

Cosmological constant from gravity-mediated interactions in the hadronic vacuum

Roman Pasechnik

LU, THEP Group

In collaboration with Gregory Vereshkov SFU, THEP Group

"We mathematicians are all a bit crazy..."

Lev Landau

The greatest challenge of Fundamental Physics

Nobel Prize 2011

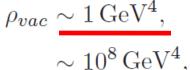
"...for the discovery of the accelerating expansion of the Universe through observations of distant supernovae" Energy density of the Universe is dominated by Vacuum component!

<u>Hypothesis about time-independent</u> <u>Λ-term = Dark Energy (74%)</u>

Vacuum in Particle Physics has incredibly wrong energy scale!

Vacuum energy from Particle Physics

Vacuum energy from **Cosmology**



and more...

 $\rho_{\Lambda} \sim \rho_c \sim 10^{-46} \, \mathrm{GeV}^4$

"...the worst theoretical prediction in the history of physics!" (Hobson 2006)

"Vacuum Catastrophe"

No single established theoretical framework cancels near to *many orders of magnitude*!

Cancellation of QCD component at large distances

NPT topological (instanton) QCD contribution

$$\varepsilon_{vac(top)} = -\frac{9}{32} \langle 0| : \frac{\alpha_s}{\pi} F_{ik}^a(x) F_a^{ik}(x) : |0\rangle + \frac{1}{4} \left(\langle 0| : m_u \bar{u}u : |0\rangle + \langle 0| : m_d \bar{d}d : |0\rangle + \langle 0| : m_s \bar{s}s : |0\rangle \right)$$

$$\simeq -(5 \pm 1) \times 10^9 \text{ MeV}^4.$$
Induced due to quantum tunneling of quark and gluon fields between topologically different states
A contribution of a different nature should cancel it,

but existing at the same hadron scale ~ 200 MeV!

ancel It.

Two possibilities:

hypothesis about the existence of cosmological Yang-Mills fields in Nature (homogeneous/isotropic gluon field with unbroken symmetry at cosmological scales)

...no physical arguments against it ...can be created during Inflation (e.g. Adshead'12, Elizalde'12, Maeda'12)

there are extra (non-topological) contributions to QCD vacuum energy (which cancel the instanton one due to a fine-tuning of QCD parameters)

Possibility I: Cosmological Yang-Mills

Assumption: the gluon field with unbroken SU(3)fills up the whole Universe!

Freedman flat Universe:

 $g_{\mu\nu} = a^2(\eta)g_{\mu\nu(M)}$ $dt = a(\eta)d\eta$

Non-linear solution:

$$A(\eta) \simeq A_0 \cos\left(\frac{6}{5}A_0\eta\right)$$

30

40

20

10

In Hamilton gauge and homogeneous/isotropic Universe:

$$A_i^a = \begin{cases} \delta_i^a A(\eta), & i, a = 1, 2, 3\\ 0, & i = 1, 2, 3; \ a > 3\\ A_0^a = 0 \end{cases}$$

Classical EYM fields equations ("radiation" medium):

$$\frac{3}{\varkappa} \frac{a'^2}{a^4} = \frac{3}{2g_{YM}^2 a^4} \left(A'^2 + A^4\right),$$
$$A'' + 2A^3 = 0.$$

Classical EYM equations are unstable (form non-invariant) w.r.t. radiation corrections!

Lagrangian of the gluonic field taking into account vacuum polarisation in one-loop approximation:

$$\begin{split} L_{YM} &= -\frac{1}{4g_{YM}^2} \frac{F_{\alpha\beta}^a F_a^{\alpha\beta}}{\sqrt{-g}} \bigg[1 + \frac{\beta}{2} \ln \bigg(\frac{J}{\Lambda_{QCD}^4} \bigg) \bigg] = -\frac{11}{128\pi^2} \frac{F_{\mu\nu}^a F_a^{\mu\nu}}{\sqrt{-g}} \ln \bigg(\frac{J}{\Lambda_{QCD}^4} \bigg), \\ J &= \frac{1}{\xi^4} \frac{|F_{\alpha\beta}^a F_a^{\alpha\beta}|}{\sqrt{-g}}, \qquad \sqrt{-g} = a^4(\eta), \end{split}$$

e.g. Savvidi et al '79, '81

"Time instantons" cancel "topological instantons"!

