Results from a search for Dark Matter Captured in the Sun with IceCube

Matthias Danninger,

The Oscar Klein Centre for Cosmoparticle Physics, Stockholm University Partikeldagarna, Stockholm, November 2012

?? Including the Non-Precision-IceCube-Next-Generation_Upgrade ? ' (DeepCore)

Matthias Danninger,

The Oscar Klein Centre for Cosmoparticle Physics, Stockholm University Partikeldagarna, Stockholm, November 2012

- All processes depend on WIMP mass
- Annihilation channel (branching ratios)
- Annihilation cross-section
- Capture (scattering)
 - \rightarrow Scattering cross-sections (SI & SD)

Sofia Sivertsson's talk:

"WIMP diffusion in the Solar System and the neutrino signal from the Sun and the Earth"

Proposed by:

Silk, Olive & Srednicki '85 Gaisser, Steigman & Tilav '86 Freese '86 Krauss, Srednicki & Wilzcek '86

27/11/12

Matthias Danninger

Partikeldagarna 2012

- All processes depend on WIMP mass
- Annihilation channel (branching ratios)
- Annihilation cross-section
- Capture (scattering)
 - \rightarrow Scattering cross-sections (SI & SD)

ICECUBE

- All processes depend on WIMP mass
- Annihilation channel (branching ratios)
- Annihilation cross-section
- Capture (scattering)
 - \rightarrow Scattering cross-sections (SI & SD)

main analysis backgrounds:

atm. $\nu \sim O$ (10³ triggering events/day)

ICECUBE

- All processes depend on WIMP mass
- Annihilation channel (branching ratios)
- Annihilation cross-section
- Capture (scattering)
 - \rightarrow Scattering cross-sections (SI & SD)

main analysis backgrounds:

atm. $\nu \sim O$ (10³ triggering events/day)

atm. $\mu \sim O$ (10⁸ triggering events/day)

ICE CUBE

- All processes depend on WIMP mass
- Annihilation channel (branching ratios)
- Annihilation cross-section
- Capture (scattering)
 - \rightarrow Scattering cross-sections (SI & SD)

main analysis backgrounds:

atm. $\nu \sim O$ (10³ triggering events/day)

atm. $\mu \sim O$ (10⁸ triggering events/day)

ICECUBE

<u>Striking signature:</u> High-E v excess over background from Sun direction

Matthias Danninger

artikelda

- All processes depend on WIMP mass
- Annihilation channel (branching ratios)
- Annihilation cross-section
- Capture (scattering)
 - \rightarrow Scattering cross-sections (SI & SD)

main analysis backgrounds:

atm. $\nu \sim O$ (10³ triggering events/day)

atm. $\mu \sim O$ (10⁸ triggering events/day)

<u>Striking signature:</u> High-E \mathbf{v} excess over background from Sun direction

*Blind analysis with respect to true Sun azimuth

27/11/12

Matthias Danninger

± 23°

rtikelda

- Analysis for the whole year! Used 317 days livetime (151 days austral winter & 166 days austral summer)
- more than 60 billion recorded events
- At final level ~25000 signal-like events in 3 independent samples
- With DeepCore, analysis reaches neutrino energies of 10-20GeV

ICECUBE

- Analysis for the whole year! Used 317 days livetime (151 days austral winter & 166 days austral summer)
- more than 60 billion recorded events
- At final level ~25000 signal-like events in 3 independent samples
- With DeepCore, analysis reaches neutrino energies of 10-20GeV
 <u>Facts:</u> max pile-up (3 to 4) with an average pile-up ~1.201

ICECUBE

Multivariate analysis step (BDT variable)

- \rightarrow **1** separate BDT for each event selection
- \rightarrow training on off-source exp. data + separate signal simulation

Multivariate analysis step (final cut applied)

- \rightarrow **1** separate BDT for each event selection
- \rightarrow training on off-source exp. data + separate signal simulation
- → Optimized final cut on BDT-output: run IIh-analysis for various BDT cuts, to determine cut value with best sensitivity (MRF & MDP)

Maximum Ilh-analysis

The observed angle to the Sun is fitted with *signal* and *background* pdf:s

Angle between event track and direction from the Sun

Maximum Ilh-analysis

ICECUBE

The observed angle to the Sun is fitted with *signal* and *background* pdf:s

How many signal events can be consistent with the *observation*?

Evaluate shape fit with loglikelihood rank (Feldman-Cousins) to construct confidence regions for the number of signal events µs

$$R(\mu) = \frac{\mathcal{L}(\mu)}{\mathcal{L}(\hat{\mu})}$$

where **L** is the pdf product over the final sample

Angle between event track and direction from the Sun

Maximum Ilh-analysis

ICECUBE

The observed angle to the Sun is fitted with *signal* and *background* pdf:s

How many signal events can be consistent with the *observation*?

