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Overview

• Hypothesis testing

– Look elsewhere effect � covered in particle physics section

– Wilks theorem /Chernoffs theorem

– At the edge: Separate families of hypotheses

• Interval estimation

– Profile likelihood in Dark Matter searches

– Bayesian methods in Dark Matter searches.

• Global fit in Supersymmetry

• Dark matter density modelling.
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Issues in DM searches – overview
From raw data to physics

Instrumental background

Irreducible background

(or signal to some)

Raw detector output

digital signal 

Hypothesis testing (remove instrumental background)  

Multivariate (MV) classification, machine learning

Parameter estimation: (derive physical observables) 

Least-squares, likelihood,  more seldom (ever?) machine learning (MV regression)
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Issues in DM searches – overview
From data to Dark Matter model

Irreducible background

Hypothetical signal 

i.e. Dark matter

Physical observables

(energy, direction)

Hypothesis testing (establish Dark Matter signal)  

Maximum Likelihood Ratio test

Parameter estimation/interval estimation

Profile likelihood, Neyman construction, Posterior integration

Home-made methods
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Basic (unbinned) likelihoods (no nuisance
parameters)  

• Indirect detection

• Direct detection
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Do we need exact methods or will
asymptotics work?

• Exact methods: methods that do not rely 
on the large sample approximation (e.g. 
Neyman construction).

• Generically, for n > 10 or so, asymptotic 
method will work reasonably. 
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Nuisance parameters:
parameters that need to be 
estimated which are not of prime
interest but which will affect
inference on the parameters of 
interest.

e.g. background expectation in 
estimate of a signal rate.
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We are here

Dark Matter density distribution – the most
important nuisance parameter for indirect 
detection

…. a simulation ….

2)( DMprod nvn ⋅∝ σ
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100-1000% uncertainty

related to Dark Matter

distribution, degenerated

with parameter of interest

Indirect detection:

( )bnvnPoisn DM ,|~
2

⋅σ

~20-30% uncertainty

related to irreducible

background (or much

more, if including

unknwon background

sources)

N.B: due to large statistics, even modest uncertainties in nuisance parameters 

can dominate!

Nuisance parameters
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Nuisance parameters

Direct detection:

( )bastronPoisn bsscatt εεσµ ,),(|~

200-1000% 

uncertainty related to 

detector efficiency

and nuclear

interaction

20-100% uncertainty

related to 

astrophysics

20-100%

Worst cases for low mass WIMPs
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Hypothesis testing

Applicability of Wilks/Chernoff’s
theorem

C. Weniger, arXiv:1204.2797

Trial factor treatment?

Separate families of  hypothesis

(if compared to other features 

(broken power-law) 
Profumo+,arXiv:1204.6047 
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• The goal of hypothesis tests is to test if a hypothesis is 
compatible to data when compared with a defined (or 
undefined, in this case: ”goodness-of fit”) alternative.

• Conventionally, one hypothesis is called the null hypothesis
(H0), the other one is called the alternative hypothesis (H1). 

• The test proceeds by finding the critical region, i.e. the region 
in data space for which: 

• and at the same time maximize:

Hypothesis tests.
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(Maximum) likelihood ratio test statistic

• The likelihood ratio test is the generalization of the 
Neyman-Pearson test to composite hypotheses.

• Composite hypotheses:

A special case would be, eg. ω= 0

• In this situation you define the likelihood ratio:

ωσ

ωσ

−Θ∈

∈

vH

vH

:

:

1

0

)|(max

)|(max

vnL

vnL

v

v

σ

σ
λ

σ

ωσ

Θ∈

∈=



13-08-13 Jan Conrad, Oskar Klein Centre, Stockholms Universitet 14

• In hypothesis tests, traditionally, a very important property is 
the knowledge of the null distribution.

• If H0 imposes r constraints on s+r parameters in H1  and H0 then

under H0.  for n����infty

• In this example, the hypothesis are nested. The asymptotic
property for nested hypotheses is called Wilks theorem. 