Classical EYM fields equations with vacuum polarisation: Vacuum

Vacuum energy (w/o matter):

$$\frac{6}{\varkappa}\frac{a''}{a^3} = \varepsilon - 3p + 4\bar{\Lambda} + T^{\mu,YM}_{\mu}, \quad T^{\mu,YM}_{\mu} = \frac{33}{16\pi^2}\frac{1}{a^4}\left(A'^2 - A^4\right) \qquad \qquad \bar{\Lambda} = \Lambda_{inst} + \Lambda_{cosm}$$

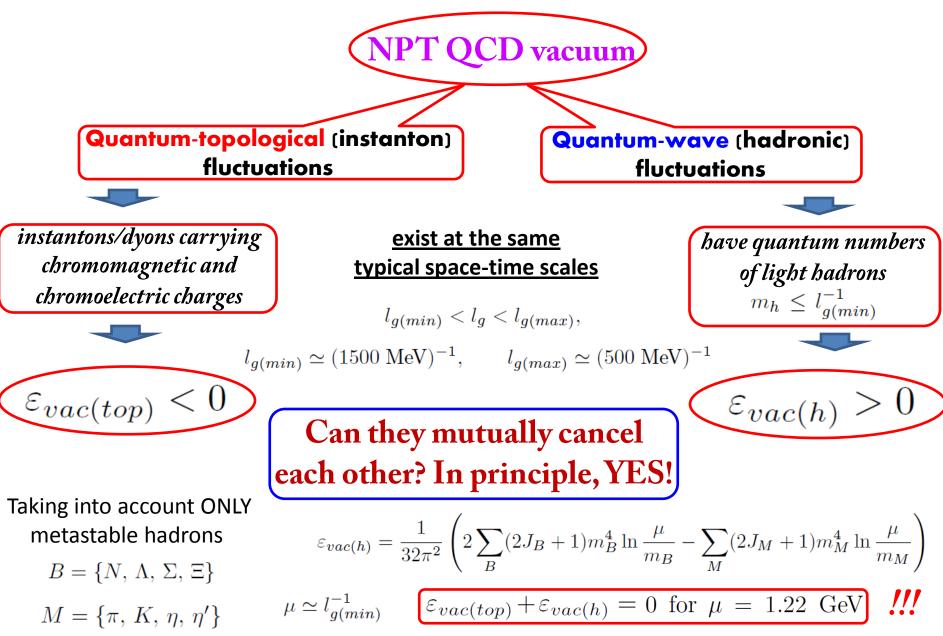
$$\frac{\partial}{\partial\eta}\left(A'\ln\frac{6e|A'^2 - A^4|}{a^4(\xi\Lambda_{QCD})^4}\right) + 2A^3\ln\frac{6e|A'^2 - A^4|}{a^4(\xi\Lambda_{QCD})^4} = 0. \qquad \qquad \text{instanton QCD} \qquad \text{observable cosmol.}$$

$$\frac{\partial}{\partial\eta}\left(A'\ln\frac{6e|A'^2 - A^4|}{a^4(\xi\Lambda_{QCD})^4}\right) + 2A^3\ln\frac{6e|A'^2 - A^4|}{a^4(\xi\Lambda_{QCD})^4} = 0. \qquad \qquad \text{instanton QCD} \qquad \text{observable cosmol.}$$

