectly reconstructed, POFL = P and AOFL = A. In this182

case Eq. 5 reduces to183

QFOFL = AOFL ·

vut 7X

i=1

(�i)2 (6)

This limit corresponds to large signals where the electronic noise and pedestal uncertainties are negligi-184

ble. Therefore at large signal amplitudes one can expect the quality factor to depend linearly upon the185

amplitude of the pulse and the slope depends on the di↵erence between the ideal pulse shape and the186

actual pulse shape in the detector. A deviation from a linear dependence between the qualitify factor187

and the amplitude could be used to detect deviations from linearity. Figure 6 left panel shows QFOFL188

as function of the pulse amplitude in collision data, in absence of out-of-time pile-up. The purple line189

corresponds to the linear fit to mean value of the quality factor. The dependence of the quality factor on190

the energy appears clearly. In the 2004 test beam analysis a quadratic trend of the �2 of the fit method191

was observed as function of the energy [8]. This observation is also compatible, since there is a square192

root in the formula of quality factor which gives linear amplitude dependence. For comparison, Fig. 6193

right panel shows the quality factor in the simulator if we assume that the measured S i follow the ideal194

pulse shape. In the case of perfect pulse shape only the timing and noise e↵ects contribute to QFOFL195

which takes a constant value as a function of the energy as shown in the right panel of Fig. 6. Therefore196

the quality factor can be written as:197

QOFL = Q0
OFL + AOFL ·

vut 7X

i=1

(�i)2 (7)

where Q0
OFL is the value of the quality factor at low energy when it is dominated by noise and timing198

e↵ects. The value of Q0
OFL was determined from data i.e. using the linear fit (the purple line in left the199

panel of Fig. 6) the value of quality factor at AOFL = 0 ADC was calculated. Figure 7 left panel shows200

(QFOFL � Q0
OFL)/AOFL in collision data. The purple line corresponds to the linear fit to mean value.201

The distribution is flat as a function of amplitude with a mean value around zero (purple line). This is202

consistent with Eq. 7.203

In order to reproduce the quality factor observed in data, the simulator must use a pulse shape that is204

di↵erent from the ideal pulse shape. The pulse shapes in data are modeled by the normalized ideal pulse205

shapes, with a modified width. Widened or narrowed pulses are obtained by using a new pulse shape206

given by:207

h(t) = g(↵t) (8)

where g is the ideal pulse shape used earlier and ↵ is a factor close to one. A value of ↵ equals to one208

gives the ideal pulse shape, while ↵ < 1 corresponds to a narrower pulse and ↵ > 1 corresponds to a209

wider pulse. During the early studies the ↵ factor was taken to follow a Gaussian distribution with a mean210

value of 1 and a standard deviation of � = 0.01. These values were observed during previous studies211
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