Indirect DM detection using cosmic antideuterons: challenges and prospects

Sebastian Wild Physics Department, TU München

ISAPP 2013 Stockholm/Djurönäset August 2, 2013

based on JCAP 1302 (2013) 021 and Phys. Rev. D 88, 023014 (2013) in collaboration with A. Ibarra

Sebastian Wild (TU München) Ind. DM detection using antideuterons

Indirect DM detection with antideuterons

- Why using antideuterons $\overline{d} = [\overline{p}\overline{n}]$ for indirect DM detection?
 - Kinematically suppressed \overline{d} background flux from cosmic ray spallations at low kinetic energies $T_{\bar{d}} \leq 1 \, \text{GeV/n}$
 - In many models, the expected Dark Matter contribution to the \overline{d} flux exceeds the spallation background (Donato et. al., PRD '00)
 - "Vanilla example": $\chi\chi o bar{b}$, $m_\chi = 100\,{
 m GeV}$, $\langle\sigma v
 angle = 3\cdot 10^{-26}\,{
 m cm}^3/{
 m s}$

Current experimental situation

 \rightarrow Up to now, no antideuteron has been found in cosmic rays!

AMS-02 is currently taking data

GAPS is a balloon-borne experiment \hookrightarrow first science flight ~2017

The experimental situation on cosmic antideuterons will change in the near future!

Production of antideuterons in DM annihilations

• Dark Matter Model: anything with hadronic final states (W,Z,b,u,...)

- Coalescence Model:
 Calculate the probability of forming an d
 d out of an p
 - n
 pair
 → Not included in the MC event generators!

The coalescence model

State of the art: Coalescence Model on an event-by-event basis

•
$$\bar{d}$$
 forms if $\left| \vec{k}_{\bar{p}} - \vec{k}_{\bar{n}} \right| \leq p_0 = \mathcal{O} (100 \,\mathrm{MeV})$

• The usually adopted value of the coalescence momentum p₀ is obtained from a measurement of antideuterons in **Z decays** at LEP:

$$ightarrow \,\, (5.9\pm 1.8\pm 0.5) imes 10^{-6}\,\, ar{d}$$
 per hadronic Z decay

 \hookrightarrow This number is reproduced by choosing $p_0 = (192 \pm 30) \, {
m MeV}$

Determination of the coalescence momentum p_0 (1)

Can we safely use $p_0 = 192 \text{ MeV}$ for \overline{d} production in DM annihilations (or spallation processes)? Answer: no!

Determination of the coalescence momentum p_0 (1)

Can we safely use $p_0 = 192 \text{ MeV}$ for \overline{d} production in DM annihilations (or spallation processes)? Answer: no!

Determination of the coalescence momentum p_0 (2)

Results:

• Coalescence model is able to reproduce measured \bar{d} spectra, but:

Apparently, p_0 depends on underlying process and \sqrt{s} 133 ${
m MeV} \lesssim p_0 \lesssim$ 236 ${
m MeV}$

• This dependence is **not understood** and needs further investigation \hookrightarrow Coalescence model too simplistic? Problem with PYTHIA? \hookrightarrow Induced uncertainty on $N_{\bar{d}} \propto p_0^3$: factor of ~ 5.5 (or more?)

Prospects for antideuteron detection at AMS-02 and GAPS in light of the PAMELA \bar{p}/p constraints

Calculating constraints on the maximally allowed \overline{d} flux

PAMELA \bar{p}/p data puts stringent limits on DM with hadronic annihilation products

Model independent method:

- ullet We analyze annihilations into W^+W^- and $bar{b}$
- For fixed m_{χ} , we calculate upper limits (95 % C.L.) on $\langle \sigma v \rangle$ from the \bar{p}/p data
- Then we use this value of $\langle \sigma v \rangle$ to get the maximally allowed $ar{d}$ flux

Remarks:

- \rightarrow We use a semi-analytical solution of the standard two-zone diffusion model for propagation of \bar{p} and \bar{d}
- \rightarrow Propagation and Halo uncertainties almost cancel out in the upper limit on the \bar{d} flux

ightarrow Due to our partial ignorance, we use $ho_0=192~{
m MeV}~(pprox$ central value)

Sebastian Wild (TU München) Ind. DM detection using antideuterons

Constraining \bar{d} prospects with PAMELA \bar{p}/p data

Sebastian Wild (TU München)

Ind. DM detection using antideuterons

August 2, 2013 10 / 11

Conclusions

Coalescence Model:

- We find that the coalescence momentum p_0 can **vary significantly** from process to process
 - ← The formation process of antideuterons in high-energy collisions has to be better understood

Prospects for AMS-02 and GAPS:

- Non-observation of an excess in antiprotons puts severe constraints on the possibility of a \overline{d} signal from DM annihilations:
 - at AMS-02: \overline{d} signal is unlikely, independent of the propagation parameters or halo profile
 - at GAPS (ULDB): \bar{d} signal is marginally possible for specific propagation setups, small enough m_{χ} and for saturation of the PAMELA \bar{p}/p limits

\Rightarrow More sensitive experiments for antideuterons are necessary

Backup slides

Backup slides

We use, for the first time, an **event-by-event** analysis for calculating the \bar{d} production cross section in spallation processes

- Shaded regions: 95% C.L. exclusion from PAMELA \bar{p}/p
 - \hookrightarrow using NFW profile,

MED propagation parameters

- Shaded regions: 95% C.L. exclusion from PAMELA \bar{p}/p
 - \hookrightarrow using NFW profile,

MED propagation parameters

• Red and blue: cross sections necessary for an expectation of a primary \overline{d} signal at 95% C.L.

Maximimal number of \overline{d} events at AMS-02

• Red curves: Maximal number of \overline{d} at AMS-02 compatible with \overline{p}/p constraints (MIN, MED, MAX)

 Propagation uncertainties largely cancel out (similar for halo profile uncertainties)

Excess at 95% C.L. (= 2 events) is in strong tension with \bar{p}/p constraints!

Sebastian Wild (TU München)

Ind. DM detection using antideuterons

Maximimal number of \overline{d} events at GAPS (ULDB)

Blue curves:

Maximal number of \overline{d} at GAPS (ULDB) compatible with \overline{p}/p constraints (MIN, MED, MAX)

Excess at 95% C.L. (= 1 event) only possible for MAX propagation and $m_{\chi} < 125 \text{ GeV} (W^+W^-)$ $m_{\chi} < 400 \text{ GeV} (b\bar{b})$

Sebastian Wild (TU München)

Ind. DM detection using antideuterons

August 2, 2013 16 / 11

Maximal number of events for decaying Dark Matter

Upper panel: AMS-02, lower panel: GAPS (ULDB)

Sebastian Wild (TU München) Ind. DM detection using antideuterons