Elias Coniavitis

ATLAS collaboration

Search for SM $H \rightarrow \tau \tau$ with the ATLAS detector

Partikeldagarna November 26th, 2012

UPPSALA UNIVERSITET

$H \rightarrow \tau \tau$

- Last summer: Historical observation!
- But what have we observed?
 - We know it couples to bosons
 - It probably couples to quarks (ggF production and $\gamma\gamma$ decay through quark-loop)
 - But what about leptons?
- Need $H \rightarrow \tau \tau$ to check if our particle behaves like a SM-Higgs...

$H \rightarrow \tau \tau$ in ATLAS

- Separate cut-based analysis for each of three different decay modes:
 - Lep-lep: $ee/\mu\mu/e\mu+4\nu$
 - Lep-had: $e\tau_{had}/\mu\tau_{had}+3\nu$
 - Had-had: $\tau_{had}\tau_{had}+2\nu$
- Combine all channels, to search for H→ττ signature
- Results presented using 4.6fb⁻¹ for 7 TeV and 13 fb⁻¹ for 8 TeV data
- More details: ATLAS-CONF-2012-160

Uppsala involvement in H→ττ lep-had channel: Henrik Öhman, Elias Coniavitis

Categorization

Lep-lep	Lep-had	Had-had	
VBF (large $\Delta \eta_{jj}, m_{jj}$)	VBF (large $\Delta \eta_{jj}, m_{jj}$)	VBF (large $\Delta \eta_{jj}, m_{jj}$)	
Boosted (large p_T^H)	Boosted (large p_T^H)	Boosted (high-p _T jet)	
VH (m _{jj} ~m _{Z/W})	≥1j		
≥1j	Oj		
0j*			

- Light-lepton flavors merged in analysis channels, except for Lep-had 1j and 0j categories
- Exact cuts applied detailed in backup slides

^{*:} Only used for 7 TeV dataset

Di-tau Mass Reconstruction

- Reconstructing invariant mass of ditau system not straightforward, due to the presence of neutrinos in the tau decay
- MMC method used to estimate ditau invariant mass
 - Exception: lep-lep in 7 TeV (used collinear approx)
- Scan all points in parameter space and calculate $m_{\tau\tau}$, then evaluate probability of this τ -decay, given measured observables
 - Additional scan over E_x^{miss} and E_y^{miss} . E_T^{miss} resolution drives performance of the method.

Background Estimation: $Z \rightarrow \tau \tau$

- Embedding procedure:
 - Select $Z \rightarrow \mu\mu$ events in data
 - Replace muons with simulated taus with same kinematics
- Major advantage: Only tau decays are from Monte Carlo, the rest (jets, pile-up, ...) comes from data
- Normalization:
 - Lep-lep: using simulation
 - Lep-had, had-had: from data in low $m_{\tau\tau}$ window
- Method validation
 - By embedding muons instead of taus and comparing to data
 - By comparing to Monte Carlo
- Lep-had VBF category uses high-statistics VBFfiltered Monte Carlo samples instead
 - Rescaled to data using Z→ll events with VBF selection

Background Estimation: Others

- Lep-had: Use same-sign events, rescaled by factor accounting for difference between same sign (SS) and opposite sign (OS).

- W+jets: Shapes from Monte Carlo; normalization from control region of large transverse mass
- Z \rightarrow ee: Monte Carlo-based, rescaled using $e \rightarrow \tau$ fake-rate from dedicated Z \rightarrow ee study, verified in $m_{ee} \sim m_Z$ conrol region.
- Top: Shapes from Monte Carlo; normalization from control region of 2 jets, at least one b-tagged
- Other backgrounds from Monte Carlo corrected for trigger and identification efficiencies etc measured in data

Background Estimation: Others

- Lep-had VBF category: use sample of inverted tau-identification (higher stats) for multijets & W+jets estimate rescaled with correction factors from control regions
 - Loose lepton isolation region for multijets
 - High transverse mass region for W+jets
 - Uncertainty on relative composition dominant systematic for this background estimate
- Lep-lep, had-had: Fake-τ backgrounds estimated with template fits
 - Z \rightarrow ll background in lep-lep obtained using control regions of different E_T^{miss} and m_{ll} requirements.
 - Other important backgrounds from Monte Carlo

Lep-had Mass Distributions (8 TeV)

VBF Mass Distributions

Systematic Uncertainties

• Most important experimental systematic uncertainties come from Embedding, Tau and Jet Energy Scale. Both normalization and shape effect considered for these.

