Particle Physics Models for Dark Matter

Paolo Gondolo University of Utah

Friday, August 2, 13

1

The observed content of the Universe

 $, 0.04175 \pm 0.00004 \text{ pJ/m}^3 \text{ photons}$

→ 37.2±0.5 pJ/m³ ordinary matter

524±5 pJ/m³ dark energy

202±5 pJ/m³ cold dark matter

1 to 5 pJ/m³ neutrinos

Cold Dark Matter

matter $p \ll \rho$ radiation $p = \rho/3$ vacuum $p = -\rho$

Planck (2013)

 $I p J = 10^{-12} J$

What particle model for dark matter?

- It should have the cosmic cold dark matter density
- It should be stable or very long-lived ($\geq 10^{24}$ yr)
- It should be compatible with collider, astrophysics, etc. bounds
- Ideally, it would be possible to detect it in outer space and produce it in the laboratory
- For the believer, it would explain any claim of dark matter detection (annual modulation, positrons, gamma-ray line, etc.)

The warning

"For any complex physical phenomenon there is a simple, elegant, compelling, wrong explanation."

Thomas Gold, 1920-2004, Austrian-born astronomer at Cambridge University and Cornell University

Cold dark matter, not modified gravity

The Bullet Cluster

Symmetry argument: gas is at center, but potential has two wells.

Gravitational potential from weak lensing

X-ray emitting hot gas (Chandra)

Cold dark matter, not modified gravity

Bekenstein's TeVeS does not reproduce the CMB and matter power spectra

FIG. 4: The angular power spectrum of the CMB (top panel) and the power spectrum of the baryon density (bottom panel) for a MOND universe (with $a_0 \simeq 4.2 \times 10^{-8} cm/s^2$) with $\Omega_{\Lambda} =$ 0.78 and $\Omega_{\nu} = 0.17$ and $\Omega_B = 0.05$ (solid line), for a MOND universe $\Omega_{\Lambda} = 0.95$ and $\Omega_B = 0.05$ (dashed line) and for the Λ -CDM model (dotted line). A collection of data points from CMB experiments and Sloan are overplotted.

Skordis, Mota, Ferreira, Boehm 2005

Which particle is cold dark matter?

ELEMENTARY PARTICLES

 \bigcirc is the particle of light

S couples to the plasma

O disappears too quickly

Neutrinos exist!!!

INGRID LUCIA & THE FLYING NEUTRINOS

3 active neutrinos (V_e , V_{μ} , V_{τ})

Known active neutrinos

VOLUME 29, NUMBER 10

PHYSICAL REVIEW LETTERS

An Upper Limit on the Neutrino Rest Mass*

R. Cowsik[†] and J. McClelland

Department of Physics, University of California, Berkeley, California 94720 (Received 17 July 1972)

In order that the effect of graviation of the thermal background neutrinos on the expansion of the universe not be too severe, their mass should be less than $8 \text{ eV}/c^2$.

⁰ meson.³

Recently there has been a resurgence of interest in the possibility that neutrinos may have a finite rest mass. These discussions have been in the context of weak-interaction theories,¹ possible decay of solar neutrinos,² and enumerating and

$$n_{Bi} = \frac{2s_i + 1}{2\pi^2 \hbar^3} \int_0^\infty \frac{p^2 dp}{\exp[E/kT(z_{eq})] - 1} \,. \tag{1b}$$

Here n_{Fi} is the number density of fermions of

Then $m_v < 8 \text{ eV}/c^2$ from

upper bound on ρ_{ν}

Now $m_v < 0.44 \text{ eV}/c^2$ from upper bound on $\delta \rho_v$

$$\rho_{\nu} = \frac{3\zeta(3)gT_{\nu}^{3}m_{\nu}}{8\pi^{2}} \qquad m_{\nu} \gtrsim T_{\nu}$$

$$\rho_{\nu} = \frac{7\pi^{2}gT_{\nu}^{4}}{240} \qquad m_{\nu} \lesssim T_{\nu}$$

$$T_{\nu} = (4/11)^{1/3}T_{\text{CMB}} = 168\mu\text{eV}/k$$

Friday, August 2, 13

Known active neutrinos

- Neutrino oscillations (largest Δm^2 from SK+K2K+MINOS) place a lower bound on one of the neutrino masses, $m_v > 0.048 \text{ eV}$
- Cosmology (CMB+LRG+H₀) places an upper bound on the sum of the neutrino masses, $\sum m_{\nu} < 0.44 \text{ eV}$
- Therefore neutrinos are hot dark matter ($m_v \ll T_{eq}=1.28 \text{ eV}$) with density 0.0005 < $\Omega_v h^2$ < 0.0047

Detecting this Cosmic Neutrino Background (CNB) is a big challenge

Known neutrinos are hot dark matter

Which particle is cold dark matter?

