Search for charged Higgs bosons through the violation of lepton universality in $t\bar{t}$ events Partikeldagarna 2012

Daniel Pelikan

Uppsala University

26-27 November 2012

- Introduction
- Event selection
- Backgrounds with misidentified electrons and muons
- Backgrounds with misidentified au jets
- Results

Introduction

Theoretical background

- In the Standard Model (SM) the electroweak symmetry breaking is done by one doublet of Higgs scalars
 - This leads to one neutral Higgs boson h^0
- Other models, for example the MSSM, predict the existence of two complex Higgs doublets.
 - ▶ This leads to 5 physical states: H^+ , H^- , h^0 , H^0 , A^0
- The tree level MSSM Higgs sector is fully determined by two independent parameters:
 - One Higgs mass: m_A or $m_{H^+} = \sqrt{m_A^2 + m_W^2}$
 - ► The ratio of the vacuum expectation values of the Higgs doublets, tan β
- Assuming the charged Higgs boson is light and does not decay into supersymmetric particles
 - $H^+
 ightarrow au
 u$ dominates below the tb threshold
 - ► $H^+ \rightarrow c\bar{s}$ may have a significant branching fraction at low $\tan\beta$

Introduction

Theoretical background

- This means the top quark can decay into a bottom quark and a light charged Higgs boson
 - \blacktriangleright through the reaction $t
 ightarrow bH^+$, in addition to t
 ightarrow bW
- The W boson decays into the three lepton generations democratically while the charged Higgs boson decays predominantly into τν
- ► H[±] can be searched through the violation of lepton universality in top quark decays.

Method

- The accuracy on the measurement of individual cross sections is limited by systematics
 - Integrated luminosity, object reconstruction and identification, b-tagging, etc.
- A ratio-based method reduces the impact of systematic uncertainties in the analysis
- Measure event yield ratios in data and compare them to predictions from simulation in the following final states
 - $e + \tau_{had}$ and $e + \mu$,

•
$$\mu + \tau_{had}$$
 and $\mu + e$

$$R_{I} = \frac{\mathcal{B}(t\bar{t} \to b\bar{b} + l\tau_{had} + N\nu)}{\mathcal{B}(t\bar{t} \to b\bar{b} + ll' + N\nu)}.$$
 (1)

Model independent search

Relative increase with respect to the SM values of the branching ratios for $t\bar{t}$ events.

Relative increase with respect to the SM values of the ratio between these branching ratios.

The ATLAS detector system

To look for charged Higgs bosons the full ATLAS detector system is needed

Event selection

- Single lepton trigger with E_T threshold of 20-22 GeV (electrons) and p_T threshold of 18 GeV (muons)
- One trigger matched charged lepton ($E_T, p_T > 25 \text{GeV}$)
- At least 2 jets (p_T > 20 GeV), including exactly 2 b-jets
- $\tau + lep$ vs. dilepton separation
 - One τ -jet with $p_T > 25$ GeV, no additional lepton or second charged lepton with $E_T, p_T > 25$ GeV and a different flavour
- $E_T^{miss} > 40 \text{ GeV}$
- Events are classified according to the single lepton trigger that was fired
 - electron-triggered: $e + \tau$, $e + \mu$
 - muon-triggered: $\mu + \tau$, $\mu + e$

Fake lepton estimate is done using the "Matrix Method"

- tight sample: contains mostly events with real leptons, same lepton selection as in the analysis
- loose sample: looser isolation and identification requirements, and it contains mostly events with misidentified leptons
- Based on data events with loose or tight leptons the fake lepton background can be estimated with:

$$N_{\rm m}^{\rm T} = \frac{\rho_{\rm m}}{\rho_{\rm r} - \rho_{\rm m}} (\rho_{\rm r} N^{\rm L} - N^{\rm T}). \tag{2}$$

► In the di-lepton case: one tight and one at least loose lepton

- *p*_r (lep. identification. eff.) is measured using a tag-and-probe method on Z → II events in the data
- p_m (miss. identification. eff.) is measured in single lepton events in the data,
 - control region 5 GeV $< E_T^{miss} <$ 20 GeV
 - dominated by multi-jet production