Uncertainty	$H \rightarrow \tau_{\rm lep} \tau_{\rm lep}$	$H \rightarrow \tau_{\rm lep} \tau_{\rm had}$	$H \rightarrow \tau_{\rm had} \tau_{\rm had}$			
	$Z \rightarrow \tau^+ \tau^-$					
Embedding	1-4% (S)	2–4% (S)	1-4% (S)			
Tau Energy Scale	-	4–15% (S)	3-8% (S)			
Tau Identification	-	4-5%	1–2%			
Trigger Efficiency	2–4%	2–5%	2–4%			
Normalisation	5%	4% (non-VBF), 16% (VBF)	9–10%			
		Signal				
Jet Energy Scale	1-5% (S)	3–9% (S)	2-4% (S)			
Tau Energy Scale	_	2–9% (S)	4-6% (S)			
Tau Identification	-	4-5%	10%			
Theory	8-28%	18-23%	3-20%			
Trigger Efficiency	small	small	5%			

Combined Results

- Using profile likelihood
- Di-τ invariant mass distribution as discriminant

> Best fit value for signal strength (μ) is **0.7 ± 0.7**

Combined Results

- $H \rightarrow \tau \tau$ can be sensitive to different production modes
- Introduce separate μ for each production mode.
 - VBF and VH combined since both depend on VVH coupling of SM.
 - Fit μ_{VBF+VH} , μ_{ggF} with fixed mass (m_H=125 GeV)

Summary

- Analysed 4.6fb⁻¹ of 7 TeV data and 13 fb⁻¹ of 8 TeV data
- Expected sensitivity now very close to $1x\sigma_{SM}$
 - Observed 95% CL limit is $1.9x\sigma_{SM}$ for mH=125 GeV (expected (µ=0) is $1.2x\sigma_{SM}$)
 - Observed local significance 1.1σ (expected (μ =1) is 1.7σ)
- Best fit value for signal strength is 0.7 ± 0.7
- Results in $(\mu_{VBF+VH}xB/B_{SM}, \mu_{ggF}xB/B_{SM})$ plane consistent both with SM Higgs and background-only hypothesis
- Further analysis improvements + more collected data: Stay tuned!

Event Display

Backup Slides

Lep-had Mass Distributions (7 TeV)

Limits for 7/8 TeV

Limits by Category

Lep-lep Cuts Summary

2-jet VBF	2-jet VBF Boosted 2-jet VH				
Pre-selection: exactly two leptons with opposite charges					
30	$\text{GeV} < m_{\ell\ell} < 75 \text{ GeV}$ ($30 \text{ GeV} < m_{\ell\ell} < 100 \text{ GeV}$			
for same-fi	lavor (different-flavor) l	eptons, and $p_{T,\ell_1} + p_{T,\ell_2} > 3$	5 GeV		
At least	one jet with $p_T > 40$ G	$ VF_{jet} > 0.5$ if $ \eta_{jet} < 2$	2.4)		
$E_{\rm T}^{\rm miss} > 40~{ m Ge}$	$eV(E_{\rm T}^{\rm miss} > 20 { m GeV})$ fo	r same-flavor (different-flavo	r) leptons		
	$H_{\rm T}^{\rm miss} > 40 {\rm GeV}$ for	same-flavor leptons			
	0.1 < 2	$x_{1,2} < 1$			
	$0.5 < \Delta$	$\phi_{\ell\ell} < 2.5$			
$n_{\pi} \sim 25 \text{ GeV}(\text{IVF})$	analudina 2 iat VPE	$P \rightarrow 25 \text{ CeV}(WF)$	excluding 2-jet VBF,		
$p_{T,j2} > 23$ GeV (3 V1)	excluding 2-jet v D1	$p_{T,j2} > 25$ GeV (5 V1)	Boosted and 2-jet VH		
$\Delta \eta_{jj} > 3.0$	$p_{T,\tau\tau} > 100 \text{ GeV}$	excluding Boosted	$m_{\tau\tau j} > 225 \text{ GeV}$		
$m_{jj} > 400 \text{ GeV}$	b-tagged jet veto	$\Delta \eta_{jj} < 2.0$	b-tagged jet veto		
b-tagged jet veto		$30 \text{ GeV} < m_{jj} < 160 \text{ GeV}$			
Lepton centrality and CJV	_	b-tagged jet veto	_		
0-jet (7 TeV only)					
Pre-selection: exactly two leptons with opposite charges					
Different-flavor leptons with 30 GeV $< m_{\ell\ell} < 100$ GeV and $p_{T,\ell 1} + p_{T,\ell 2} > 35$ GeV					
$\Delta \phi_{\ell\ell} > 2.5$					
	b-tagged	1 jet veto			