Evaluate shape fit with loglikelihood rank (Feldman-Cousins) to construct confidence regions for the number of signal events µs

$$R(\mu) = \frac{\mathcal{L}(\mu)}{\mathcal{L}(\hat{\mu})} - -$$

where *L* is the pdf product over the final sample

Scale to multiple datasets

Unblinding results (expected sensitivity)

Unblinding results (events observed)

Unblinding results (observed results)

TABLE II. Systematic errors on signal flux expectations in percent. Class-II uncertainties marked *

Source	mass ranges (GeV)		
	< 35	35 - 100	> 100
ν oscillations	6	6	6
ν -nucleon cross-section	7	5.5	3.5
μ -propagation in ice	<1	<1	<1
Time, position calibration	5	5	5
DOM sensitivity spread [*]	6	3	10
Photon propagation in ice *	15	10	5
Absolute DOM efficiency [*]	50	20	15
Total uncertainty	54	25	21

* Full analysis performed with an alternative signal simulation, including maximum IIh-analysis (change in acceptance + PSF)

Unblinding results (SI-cross-section limit)

Unblinding results (SD-cross-section limit)

New SUSY analysis with IceCube

ICECUBE

Ref: P.Scott, C.Savage, J. Edsjö & the IceCube Coll., arXiv:1207.0810 & H.Silverwood et. al., arXiv:1210.0844
 Goal: Use as much of this information on σSD , σSI , <σv> , mχ and BF (χ) as possible to directly constrain specific points and regions in WIMP model parameter spaces
 Details: 25-dim. parameter space (MSSM-25) using scanning based on importance sampling 6.02 million model points, DarkSUSY 5.0.6 used to calculate observables;

New SUSY analysis with IceCube

ICECUBE **Ref:** P.Scott, C.Savage, J. Edsjö & the IceCube Coll., arXiv: 1207.0810 & H.Silverwood et. al., arXiv: 1210.0844 Use as much of this information on σ SD, σ SI, $\langle \sigma v \rangle$, $m\chi$ and BF (χ) as possible to Goal: directly constrain specific points and regions in WIMP model parameter spaces Details: 25-dim. parameter space (MSSM-25) using scanning based on importance sampling 6.02 million model points, DarkSUSY 5.0.6 used to calculate observables; +neutral Higgs masses for any model between 124.4 - 126.8 GeV 10⁻³⁶ 10⁻³⁶ SD neutralino-proton cross-section $\sigma_{SD, w}$ (cm 2 Silverwood et al 2012 Silverwood et al 2012 SI neutralino-proton cross-section $\sigma_{SI,p}$ (cm 2 10⁻³⁸ 10⁻³⁸ 10⁻⁴⁰ 10⁻⁴⁰ 10⁻⁴² 10⁻⁴² 10⁻⁴⁴ 10⁻⁴⁴ 10⁻⁴⁶ 10⁻⁴⁶ 10⁻⁴⁸ 10⁻⁴⁸ 10⁻⁵⁰ 10⁻⁵⁰ 10⁻⁵² 10⁻⁵² Not excludable 10⁻⁵⁴ 10⁻⁵⁴ Not excludable 1σ excludable 3σ excludable 1σ excludable 10⁻⁵⁶ 10⁻⁵⁶ 3σ excludable 5σ excludable 10⁻⁵⁸ 10⁻⁵⁸ SIMPLE Limit 5σ excludable SD x-section SI x-section COUPP 2012 Limit XENON100 2012 Limit 10⁻⁶⁰ 10⁻⁶⁰ 10^{2} 10^{2} 10^{3} 10^{4} 10^{3} 10^{4} Lightest neutralino mass m_{γ} (GeV) Lightest neutralino mass m_{γ} (GeV)

New SUSY analysis with IceCube

ICECUBE **Ref:** P.Scott, C.Savage, J. Edsjö & the IceCube Coll., arXiv: 1207.0810 & H.Silverwood et. al., arXiv: 1210.0844 Use as much of this information on σ SD , σ SI , $\langle \sigma v \rangle$, $m\chi$ and BF (χ) as possible to Goal: directly constrain specific points and regions in WIMP model parameter spaces **Details:** 25-dim. parameter space (MSSM-25) using scanning based on importance sampling 6.02 million model points, DarkSUSY 5.0.6 used to calculate observables; +neutral Higgs masses for any model between 124.4 - 126.8 GeV Silverwood et al 2012 Silverwood et al 2012 10^{4} "razor"+"Mr2" (aa Not excludable -ightest neutralino mass m_χ (GeV) 1σ excludable 10^{4} -ightest Squark Mass (GeV) 3σ excludable 5σ excludable CMS 2012 Limit 10^{3} 10^{3} Not excludable 1σ excludable 10^{2} 3σ excludable 5σ excludable Jets + MET ATLAS 2012 Limit 10^{2} 10^{3} 10^{3} 10^{4} 10^{4} Gluino Mass (GeV) Gluino Mass (GeV)