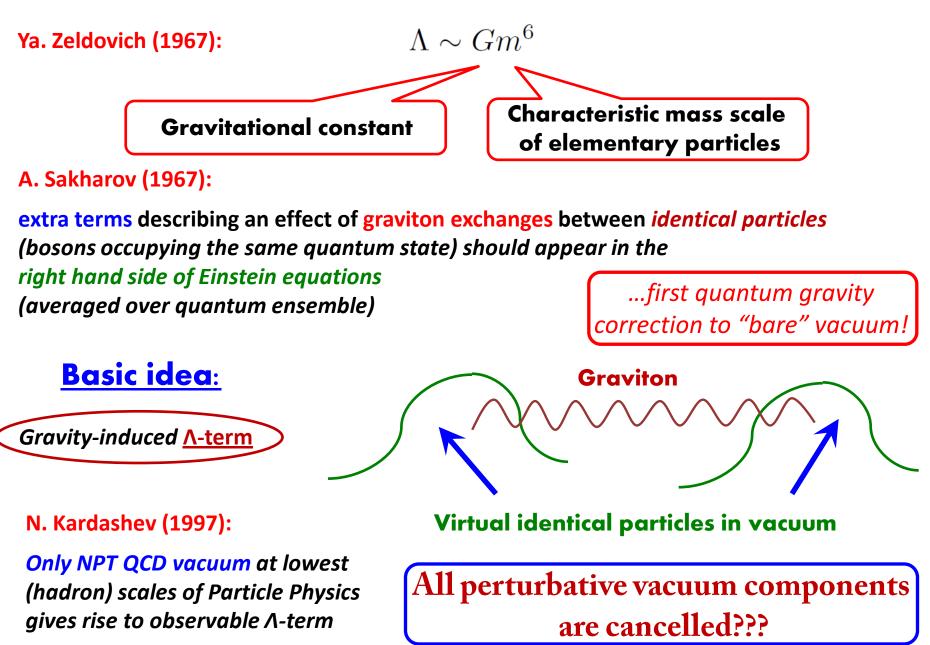
Exact first integral with POSITIVE constant energy exists!



Possibility II: Topological vs collective contributions



Zeldovich-Sakharov-Kardashev scenario



Quasiclassical (semiquantum) gravity

Action
$$S = \int Ld^{4}x, \quad L = -\frac{1}{2\varkappa}\sqrt{-\hat{g}}\hat{g}^{ik}\hat{R}_{ik} + L\left(\hat{g}^{ik}, \chi_{A}\right)$$
Macroscopic geometry
(c-number part) g^{ik}
Quantum graviton field Φ_{i}^{k}
(c-number part) g^{ik}
Undependent variations over classical and quantum fields:
 $\delta \int Ld^{4}x = -\frac{1}{2}\int d^{4}x\left(\sqrt{-g}\delta g^{ik}\hat{G}_{ik}\right)_{\Phi_{i}^{k}=\text{const}}$
 $= -\frac{1}{2}\int d^{4}x\left(\sqrt{-g}\delta \Phi^{ik}\hat{G}_{ik}\right)_{g^{ik}=\text{const}}$
Same operator eqns:
 $\hat{G}_{i}^{k} = \frac{1}{2}\left(\delta_{i}^{k}\delta_{i}^{m} + g^{km}g_{il}\right)\left(\frac{\hat{g}}{g}\right)^{1/2}\hat{E}_{m}^{l} = 0,$
 $\hat{E}_{m}^{l} = \frac{1}{\varkappa}\left(\hat{g}^{lp}\hat{R}_{pm} - \frac{1}{2}\delta_{m}^{l}\hat{g}^{pq}\hat{R}_{pq}\right) - \hat{g}^{lp}\hat{T}_{pm}\left(\hat{g}^{ik}, \chi_{A}\right)$
 \bullet
 \bullet
 $\hat{G}_{i}^{k} - \langle 0|\hat{G}_{i}^{k}|0\rangle = 0$
e.o.m. for graviton field
 $\hat{G}_{i}^{k} - \langle 0|\hat{G}_{i}^{k}|0\rangle = 0$