Lep-had Cuts Summary

7 Te	÷V	8 TeV		
VBF Category	Boosted Category	VBF Category	Boosted Category	
$\triangleright p_{\mathrm{T}}^{\tau_{\mathrm{had-vis}}} > 30 \mathrm{GeV}$	-	$\triangleright p_{\mathrm{T}}^{\tau_{\mathrm{had-vis}}} > 30 \mathrm{GeV}$	$\triangleright p_{\mathrm{T}}^{\tau_{\mathrm{had-vis}}} > 30 \mathrm{GeV}$	
$\triangleright E_{T}^{\text{miss}} > 20 \text{ GeV}$	$\triangleright E_{T}^{miss} > 20 \text{ GeV}$	$\triangleright E_{T}^{\text{miss}} > 20 \text{ GeV}$	$\triangleright E_{T}^{miss} > 20 \text{ GeV}$	
$\triangleright \geq 2$ jets	$\triangleright p_T^{\hat{\mathbf{H}}} > 100 \text{ GeV}$	$\triangleright \ge 2$ jets	$\triangleright p_{\mathrm{T}}^{\mathrm{H}} > 100 \mathrm{GeV}$	
▶ $p_{\rm T} {}^{j1}, p_{\rm T} {}^{j2} > 40 \text{ GeV}$	$0 < x_1 < 1$	▶ $p_{\rm T} {}^{j1} > 40, p_{\rm T} {}^{j2} > 30 \; {\rm GeV}$	$0 < x_1 < 1$	
▶ Δη _{jj} > 3.0	▶ $0.2 < x_2 < 1.2$	► Δη _{jj} > 3.0	▶ $0.2 < x_2 < 1.2$	
▶ m _{jj} > 500 GeV	▶ Fails VBF	▶ <i>m_{jj}</i> > 500 GeV	▶ Fails VBF	
▷ centrality req.	-	▷ centrality req.	-	
$\triangleright \eta_{j1} \times \eta_{j2} < 0$	-	$\triangleright \eta_{j1} \times \eta_{j2} < 0$	-	
$\triangleright p_{\mathrm{T}}^{\mathrm{Total}} < 40 \mathrm{GeV}$	-	$\triangleright p_{\rm T}^{\rm Total} < 30 { m GeV}$	-	
-	-	▶ $p_{\rm T}^{\ell} > 26 {\rm GeV}$	-	
• <i>m</i> _T <50 GeV	• <i>m</i> _T <50 GeV	• <i>m</i> _T <50 GeV	• <i>m</i> _T <50 GeV	
• $\Delta(\Delta R) < 0.8$	• $\Delta(\Delta R) < 0.8$	• $\Delta(\Delta R) < 0.8$	• $\Delta(\Delta R) < 0.8$	
• $\sum \Delta \phi < 3.5$	• $\sum \Delta \phi < 1.6$	• $\sum \Delta \phi < 2.8$	-	
_	-	 b-tagged jet veto 	 b-tagged jet veto 	
1 Jet Category	0 Jet Category	1 Jet Category	0 Jet Category	
▶ ≥ 1 jet, p_T >25 GeV	▶ 0 jets $p_T > 25$ GeV	▶ ≥ 1 jet, $p_{\rm T}$ >30 GeV	▶ 0 jets $p_T > 30$ GeV	
$\triangleright E_{\rm T}^{\rm miss} > 20 {\rm GeV}$	$\triangleright E_{\rm T}^{\rm miss} > 20 {\rm GeV}$	$\triangleright E_{\rm T}^{\rm miss} > 20 { m GeV}$	$\triangleright E_{\rm T}^{\rm miss} > 20 {\rm GeV}$	
▹ Fails VBF, Boosted	▶ Fails Boosted	▹ Fails VBF, Boosted	▶ Fails Boosted	
• <i>m</i> _T <50 GeV	• <i>m</i> _T <30 GeV	• <i>m</i> _T <50 GeV	• <i>m</i> _T <30 GeV	
• $\Delta(\Delta R) < 0.6$	• $\Delta(\Delta R) < 0.5$	• $\Delta(\Delta R) < 0.6$	• $\Delta(\Delta R) < 0.5$	
• $\sum \Delta \phi < 3.5$	• $\sum \Delta \phi < 3.5$	• $\sum \Delta \phi < 3.5$	• $\sum \Delta \phi < 3.5$	
-	• $p_{\mathrm{T}}^{\ell} - p_{\mathrm{T}}^{\tau} < 0$	-	• $p_{\mathrm{T}}^{\ell} - p_{\mathrm{T}}^{\tau} < 0$	