• Simplest example: new physics signal over known background. 

H1: s+b, H0: s=0.

Null distribution: Wilks theorem

)(~ln2 2
rχλ−
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Wilks theorem (1938)

Chernoff’s theorem (1952)

= 1/2 δ (0) + ½ χ2

This is a  common situation, e.g.  if you constrain the fit to be 

s>0.
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Applicability of Wilks/Chernoffs
theorem.

• Regularity conditions (likelihood function
differentiable)

• Optimal (unbiased and efficient) estimator

• Nested hypotheses

• Asymptotic (distribution of estimates
approximately Gaussian).



13-08-13 Jan Conrad, Oskar Klein Centre, Stockholms Universitet 17

Wilks theorem/Chernoffs theorem: an 
example

• Search for Dark Matter satellites.

• Binned Poisson likelihood

• Spectral model: fit parameters

• Spatial model: PS/extended source

• Nuisance parameters: background

(profile likelihood)

Fermi-LAT: Astrophys.J. 747 (2012) 121 
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Likelihood unbinned, spectral part:
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Applicability of Wilks/Chernoffs
theorem.

• Regularity conditions ���� YES

• Optimal estimator ���� YES (MLE)

• Asymptotic ���� YES

• Nested hypotheses ���� NO
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How is this problem addressed in the 
paper?

”These two hypotheses are not nested, and 
thus the significance of this test was
evaluated with simulations.”

Nested 

(b/s+b) 

Quantities calculated by the Fermi-

LAT software
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Spatial part?

”While the point and extended hypotheses are 
nested and TSext is cast as a likelihood ratio

test, it is unclear whether this analysis satisfied
all of the suitable conditions for the application
the theorems of Wilks (Wilks 1938) or Chernoff
(Chernoff 1954). Therefore, we relied on 
simulations ……”

Nested 

(b/s+b) 



13-08-13 Jan Conrad, Oskar Klein Centre, Stockholms Universitet 22

… and indeed, it is not chi-squared
…

• TS>24 ~ 4.9 sigma detection if chi-squared, here: ~ 3 
sigma´:
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Construct a comprehensive family
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Cox 1961,1962  refers to this as ”conventional method”, 

Cox proposes:

… see also Atkinson (1970) and Quandt (1974) for a  comparative disc.

θθ γγθγψ −= 1
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… see F. James ”Statistical Methods in Experimental Physics”
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Binned – 20 bins

JC, H. Dickinson, 2012

Preliminary
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Separate families of hypotheses: work in 
progress
• Quandt (1970) can not find chi-squared (for 

Gaussian variates). We do find a chi2 for special 
cases.

• The direct likelihood ratio (also discussed by 
Cox) is conservative?

• If the above approach is applicable to the Fermi-
LAT case is still to be seen. Probably not for the 
present analysis (binned).

• In two hours of googling I went from 1961 to 
1974, still 40 years of statistics research to explore
….
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Interval estimation

- With nuisance parameters:
- marginalisation
- profiling
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Nuisance parameters in interval
estimation

• Consider again the case ”s”, a signal rate that you’d
like to constrain

• Usually, the background ”b” will be estimated from 
an independent measurement, i.e. the background
estimate will come with an uncertainty

• We could present constraints on ”s” and ”b” in a 2 
dimensional confidence interval, but as we are not 
interested in ”b” we’d rather find a way to project
the confidence contour on ”s” subspace.

• This is what will be the subject of the next few slides.
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The Profile likelihood

� Direct detection: Xenon-100, Phys.Rev. D84 (2011) 052003)

� Indirect detection:  Fermi-LAT: Phys.Rev.Lett. 107 (2011) 241302 

� ACT:  Rolke, Lopez, JC. Nucl.Instrum.Meth. A551 (2005) 493-503 . 

See also Cowan+, 1007.1727
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Example (-2 ln L +1/2 rule, mentioned by 
Torsten), 

• e.g. ON-source, off-source measurement in Air 
Cherenkov Telescopes

• Sideband estimates of background in line searches
(or control region estimates in e.g. Higgs search).