No known particle can be cold dark matter!

Particle dark matter

Thermal relics

in thermal equilibrium in the early universe

neutrinos, neutralinos, other WIMPs,

Non-thermal relics

never in thermal equilibrium in the early universe

axions, WIMPZILLAs, solitons,

Particle dark matter

Hot dark matter

- relativistic at kinetic decoupling (start of free streaming)
- big structures form first, then fragment

light neutrinos

Cold dark matter

- non-relativistic at kinetic decoupling
- small structures form first, then merge

neutralinos, axions, WIMPZILLAs, solitons

Warm dark matter

- semi-relativistic at kinetic decoupling
- smallest structures are erased

sterile neutrinos, gravitinos

Particle dark matter

- neutrinos
- sterile neutrinos, gravitinos
- lightest supersymmetric particle
- lightest Kaluza-Klein particle
- Bose-Einstein condensates, axions, axion clusters
- solitons (Q-balls, B-balls, ...)
- supermassive wimpzillas

Mass range

 $10^{-22} \text{ eV} (10^{-56} \text{g}) \text{ B.E.C.s}$ $10^{-8} M_{\odot} (10^{+25} \text{g}) \text{ axion clusters}$

Interaction strength range

Only gravitational: wimpzillas Strongly interacting: B-balls

Particle Dark Matter

- Type la Candidates that exist
- Type Ib Candidates in well-motivated frameworks
- Type II All other candidates

Particle Dark Matter

Type la Candidates that exist

Type Ib Candidates in well-motivated frameworks

- have been proposed to solve genuine particle physics problems, a priori unrelated to dark matter
- have interactions and masses specified within a well-defined particle physics model

Type II All other candidates

Particle Dark Matter

Type la Candidates that exist

standard neutrinos

Type Ib Candidates in well-motivated frameworks

heavy neutrinos, axion, lightest supersymmetric particle (neutralino, sneutrino, gravitino, axino)

Type II All other candidates

maverick WIMP, WIMPZILLA, B-balls, Q-balls, self-interacting dark matter, string-inspired dark matter, etc.

Heavy active neutrinos (4-th generation)

PHYSICAL REVIEW LETTERS

Volume 39

25 JULY 1977

NUMBER 4

Cosmological Lower Bound on Heavy-Neutrino Masses

Benjamin W. Lee^(a) Fermi National Accelerator Laboratory,^(b) Batavia, Illinois 60510

and

Steven Weinberg^(c) Stanford University, Physics Department, Stanford, California 94305 (Received 13 May 1977)

The present cosmic mass density of possible stable neutral heavy leptons is calculated in a standard cosmological model. In order for this density not to exceed the upper limit of 2×10^{-29} g/cm³, the lepton mass would have to be *greater* than a lower bound of the order of 2 GeV.

2 GeV/ c^2 for $\Omega_c = I$

Now 4 GeV/ c^2 for Ω_c =0.25

 At early times, heavy neutrinos are produced in e⁺e⁻, μ⁺μ⁻, etc collisions in the hot primordial soup [thermal production].

$$e^+ + e^-, \mu^+ + \mu^-, \text{etc.} \leftrightarrow \chi + \chi^+$$

- Neutrino production ceases when the production rate becomes smaller than the Hubble expansion rate [freeze-out].
- After freeze-out, there is a constant number of neutrinos in a volume expanding with the universe.

This is why they are called Weakly Interacting Massive Particles (WIMPless candidates are WIMPs!)

$$\frac{dn}{dt} = -3Hn - \langle \sigma v \rangle_{\text{ann}} \left(n^2 - n_{\text{eq}}^2 \right) \qquad \begin{array}{l} \text{density equation} \\ \text{("Boltzmann equation")} \end{array}$$

thermally averaged cross section times relative velocity

$$\langle \sigma v \rangle_{\text{ann}} = \int_{4m^2}^{\infty} ds \, \frac{\sqrt{s - 4m^2} K_1(\sqrt{s}/T)}{16m^4 T K_2^2(m/T)} \, W(s)$$

invariant annihilation rate (annihilations per unit time and unit volume)

$$W_{12\to\dots}(s) = 4\sqrt{(p_1 \cdot p_2)^2 - m_1^2 m_2^2} \sigma_{12\to\dots}(s)$$