Had-had Cuts Summary

Cut	Description					
Preselection	No muons or electrons in the event					
	Exactly 2 medium τ_{had} candidates matched with the trigger objects					
	At least 1 of the τ_{had} candidates identified as tight					
	Both τ_{had} candidates are from the same primary vertex					
	Leading $\tau_{had-vis}$ $p_T > 40$ GeV and sub-leading $\tau_{had-vis}$ $p_T > 25$ GeV, $ \eta < 2.5$					
	τ_{had} candidates have opposite charge and 1- or 3-tracks					
	$0.8 < \Delta R(\tau_1, \tau_2) < 2.8$					
	$\Delta \eta(\tau, \tau) < 1.5$					
	if $E_{\rm T}^{\rm miss}$ vector is not pointing in between the two taus, min $\left\{\Delta\phi(E_{\rm T}^{\rm miss},\tau_1),\Delta\phi(E_{\rm T}^{\rm miss},\tau_2)\right\} < 0.2\pi$					
VBF	At least two tagging jets, j_1 , j_2 , leading tagging jet with $p_T > 50$ GeV					
	$\eta_{j1} \times \eta_{j2} < 0, \ \Delta \eta_{jj} > 2.6$ and invariant mass $m_{jj} > 350$ GeV					
	$\min(\eta_{j1}, \eta_{j2}) < \eta_{\tau 1}, \eta_{\tau 2} < \max(\eta_{j1}, \eta_{j2})$					
	$E_{\rm T}^{\rm miss} > 20 {\rm GeV}$					
Boosted	Fails VBF					
	At least one tagging jet with $p_T > 70(50)$ GeV in the 8(7) TeV dataset					
	$\Delta R(\tau_1, \tau_2) < 1.9$					
	$E_{\rm T}^{\rm miss} > 20 {\rm GeV}$					
	if E_T^{miss} vector is not pointing in between the two taus, $\min \left\{ \Delta \phi(E_T^{\text{miss}}, \tau_1), \Delta \phi(E_T^{\text{miss}}, \tau_2) \right\} < 0.1\pi$.					