Metric fluctuations in exponential parameterization

Independent variations fix the exponential parameterization:

$$\sqrt{-\hat{g}}\hat{g}^{ik} = \sqrt{-g}g^{il}(\exp\psi)_{l}^{k} = \sqrt{-g}g^{il}\left(\delta_{l}^{k} + \psi_{l}^{k} + \frac{1}{2}\psi_{l}^{m}\psi_{m}^{k} + \ldots\right) \qquad \psi_{i}^{k} = \Phi_{i}^{k} - \frac{1}{2}\delta_{i}^{k}\Phi$$

1

up to quadratic terms in graviton field we get:

$$\hat{G}_{i}^{k} = \frac{1}{2\varkappa} \left(\psi_{i;l}^{k;l} - \psi_{i;l}^{l;k} - \psi_{l;i}^{k;l} + \delta_{i}^{k} \psi_{l;m}^{m;l} + \psi_{i}^{l} R_{l}^{k} + \psi_{l}^{k} R_{i}^{l} - \delta_{i}^{k} \psi_{l}^{m} R_{m}^{l} \right) + \frac{1}{\varkappa} \left(R_{i}^{k} - \frac{1}{2} \delta_{i}^{k} R \right) - \hat{T}_{i}^{k}$$
where
$$\hat{T}_{i}^{k} = \hat{T}_{i(G)}^{k} + \frac{1}{2} \left(\delta_{l}^{k} \delta_{i}^{m} + g^{km} g_{il} \right) \left(\frac{\hat{g}}{g} \right)^{1/2} \hat{g}^{lp} \hat{T}_{pm} \left(\hat{g}^{ik}, \chi_{A} \right)$$

with energy-momentum tensor of gravitons

$$\hat{T}_{i(G)}^{k} = \frac{1}{4\varkappa} \left(\psi_{m;i}^{l} \psi_{l}^{m;k} - \frac{1}{2} \psi_{;i} \psi^{;k} - \psi_{i;m}^{l} \psi_{l}^{m;k} - \psi_{l}^{k;m} \psi_{m;i}^{l} \right) - \frac{1}{8\varkappa} \delta_{i}^{k} \left(\psi_{m;n}^{l} \psi_{l}^{m;n} - \frac{1}{2} \psi_{;n} \psi^{;n} - 2 \psi_{n;m}^{l} \psi_{l}^{m;n} \right)$$

$$-\frac{1}{4\varkappa} \left(2\psi_{n}^{l}\psi_{i}^{k;n} - \psi_{n}^{k}\psi_{i}^{l;n} - \psi_{i}^{n}\psi_{;n}^{kl} + \psi_{i}^{n;k}\psi_{n}^{l} + \psi_{n;i}^{k}\psi^{nl} + \delta_{i}^{k}\left(\psi_{m}^{n}\psi_{n}^{l}\right)^{;m} \right)_{;l} \\ -\frac{1}{4\varkappa} \left(\psi_{i}^{m}\psi_{n}^{l}R_{l}^{k} + \psi_{n}^{k}\psi_{l}^{n}R_{i}^{l} - \delta_{i}^{k}\psi_{l}^{n}\psi_{n}^{m}R_{m}^{l} \right) + O(\psi^{3}).$$

 $\begin{array}{l} \text{e.o.m. for } \underset{\text{graviton field}}{\text{e.o.m. for }} & \frac{1}{\varkappa} \left(R_i^k - \frac{1}{2} \delta_i^k R \right) = \langle 0 | \hat{T}_i^k | 0 \rangle \\ \\ \underset{\text{graviton field}}{\text{e.o.m. for }} & \psi_{i;l}^{k;l} - \psi_{i;l}^{l;k} - \psi_{l;i}^{k;l} + \delta_i^k \psi_{l;m}^{m;l} + \psi_i^l R_l^k + \psi_l^k R_i^l - \delta_i^k R_l^m \psi_m^l = 2\varkappa \left(\hat{T}_i^k - \langle 0 | \hat{T}_i^k | 0 \rangle \right) \end{array}$

Gluodynamics with vacuum anomaly

Let us now include non-perturbative gluon and quark fields fluctuations into quasiclassical gravity theory!