Ratio between size of signal region and 

size of background region
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Example from Rolke+
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• If you use a likelihood fit (or chi-2 fit) to obtain
parameters and errors you might have used this without
knowing.

• Background uncertainties have routinely been treated
with profile likelihood

– See 1205.6474 (galactic diffuse gamma-rays -- Torsten showed

this constraint) for a complicated example with the background

depending on 20 physics parameters, non-linearly correlated

with the measurement.

• Dark Matter density ���� fix to benchmark values until

….. next example

Use in Dark matter searches?
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Profile likelihood for DM density uncertainties: 
Fermi-LAT H.E.S.S. MAGICFermi Veritas
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Two novel approaches: likelihood
combination and profiling.

Product over sources

Universal source

parameters Individual source parameters

Nuisance parameter

Line of sight integral, J-factor

Phys.Rev.Lett. 107 (2011) 241302
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Upper limits from the profile likelihood
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Results
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A subtlety for afficionados: 
posteriors and likelihoods

• The algorithms used to infer DM density
line of sight integrals delivers Bayesian
posterior distributions, see later in the 
talk

• Fermi-LAT used the likelihood

• ? 
G. Martinez, 

Stockholm
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Log-normal likelihood ���� no!

parameter

variate

The log-normal likelihood function has the 

variate in the denominator of the pre-factor.

We are using the likelihood corresponding to a 

flat prior and a log-normal posterior
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Profile likelihood in direct detection

• Profile likelihood limits are presented even for 
cases that call for exact methods

• Coverage studies have shown that profile
likelihood works satisfactorily even then.

• But eg. consider the case of no background:

Pr(n=0|s=2) = (2)^0 * exp(-2) / 0! = 0.13.

In that case, a likelihood interval returns: 
[0,1.35]@95% , ie. undercovers by 20 % or so 
(exact method gives [0,2.44] )
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Direct detection likelihood

• Likelihood terms 
taken from separate 
measurements or 
assumed Gaussian if
not known

Xenon-100,  Phys.Rev. D84 (2011) 052003
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Upper limits

• Background expectation ~22 events

• Validity of Wilk’s theorem checked.
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Bayesian methods in dark
matter searches.
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Bayes probability - basics

• Bayesian probability is applicable to non-

repeatable phenomena.

• Bayesian probability is defined as the degree of 

belief.

• It depends on the state of knowledge and 

beliefs of the observer.

• In practial applications, Bayesian probability is 

used for calculations invoking Bayes theorem:
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Bayes theorem

• Note: σv is an hypothesis, parameter of a 

theory, d is the measurement. 

• Bayes is per defintion subjective: you have

to assume a prior probability distribution.

Posterior

distribution

Prior 

distribution

Likelihood

function
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Bayes continued

• Bayes theorem in itself is applicable to 
probabilities in general.

• The main conceptual difference is that 
hypotheses are treated as a random
variable. This does not make sense in 
frequentist statistics. For example the 
mass of a particle is fixed (unknown) and 
does not change in repeated experiments.
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Neyman construction and marginalisation

• Neyman construction with ordering
principle according to likelihood ratio:

• Treat nuisance parameter by replacing
Poisson distribution with:

Feldman & Cousins, 

Phys. Rev.D 57, 3873(1998)

Highland&Cousins, NIM A 320,331 (1992), JC+, Phys. Rev. D 67, 012002 (2003)
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Effect of efficiency uncertainty on neutrino flux 
from DM in Earth

JC+, Phys. Rev. D 67, 012002 (2003)
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Bayesian Inference on 
Supersymmetry

• DM-Theories ���� Supersymmetry (O(100 free
parameters), and the likelihood space is very
complicated. 

• How to estimate parameters/intervals in this set-up? 