Lep-had Event Yields (7 TeV)

e-had			μ-ł	nad
Process	Events		Events	
	0-Jet	1-Jet	0-Jet	1-Jet
$gg \rightarrow H (125 \text{ GeV})$	$9.4 \pm 0.3 \pm 2.3$	$8.7 \pm 0.2 \pm 1.8$	$4.6 \pm 0.2 \pm 1.2$	$6.4 \pm 0.2 \pm 1.3$
VBF H (125 GeV)	$0.09 \pm 0.01 \pm 0.01$	$1.68 \pm 0.03 \pm 0.15$	$0.04 \pm 0.00 \pm 0.01$	$1.35 \pm 0.03 \pm 0.12$
VH (125 GeV)	$0.05 \pm 0.01 \pm 0.01$	$0.73 \pm 0.04 \pm 0.07$	$0.03 \pm 0.01 \pm 0.00$	$0.67 \pm 0.04 \pm 0.06$
$Z/\gamma^* \rightarrow \tau \tau$ embedded (OS-SS)	$(2.57 \pm 0.03 \pm 0.44) \times 10^3$	$(1.63 \pm 0.02 \pm 0.24) \times 10^3$	$(0.88 \pm 0.01 \pm 0.17) \times 10^3$	$(1.20 \pm 0.02 \pm 0.17) \times 10^3$
Diboson (OS-SS)	$2.1 \pm 0.6 \pm 0.3$	$12.2 \pm 1.3 \pm 1.1$	$2.3 \pm 0.3 \pm 0.4$	$9.1 \pm 1.2 \pm 0.8$
$Z/\gamma^* \rightarrow \ell\ell (\text{OS-SS})$	$47 \pm 5 \pm 12$	$34 \pm 5 \pm 8$	$10 \pm 3 \pm 2$	$13 \pm 3 \pm 4$
Top (OS-SS)	$0.7 \pm 0.2 \pm 0.2$	$121 \pm 3 \pm 19$	$0.5 \pm 0.2 \pm 0.1$	$92 \pm 3 \pm 14$
W boson + jets (OS-SS)	$116 \pm 15 \pm 6$	$(0.24 \pm 0.02 \pm 0.03) \times 10^3$	$65 \pm 11 \pm 6$	$(0.15 \pm 0.02 \pm 0.02) \times 10^3$
Same sign data	$(0.40 \pm 0.02 \pm 0.06) \times 10^3$	$(0.82 \pm 0.04 \pm 0.04) \times 10^3$	$60 \pm 8 \pm 3$	$(0.31 \pm 0.02 \pm 0.02)) \times 10^3$
Total background	$(3.13 \pm 0.04 \pm 0.44) \times 10^3$	$(2.85 \pm 0.04 \pm 0.25) \times 10^3$	$(1.01 \pm 0.02 \pm 0.17) \times 10^3$	$(1.78 \pm 0.03 \pm 0.18) \times 10^3$
Observed data	3064	2828	958	1701
Process		Event	ts	
		Boosted	VBF	
	$aa \rightarrow H (125 \text{ GeV})$	$4.1 \pm 0.1 \pm 1.0$	$0.17 \pm 0.03 \pm 0.06$	
	VBF H (125 GeV)	$1.52 \pm 0.03 \pm 0.13$	$0.87 \pm 0.02 \pm 0.15$	

55		
VBF H (125 GeV)	$1.52 \pm 0.03 \pm 0.13$	$0.87 \pm 0.02 \pm 0.15$
VH (125 GeV)	$0.86 \pm 0.04 \pm 0.08$	< 0.001
$Z/\gamma^* \to \tau \tau^{\dagger}$	$(0.70 \pm 0.02 \pm 0.10) \times 10^3$	$6.5 \pm 0.6 \pm 1.5$
Diboson [†]	$8.4 \pm 0.7 \pm 0.8$	$0.12 \pm 0.06 \pm 0.03$
$Z/\gamma^* \rightarrow \ell \ell^{\dagger}$	$3.7 \pm 1.3 \pm 1.0$	$0.8 \pm 0.3 \pm 1.0$
Top †	$52 \pm 2 \pm 9$	$1.2 \pm 0.3 \pm 0.1$
W boson + jets (OS-SS)	$41 \pm 7 \pm 8$	-
Same sign data	$90 \pm 10 \pm 5$	-
Fake- $\tau_{had-vis}$ backgrounds	-	$0.8 \pm 0.2 \pm 0.4$
Total background	$(0.90 \pm 0.02 \pm 0.10) \times 10^3$	$9.5 \pm 0.8 \pm 1.9$
Observed data	834	10