We need energy-momentum tensor for NPT vacuum fluctuations with conformal anomalies!

Classical conformal symmetry (under rescalings of the background metric and simultaneously fields) is broken by quantum gravity effects!

Basic recipe:

$$\mathcal{A}_i^a = g_s A_i^a$$

$$\mathcal{F}^{a}_{ik} = \partial_i \mathcal{A}^{a}_k - \partial_k \mathcal{A}^{a}_i + f^{abc} \mathcal{A}^{b}_i \mathcal{A}^{c}_k$$

stress tensor operator

fields through RG evolution equation

$$2J \frac{dg_s^2(J)}{dJ} = g_s^2(J)\beta[g_s^2(J)] \qquad J = J$$

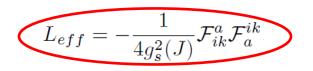
operator RG equation

 $J = \mathcal{F}^{a}_{ik} \mathcal{F}^{ik}_{a}$ Invariant operator of least dimension

Operator gluodynamics with conformal anomaly:

Chromodynamical coupling has to be considered

as an operator depending on operators of quantum



can now be incorporated into quasiclassical gravity! (after covariant generalization)

$$\begin{cases} \hat{T}_{i(g)}^{k} = \frac{1}{g_{s}^{2}(J)} \left(-\mathcal{F}_{il}^{a} \mathcal{F}_{a}^{kl} + \frac{1}{4} \delta_{i}^{k} \mathcal{F}_{ml}^{a} \mathcal{F}_{a}^{ml} + \frac{\beta [g_{s}^{2}(J)]}{2} \mathcal{F}_{il}^{a} \mathcal{F}_{a}^{kl} \right) \\ D_{k}^{ab} \left\{ g_{s}^{-2}(J) \left(1 - \frac{\beta [g_{s}^{2}(J)]}{2} \right) \mathcal{F}_{b}^{ik} \right\} = 0, \\ D_{k}^{ab} = \delta^{ab} \partial_{k} - f^{abc} \mathcal{A}_{k}^{c}. \end{cases}$$

QCD vacuum energy-momentum tensor

$$\begin{aligned} \text{To one-loop approximation:} \quad & \beta[g_s^2(J)] = -\frac{bg_s^2(J)}{16\pi^2}, \qquad \frac{g_s^2(J)}{4\pi} \equiv \alpha_s(J) = \frac{8\pi}{b\ln(J/\lambda^4)} \\ \text{An account for quarks changes b-factor!} \quad & b = b(3) = 9 \\ \text{Phenomenology provides with:} \quad & \text{correlation length of fluctuations!} \\ & (0|:\bar{s}s:|0\rangle \simeq \langle 0|:\bar{u}u:|0\rangle = \langle 0|:\bar{d}d:|0\rangle = -\langle 0|:\frac{\alpha_s}{\pi}F_{ik}^aF_{a}^{ik}:|0\downarrow_g] = -(225 \pm 25 \text{ MeV})^3 \\ \text{the same for quantum-wave fluctuations!} \quad & L_g \simeq (1500 \pm 300 \text{ MeV})^{-1} \\ \text{summing gluon and quark contributions:} \quad & \hat{T}_{i(QCD)}^k = \frac{b_{eff}}{32\pi^2} \left(-F_{il}^aF_{a}^{kl} + \frac{1}{4}\delta_i^kF_{ml}^aF_{a}^{ml}\right) \ln \frac{eJ}{\lambda^4} - \delta_i^k \frac{b_{eff}}{128\pi^2}F_{ml}^aF_{a}^{ml} \\ \text{to a good approximation:} \quad & \ln \frac{e\langle 0|J|0\rangle}{\lambda^4} = 4\ln \frac{L_g^{-1}}{\Lambda_{QCD}} \end{aligned}$$