Mono-Jet & Mono-photon searches

- Very interesting & "*possibly"* competitive limits (especially in the SD x-section plane)
- depend strongly on the choice of the underlying effective theory and mediator masses
- Analyses performed for a large variety of mediators (unfortunately no complete set of results) -> biased choices

Summary

- First Dark Matter analysis including DeepCore
- × First full year-round IceCube solar Dark Matter search
- **X** No excess of events from the Sun over expected backgrounds
- X New very competitive SD-cross-section limits
 - \rightarrow most stringent limits in large parts of WIMP mass range
 - \rightarrow **new LKP limits** with same search (not discussed in talk)
- **×** This indirect search is a very complementary approach

× The near future

Additional data in the full 86-string configuration (1.5 years)

- \rightarrow 2 more DeepCore strings (even lower energy threshold)
- \rightarrow already new veto ideas \rightarrow better low energy sensitivity

ICECUBE

Additional slides

Matthias Danninger

Partikeldagarna 2012

Reconstructed zenith (final analysis level)

- \rightarrow **1** separate BDT for each event selection
- \rightarrow training on off-source exp. data + separate signal simulation
- → Optimized final cut on BDT-output: run IIh-analysis for various BDT cuts, to determine cut value with best sensitivity (MRF & MDP)

Multivariate analysis step (BDT variable)

 \rightarrow **1** separate BDT for each event selection

 \rightarrow training on off-source exp. data + separate signal simulation

Reconstructed zenith & BDT output

(final analysis level)

- \rightarrow **1** separate BDT for each event selection
- \rightarrow training on off-source exp. data + separate signal simulation
- → Optimized final cut on BDT-output: run IIh-analysis for various BDT cuts, to determine cut value with best sensitivity (MRF & MDP)

Analysis: final cut on BDT-output

Optimized final cut on BDT-output:

run full IIh-analysis for various BDT cuts, to determine the cut value with the best sensitivity:

- each dataset individually
- calculate MRF
- calculate MDP (Punzi)
- check for many mass/channel combinations

Want to find 1 single cut per dataset

 \rightarrow (robustness rather than fine-tuning)

IceCube 79 string sensitivity

Global SUSY analysis with IceCube

More details: P.Scott, C.Savage, J. Edsjö & the IceCube Collaboration, arXiv:1207.0810

Include IceCube event level data in a global statistical fit.

 \rightarrow parameter estimation rather than model exclusion

Composite likelihood made up of observations from all over:

- Dark matter relic density from WMAP
- Precision electroweak tests at LEP & LEP limits on sparticle masses
- B-factory data (rare decays, $b \rightarrow s\gamma$)
- Muon anomalous magnetic moment
- LHC searches, direct detection (not yet included in examples)

+ IceCube unbinned likelihood

$$\mathcal{L}_{\rm IC}(\Theta) = \mathcal{L}_{\rm IC}(n \mid \theta_s(\Theta) + \theta_b) \prod_{k=1}^n \mathcal{L}_{\rm spec}(E_k \mid \Theta) \mathcal{L}_{\rm ang}(\cos \phi_k \mid \Theta)$$

- O: WIMP or SUSY parameters
- n: Number of muon events
- *E_k*: Muon energy
- cos \u03c6_k: Muon angle from Sun

Global SUSY analysis with IceCube

More details: P.Scott, C.Savage, J. Edsjö & the IceCube Collaboration, arXiv:1207.0810

CMSSM, IceCube-22

× Contours indicate 1σ and 2σ credible regions

- * Grey contours correspond to fit without IceCube data
- ***** Shading+contours indicate *relative* probability only, not overall goodness of fit

ICECUBE

Global SUSY analysis with IceCube

More details: P.Scott, C.Savage, J. Edsjö & the IceCube Collaboration, arXiv:1207.0810

CMSSM, IceCube-22 with 100x boosted effective area

(indication for IceCube-79 and 86-string prospects)

× Contours indicate 1σ and 2σ credible regions

- * Grey contours correspond to fit without IceCube data
- **x** Shading+contours indicate *relative* probability only, not overall goodness of fit