Lep-had Event Yields (8 TeV)

	e-had				μ-Ι	had
Process	Events				Events	
	0-Jet	1-Jet			0-Jet	1-Jet
$gg \rightarrow H (125 \text{ GeV})$	$25.9 \pm 0.8 \pm 6.1$	37.3 ±	: 0.9 ± 8.4	34.	$3 \pm 0.9 \pm 8.0$	$46 \pm 1 \pm 11$
VBF H (125 GeV)	$0.30 \pm 0.05 \pm 0.04$	7.8 ±	0.3 ± 0.5	0.4	$7 \pm 0.06 \pm 0.04$	$8.5 \pm 0.3 \pm 0.6$
VH (125 GeV)	$0.27 \pm 0.05 \pm 0.03$	3.5 ±	0.2 ± 0.2	0.20	$0 \pm 0.05 \pm 0.02$	$3.7 \pm 0.2 \pm 0.3$
$Z/\gamma^* \rightarrow \tau\tau$ (OS-SS)	$(3.59 \pm 0.03 \pm 0.278) \times 10^3$	(4.50 ±	$0.04 \pm 0.37) \times 10^3$	(7.1)	$3 \pm 0.04 \pm 0.48) \times 10^3$	$(6.14 \pm 0.04 \pm 0.45) \times 10^3$
Diboson (OS-SS)	$9.9 \pm 0.7 \pm 0.9$	27 ±	$\pm 1 \pm 2$	10.	$5 \pm 0.7 \pm 0.9$	$30 \pm 1 \pm 3$
$Z/\gamma^* \rightarrow \ell\ell (\text{OS-SS})$	$(0.41 \pm 0.04 \pm 0.13) \times 10^3$	(0.28 ±	$\pm 0.07 \pm 0.14) \times 10^3$	(0.10	$0 \pm 0.02 \pm 0.02 \times 10^3$	$(0.12 \pm 0.02 \pm 0.03) \times 10^3$
Top (OS-SS)	$8 \pm 2 \pm 1$	(1.00 ±	$\pm 0.02 \pm 0.03) \times 10^3$	10.4	$4 \pm 2.3 \pm 0.6$	$(1.03 \pm 0.03 \pm 0.05) \times 10^3$
W boson + jets (OS-SS)	$(0.48 \pm 0.07 \pm 0.04) \times 10^3$	(1.32 ±	$\pm 0.12 \pm 0.12 \times 10^3$	(0.5)	$1 \pm 0.09 \pm 0.04) \times 10^{3}$	$(1.0 \pm 0.1 \pm 0.14) \times 10^3$
Same sign data	$(0.66 \pm 0.03 \pm 0.03) \times 10^3$	(3.68 ±	$\pm 0.06 \pm 0.18) \times 10^3$	(1.0.	$3 \pm 0.03 \pm 0.07) \times 10^3$	$(3.27 \pm 0.06 \pm 0.24) \times 10^3$
Total background	$(5.16 \pm 0.09 \pm 0.31) \times 10^3$	(10.8 ±	$\pm 0.2 \pm 0.5) \times 10^3$	(8.	$8 \pm 0.1 \pm 0.5 \times 10^3$	$(11.6 \pm 0.1 \pm 0.5) \times 10^3$
Observed data	5012	10409			8300	11373
	Process			Events		
			Boosted		VBF	
	$qq \rightarrow H (125 \text{ GeV})$)	$20.3 \pm 0.7 \pm 5.1$		$0.5 \pm 0.1 \pm 0.3$	
	VBF H (125 GeV)		$5.3 \pm 0.2 \pm 0.3$		$2.5 \pm 0.2 \pm 0.4$	
	VH (125 GeV)		$2.7 \pm 0.2 \pm 0.2$		< 0.001	
	$Z/\gamma^* \rightarrow \tau \tau^{\dagger}$		$(1.78 \pm 0.03 \pm 0.11)$)×10 ³	$17 \pm 2 \pm 6$	
	Diboson [†]		$12.2 \pm 0.9 \pm 1.0$		$0.6 \pm 0.3 \pm 0.4$	
	$Z/\gamma^* ightarrow \ell \ell^{\dagger}$	$Z/\gamma^* \to \ell \ell^{\dagger}$			$1.7 \pm 0.5 \pm 1.2$	
	Top †	Top [†]			$2.0 \pm 0.7 \pm 1.0$	
	W boson + jets (O	W boson + jets (OS-SS))×10 ³	-	
	Same sign data	Same sign data)×10 ³	-	
	Fake- $\tau_{had-vis}$ backs	Fake- $\tau_{had-vis}$ backgrounds			$7.6 \pm 0.7 \pm 3.8$	
	Total background		$(2.53 \pm 0.07 \pm 0.13)$)×10 ³	$29 \pm 2 \pm 7$	
	Observed data		2602		29	