Daniel Pelikan

Uppsala University

Search for charged Higgs bosons

Daniel Pelikan

Daniel Pelikan

- ► About 51% of the simulated tt events in the \(\tau_{had}\) + lepton final state contain a real \(\tau_{had}\) at generator level
- \blacktriangleright In the other events, the au is "misidentified",
 - From leptons (muons and electrons): 3% of the simulated events
 - From hadronic objects (initiated by light quarks, b quarks or gluons): 46% of the simulated events

Backgrounds with misidentified au jets

Backgrounds with jets misidentified as τ object

\blacktriangleright The majority of misidentified aus comes from jets

- misidentification probability depends on initial parton (light quarks, heavy flavour quark, gluon)
 Influence of all jet types except light quark jets can be effectively eliminated:
 - ► categorize all events in terms of the charge between τ and lepton, opposite sign (OS) and same sign (SS)
 - all process with gluon and b-quark jets are charge symmetric

 $a_{z=7 \text{ TeV}}^{\text{dt}=4.6 \text{ fb}^{-1}}$ $s_{z=7 \text{ TeV}}^{\text{dt}=5}$ Giving a negative weight to SS events cancel out $\pi \tau As$ Work in progress misidentified τs from gluon and heavy flavour

Daniel Pelikan

Backgrounds with misidentified τ jets

Backgrounds with jets misidentified as τ object

- Scale factors on the number of associated tracks are applied in order to account for simulation-data differences
- ► Simulated events in which the selected \(\tau\) object originates from a jet are weighted by the misidentification probabilities

Backgrounds with electrons misidentified as au objects

- Tag-and-probe method to estimate the electron au-fake rate
- Scale factors are applied to correct for discrepancies between data and simulation

Backgrounds with muons misidentified as τ objects

A muon veto is used in simulation

Results

• integrating the m_{T2}^H distributions \rightarrow event yields $R_e = \frac{\mathcal{N}(e + \tau_{had})}{\mathcal{N}(e + \mu)}$ and $R_\mu = \frac{\mathcal{N}(\mu + \tau_{had})}{\mathcal{N}(\mu + e)}$. 70 70 ATLAS GeV % Events / 10 GeV Data 2011 Data 2011 Work in progress X) or ΔR_c in 60 350 Ratio e+thead / e+u $\Box t\bar{t} \rightarrow b\bar{b}W^*W$ $60 \vdash \Box t\bar{t} \rightarrow b\bar{b}W^*W$ ē Others Event vield e+t Others 300 Events Event vield e+u 50 SM + uncertainty Real SM + uncertainty - m_{H'} = 130 GeV 250 - m_{H'} = 130 GeV 40 ATLAS 7 40 Work in progress $B(t \rightarrow bH^*) = 3\%$ $B(t \rightarrow bH^*) = 3\%$ 30 X) or $\Delta N(e \mu$ 200 30 Ldt = 4.6 fb 20 Ldt = 4.6 fb 150 s = 7 TeV s = 7 TeV 10 20 e+τ OS-SS 100 e+u OS-SS ATLAS ÷ 10 50 Work in progress mur = 130 GeV 5 1 1.5 2 2.5 3 3.5 4 4.5 ō 50 100 200 50 100 150 200 150 0 mH_[GeV] mH_[GeV] $B(t \rightarrow bH^+)$ in % 70 ATLAS in % Events / 10 GeV ATLAS 10 GeV Data 2011 Data 2011 Work in progress Work in progress 60 Ratio µ+t /µ+e $60 \vdash \Box f\bar{t} \rightarrow b\bar{b}W^*W$ $\exists t\bar{t} \rightarrow b\bar{b}W^*W$ + X) or $\Delta N(\mu e + X)$ or ΔR_{μ} Event vield u+t Others Others 50 300 vents / Event yield µ+e 50 SM + uncertainty SM + uncertainty - m_{ur} = 130 GeV 250 - mur = 130 GeV ATLAS Work in progress 40 $B(t \rightarrow bH^*) = 3\%$ $B(t \rightarrow bH^*) = 3\%$ 30 200 Ldt = 4.6 fb 20 30[†] Ldt = 4.6 fb 150 s = 7 TeV s = 7 TeV 10 20 μ+τ OS-SS µ+e OS-SS 100^E AN(µt_{had} + 10 50 -10È m., = 130 GeV 0 0 100 100 Ö 50 150 20 m^H_ [GeV] 200 50 150 20 m^H_ [GeV] 200 1.5 2 2.5 3 3.5 4 4.5 5 0.5 1 $B(t \rightarrow bH^+)$ in %