� Markov Chain Monte Carlo, MultiNEST deliver a direct

estimate of the posterior on SUSY parameters

Feroz+, MNRAS 398, 2009, 1601

Ruiz de Austri+, JHEP 0605:002,2006



13-08-13 Jan Conrad, Oskar Klein Centre, Stockholms Universitet 48

E.g. constrained supersymmetry, 
examples from Strege+, 1212.2636
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Nuisance parameters
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Observables
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Challenges even in simplest Supersymmetric (4 
parameters. CMSSM) theory

• Prior dependence

– Flat  vs. Log priors give signifcantly different results. 

– Remedied when including more data (LHC  for CMSSM, but

what happens if we have to go to 100 parameters?)

flat

log

flat

log

Not from the 

Strege

paper
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Point and intervals estimate can be made from 
the likelihood in this methodology – but tricky.

•Feroz+, JHEP 1106:042,2011
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Challenges even in simplest Supersymmetric (4 
parameters. CMSSM) theory

• Sensitivity to fine-tuning (especially for profile likelihood)

– PL picks ”false” or ”true” likelihood peaks

– PL much more sensitive to adequate sampling of the likelihood
e.g. Feroz+, JHEP 1106:042,2011
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Other scanning algorithms: Genetic
algorithms

Akrami+, JHEP 1004:057,2010

Genetic algorithm

Multinest trapping into a local

minimum
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Coverage

In a very large number of experiments, 
each providing a confidence interval [θll,, 
θul], the fraction of intervals that contain
the true value is 1- α, independent of 
what the true value is.
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Challenges even in simplest Supersymmetric (4 
parameters. CMSSM) theory

• Frequentist properties

– Both over and undercoverage

– Bad sampling of the likelihood, boundaries on the parameters, 

flat prior in many dimensions (my guess) ….

Bridges+, JHEP  1103(2011) 012, LHC

Akrami+, JCAP 1107 (2011) 002
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Dwarfs galaxies again – cleanest
target

• Stellar velocities can be used to measure DM 
density (error can be propagated to particle
constraints, as we have seen)

e.g: 

Charbonnier+, MNRAS 418 (2011) 

1526

Strigari+,Phys. Rev. D, 75, 083526

Evans+, Phys. Rev., D69, 123501, 

(2004)
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Posterior for the mass, strong prior 
dependence

Possible solutions: hierarchical Bayes (multi-level modelling)?

Strigari+,Phys. Rev. D, 75, 083526
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Bayesian methods necessary?

• Estimation of J factors and inference in SUSY does not 
per-se require Bayesian methods.

• The main motivation for these methods is ease of use, 
which to my mind is not sufficient.

• There are however, conceptually, a few arguments 
valid in  DM searches:
– Systematic uncertainties (e.g. theoretical) are sometimes beliefs

anyway, there is little reason to pretend these estimates are 
statistically distributed. 

– ”Naturalness” (see SUSY likelihood space) is very conveniently
implemented in a Bayesian framework.
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• Astrophyiscal searches for dark matter require
modern statistical methods for parameter estimation
and hypothesis testing.

• Hypothesis testing: cases were the Wilks/Chernoff
theorem are not applicable (in worst case non-nested
hypotheses), trial factor correction

• Interval estimation: nasty nuisance parameters, to be 
treated by Profile likelihood/marginalisation, 
inference in complicated/highly structured likelihood
spaces.

Summary
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Exact frequentist intervals- The Neyman construction
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Coverage studies

eg. Rolke, Lopez, JC , NiM A551 (2005) 493-503
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Estimate of DM density.

Martinez+, JCAP 0906 (2009) 014 

n,rmax,Vmax,        

Slope index of density profile
Radius of maximum radial velocity
Maximum radial velocity 

Los velocity dispersion, intrinsic
Los velocity dispersion, 
measurement 

anisotropy parameters
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Null distribution, unbinned, no 
Poisson term

JC, H. Dickinson, 2013

Preliminary



13-08-13 Jan Conrad, Oskar Klein Centre, Stockholms Universitet 65

Extended likelihood (with Poisson
term)

JC, H. Dickinson, 2012

Preliminary