Lep-lep Event Yields

		, i	<u> </u>		
			ее + µµ + еµ		
	VBF category	Boosted category	VH category	1-jet category	0-jet category
$gg \rightarrow H (125 \text{ GeV})$	0.20 ± 0.04 ± 0.07	$3.5 \pm 0.2 \pm 0.4$	$0.4 \pm 0.1 \pm 0.1$	$2.0 \pm 0.1 \pm 0.8$	25±1±4
VBF H (125 GeV)	$1.05 \pm 0.03 \pm 0.10$	$0.90 \pm 0.03 \pm 0.05$	$0.05 \pm 0.01 \pm 0.01$	$0.56 \pm 0.02 \pm 0.01$	0.97±0.03±0.06
VH (125 GeV)	0.0	$0.71 \pm 0.03 \pm 0.09$	$0.20 \pm 0.01 \pm 0.02$	$0.14 \pm 0.01 \pm 0.02$	0.63±0.02±0.04
$Z/\gamma^* \rightarrow \tau \tau$ embedded	$20 \pm 2 \pm 2$	$(0.41 \pm 0.01 \pm 0.02) \times 10^3$	$113 \pm 5 \pm 8$	$272 \pm 8 \pm 41$	(10.71±0.05±0.07)×103
$Z/\gamma^* \rightarrow \ell\ell$	$1.5 \pm 0.6 \pm 0.6$	$77 \pm 7 \pm 6$	27 ± 4 ± 9	$45 \pm 5 \pm 24$	(0.17±0.01±0.01)×103
Тор	$4.8 \pm 0.5 \pm 0.6$	$132 \pm 3 \pm 6$	$27 \pm 1 \pm 6$	$31 \pm 2 \pm 10$	284±4±15
Diboson	$0.8 \pm 0.1 \pm 0.2$	$17.4 \pm 0.7 \pm 0.6$	$4.3 \pm 0.4 \pm 1.0$	$12 \pm 1 \pm 3$	347±3±20
Backgrounds with fake leptons	$2.7 \pm 0.3 \pm 0.9$	$22 \pm 3 \pm 4$	$19 \pm 3 \pm 6$	$24 \pm 3 \pm 10$	(1.56±0.02±0.40)×103
Total background	$29 \pm 3 \pm 2$	$(0.66 \pm 0.01 \pm 0.02) \times 10^3$	190±7±15	(0.38±0.01 ± 0.05)×103	(13.07±0.06±0.41)×103
Observed data	28	673	176	371	13214