Daniel Pelikan

Uppsala University

Search for charged Higgs bosons

Results

Systematic uncertainty	ΔR_{e}	ΔR_{μ}
Integrated luminosity	0.3%	0.3%
Electron trigger efficiency	0.1%	N/A
Electron reco. and ID efficiencies	0.2%	1.9%
Electron energy resolution	0.1%	<0.1%
Electron energy scale	0.1%	0.3%
Muon trigger efficiency	N/A	0.1%
Muon reco. and ID efficiencies	1.0%	0.1%
Muon momentum resolution	<0.1%	<0.1%
Muon momentum scale	0.1%	<0.1%
au ID efficiency	3.9%	3.9%
au energy scale	2.9%	3.0%
au mis-ID (data-driven): number of associated tracks	2.1%	2.1%
$ au$ mis-ID (data-driven): true $ au_{had}$ contamination	0.2%	0.2%
$ au$ mis-ID (data-driven): H^+ signal contamination	0.6%	0.6%
au mis-ID (data-driven): event environment	1.3%	1.2%
au mis-ID (data-driven): statistical uncertainties	3.3%	3.2%
au mis-ID (data-driven): electron veto uncertainties	0.6%	0.3%
<i>b</i> -tagging	1.9%	2.3%
Jet vertex fraction	0.1%	0.4%
Jet energy resolution	0.4%	<0.1%
Jet energy scale	0.7%	0.5%
Jet reconstruction efficiency	0.1%	0.4%
E _T ^{miss}	0.3%	0.1%
tt: cross section	0.7%	0.6%
tt̄: generator and parton shower	5.7%	4.4%
$t\overline{t}$: initial and final state radiation	3.6%	3.7%
Backgrounds with misidentified leptons	3.5%	4.3%
Total (added in quadrature)	10.3%	10.1%
ightarrow ightarrow Systematics are dominated by (real/fake) $ au$ s		

- This method reduces the impact of several systematic uncertainties in the analysis.
- Data-driven methods and simulation are employed to estimate the number of background events.
- Good agreement between data and SM predictions
- With this, limits on the branching ratio $B(t \rightarrow bH^+)$ can be calculated.
 - No public results at this point.

Backup

Let N_r^L and N_m^L (N_r^T and N_m^T): the number of events containing exactly one real or misidentified lepton, respectively, passing a loose (tight) selection.

$$N^{\rm L} = N^{\rm L}_{\rm m} + N^{\rm L}_{\rm r}, \qquad (4)$$

$$N^{\mathsf{T}} = N_{\mathsf{m}}^{\mathsf{T}} + N_{\mathsf{r}}^{\mathsf{T}}.$$
 (5)

Defining p_r and p_m (separately for electrons and muons) as:

$$p_{\rm r}=rac{N_{\rm r}^{\rm T}}{N_{\rm r}^{\rm L}}$$
 and $p_{\rm m}=rac{N_{\rm m}^{\rm T}}{N_{\rm m}^{\rm L}},$ (6)

the number of misidentified leptons passing the tight selection N_m^T can then be written as:

$$N_{\rm m}^{\rm T} = \frac{p_{\rm m}}{p_{\rm r} - p_{\rm m}} (p_{\rm r} N^{\rm L} - N^{\rm T}). \tag{7}$$

21

In the di-lepton case: one tight and one at least loose lepton

Data taking with ATLAS at LHC - 2011

 Only data taken with the full operational ATLAS detector is used in our analysis.

- More than 5 fb⁻¹ were recorded
- Peak luminosity above 3.5 × 10³³ cm⁻²s⁻¹