Λ-term calculation

We start from the Einstein equations for macroscopic geometry:

$$\frac{1}{\varkappa} \left(R_i^k - \frac{1}{2} \delta_i^k R \right) = \langle 0 | \hat{T}_i^k | 0 \rangle \qquad \hat{T}_i^k = \hat{T}_{i(G)}^k + \frac{1}{2} \left(\delta_l^k \delta_i^m + g^{km} g_{il} \right) \left(\frac{\hat{g}}{g} \right)^{1/2} \hat{g}^{lp} \hat{T}_{pm} \left(\hat{g}^{ik}, \chi_A \right)$$

Frace: $R + 4 \varkappa \Lambda = 0$

$$\Lambda = -\frac{b_{eff}}{32} \langle 0 | \frac{\alpha_s}{\pi} \left(\frac{\hat{g}}{g} \right)^{1/2} \hat{g}^{il} \hat{g}^{km} \hat{F}_{ik}^a \hat{F}_{lm}^a | 0 \rangle + \frac{1}{4} \langle 0 | \hat{T}_{(G)} | 0 \rangle$$

Stress tensor in Riemann space is found from YM eqs:

$$\delta^{ab}\frac{\partial}{\partial x^k} - g_s f^{abc} \hat{A}_k^c \right) \sqrt{-\hat{g}} \hat{g}^{il} \hat{g}^{km} \hat{F}_{lm}^b = 0$$

$$\hat{F}_{ik}^{a} = F_{ik}^{a} + \frac{1}{2}\psi F_{ik}^{a} - \psi_{i}^{l}F_{lk}^{a} - \psi_{k}^{l}F_{il}^{a} + O(\alpha_{s}G)$$

induce interactions of YM field with metric fluctuations

Equation for gravitons turns into:

$$\psi_{i,l}^{k,l} - \psi_{i,l}^{l,k} - \psi_{l,i}^{k,l} + \delta_i^k \psi_{l,m}^{m,l} = \frac{\varkappa b_{eff} \alpha_s}{\pi} \left(-F_{il}^a F_a^{kl} + \frac{1}{4} \delta_i^k F_{ml}^a F_a^{ml} \right) \ln \frac{L_g^{-1}}{\Lambda_{QCD}}$$

After exact cancellation of unperturbed part of EMT tensor we get:

$$\Lambda = -\frac{b_{eff}}{16} \ln \frac{L_g^{-1}}{e\Lambda_{QCD}} \langle 0|\frac{\alpha_s}{\pi} F_{il}^a F_a^{kl} \left(\psi_k^i - \frac{1}{4}\delta_k^i \psi\right) |0\rangle$$

Λ-term calculation

Summary

Physically reasonable conditions for ZSK scenario are formulated.

Perturbative part of the Physical Vacuum should exactly be compensated at every known energy scales separately as a necessary requirement for the "Theory of Everything" (exact SUSY is the only known way to avoid the major fine tuning of vacuum parameters)

QCD vacuum is a special case: has strongest non-perturbative component (responsible e.g. for color confinement) at lowest Particle Physics energy scale (~200 MeV)

Large negative NPT (topological) QCD vacuum component can be canceled
 (1) by ground state energy of cosmological YM field, and/or (2) by collective (hadron)
 quantum-wave fluctuations in the hadron vacuum

> A small quantum gravity correction to NPT QCD vacuum fluctuations (graviton exchanges in the vacuum) induces an uncompensated Λ -term. Our estimate based upon phenomenological parameters reproduces the observable value. Uncertainties are due to unknown non-perturbative dynamics of the QCD vacuum.