7 TeV

8 TeV

		ее + µµ + еµ		
	VBF category	Boosted category	VH category	1-jet category
$gg \rightarrow H (125 \text{ GeV})$	$1.3 \pm 0.2 \pm 0.4$	$12.4 \pm 0.6 \pm 2.9$	$2.5 \pm 0.3 \pm 0.6$	$7.0 \pm 0.5 \pm 1.6$
VBF H (125 GeV)	$3.63 \pm 0.10 \pm 0.02$	$3.36 \pm 0.09 \pm 0.30$	$0.21 \pm 0.03 \pm 0.02$	$1.82 \pm 0.07 \pm 0.18$
VH (125 GeV)	$0.01 \pm 0.01 \pm 0.01$	$2.20 \pm 0.05 \pm 0.22$	$0.64 \pm 0.03 \pm 0.09$	$0.44 \pm 0.02 \pm 0.05$
$Z/\gamma^* \rightarrow \tau \tau$ embedded	$47 \pm 2 \pm 1$	$(1.24 \pm 0.01 \pm 0.08) \times 10^3$	$393 \pm 7 \pm 26$	$(0.86 \pm 0.01 \pm 0.06) \times 10^3$
$Z/\gamma^* \rightarrow \ell\ell$	$14 \pm 3 \pm 2$	$(0.21 \pm 0.02 \pm 0.04) \times 10^3$	$(0.08 \pm 0.01 \pm 0.02) \times 10^3$	$(0.16 \pm 0.01 \pm 0.03) \times 10^3$
Тор	$15 \pm 2 \pm 3$	$(0.39 \pm 0.01 \pm 0.07) \times 10^3$	$87 \pm 4 \pm 23$	$117 \pm 5 \pm 18$
Diboson	$3.6\pm0.8\pm0.6$	$55 \pm 3 \pm 10$	$15 \pm 1 \pm 4$	$40 \pm 3 \pm 7$
Backgrounds with fake leptons	$12 \pm 2 \pm 3$	$102 \pm 7 \pm 23$	$86 \pm 4 \pm 16$	$230 \pm 8 \pm 52$
Total background	91 ± 5 ± 5	(2.01 ± 0.03 ± 0.12)×10 ³	$(0.66 \pm 0.02 \pm 0.05) \times 10^3$	$(1.40 \pm 0.02 \pm 0.08) \times 10^3$
Observed data	98	2014	636	1405

Had-had Event Yields

$H \rightarrow \tau_{\rm had} \tau_{\rm had}$	7 TeV analys	sis (4.6 fb ⁻¹)	8 TeV analysis (13.0 fb ⁻¹)	
	VBF category	Boosted category	VBF category	Boosted category
$gg \rightarrow H (125 \text{ GeV})$	$0.36 \pm 0.06 \pm 0.12$	$2.4 \pm 0.2 \pm 0.7$	$1.0 \pm 0.1 \pm 0.3$	$8.2 \pm 0.4 \pm 1.8$
VBF H (125 GeV)	$1.12 \pm 0.04 \pm 0.18$	$0.68 \pm 0.03 \pm 0.07$	$3.01 \pm 0.09 \pm 0.48$	$1.98 \pm 0.07 \pm 0.30$
VH (125 GeV)	<0.02	$0.61 \pm 0.05 \pm 0.06$	<0.05	$1.4 \pm 0.2 \pm 0.2$
$Z/\gamma^* \rightarrow \tau \tau$ embedded	$20 \pm 2 \pm 3$	392 ± 9 ± 12	$50 \pm 4 \pm 6$	$1080 \pm 20 \pm 110$
W/Z boson+jets	$1.5 \pm 0.7 \pm 0.4$	$5 \pm 1 \pm 1$	0.4 ± 0.4	$90 \pm 20 \pm 30$
Тор	$1.0 \pm 0.2 \pm 0.2$	$3.0 \pm 0.3 \pm 0.5$	1.4 ± 1.0	$21 \pm 3 \pm 5$
Diboson	$0.10 \pm 0.07 \pm 0.02$	$4.4 \pm 0.6 \pm 0.7$	<0.01	<0.5
Multijet	$10.2 \pm 0.9 \pm 5.0$	$156 \pm 6 \pm 30$	$44 \pm 5 \pm 7$	$420 \pm 20 \pm 60$
Total background	$32.5 \pm 2.2 \pm 5.9$	$561 \pm 11 \pm 32$	$96 \pm 6 \pm 9$	$1607 \pm 37 \pm 130$
Observed data	38	535	110	1435