Gondolo, Gelmini 1991

Enqvist, Kainulainen, Maalampi 1989

DIrac neutrino in 4-th generation lepton doublet

$$\begin{aligned} \mathcal{L} &= y_e \bar{\ell}_L \phi e_R + y_\nu \bar{\ell}_L \tilde{\phi} \nu_R \\ &= \left(\bar{\nu}_L \quad \bar{e}_L \right) \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix} e_R + \left(\bar{\nu}_L \quad \bar{e}_L \right) \begin{pmatrix} \phi^0 \\ -\phi^- \end{pmatrix} \nu_R \\ &= y_e \left(\bar{\nu}_L \phi^+ + \bar{e}_L \phi^0 \right) e_R + y_\nu \left(\bar{\nu}_L \phi^0 - \bar{e}_L \phi^- \right) \nu_R \end{aligned}$$

After electroweak symmetry breaking

$$\mathcal{L}_m = m_e \bar{e}_L e_R + m_\nu \bar{\nu}_L \nu_R$$

$$m_e = \frac{y_e v}{\sqrt{2}} \qquad m_\nu = \frac{y_\nu v}{\sqrt{2}}$$

Enqvist, Kainulainen, Maalampi 1989

$$\beta_{\rm f} = \left(1 - \frac{4m_{\rm f}^2}{s}\right)^{1/2}, \qquad \beta_{\rm N} = \left(1 - \frac{4m_{\rm N}^2}{s}\right)^{1/2}, \qquad |D_{\rm H}|^2 = \frac{1}{\left(s - m_{\rm H}^2\right)^2 + \Gamma_{\rm H}^2 m_{\rm H}^2}, \qquad |D_{\rm Z}|^2 = \frac{1}{\left(s - m_{\rm Z}^2\right)^2 + \Gamma_{\rm Z}^2 m_{\rm Z}^2},$$

Enqvist, Kainulainen, Maalampi 1989

$$\sigma(\overline{N}N \to H^{0}H^{0}) = \frac{g^{4}}{128\pi s} \frac{\beta_{H}}{\beta_{N}} \left(\frac{m_{N}}{m_{W}}\right)^{4} \left(\sigma_{1} + \sigma_{2} + \sigma_{3} + \sigma_{4}\right)$$

$$(a)$$

$$\sigma_{1} = \left(\frac{1}{4}m_{N}^{2}\left(s + 4m_{H}^{2}\right) - 4m_{N}^{4}\right)R + \left(\frac{1}{2}s - m_{H}^{2} + 4m_{N}^{2}\right)L - \frac{1}{2},$$

$$\sigma_{2} = \frac{g}{2} \left(\frac{m_{H}}{m_{N}}\right)^{4} |D_{H}|^{2}m_{N}^{2}s\beta_{N}^{2},$$

$$\sigma_{3} = -\left(4m_{N}^{2}s\beta_{N}^{2} + m_{H}^{4}\right)\frac{L}{2m_{H}^{2} - s} - \frac{1}{4},$$

$$(b)$$

$$L = -\frac{1}{2s\beta_{N}\beta_{H}} \ln\left(\frac{2m_{H}^{2} - s + s\beta_{N}\beta_{H}}{2m_{H}^{2} - s - s\beta_{N}\beta_{H}}\right)$$

$$\beta_{1} = \left(1 - \frac{4m_{1}^{2}}{s}\right)^{1/2} (i = N, H),$$

$$R = \left[m_{H}^{4} + m_{N}^{2}s\beta_{H}^{2}\right]^{-1},$$

$$|D_{H}|^{2} = \frac{1}{(s - m_{H}^{2})^{2} + \Gamma_{H}^{2}m_{H}^{2}}.$$

Friday, August 2, 13

Enqvist, Kainulainen, Maalampi 1989

Friday, August 2, 13

Fourth-generation Standard Model neutrino

Fourth-generation Standard Model neutrino

Connection to colliders

Annihilation $\nu \overline{\nu} \to f \overline{f}$ $\nu \longrightarrow f \overline{f}$ $\overline{\nu} \longrightarrow Z \longrightarrow \overline{f}$ \overline{f} \overline{f} \overline{f} \overline{f} \overline{f} \overline{f} \overline{f} $\overline{\mu}$ \overline{f} \overline{f} $\overline{f$

For example, $a \sim 4 \text{ GeV/c}^2$ dark matter neutrino would be copiously produced in resonant Z boson decays

Excluded by LEP bound $Z
ightarrow
u ar{
u}$

Connection to direct detection

For example, for a \sim 4 GeV/c² dark matter neutrino, the scattering cross section is

$$\sigma_{\nu n} \simeq 0.01 \frac{\langle \sigma v \rangle}{c} \simeq 10^{-38} \,\mathrm{cm}^2$$

Excluded by direct searches

Spin-independent (June 2012)

Updated from Anglehor et al 2011

 $lpb = 10^{-36} cm^2$

Updated from Anglehor et al 2011

 $lpb = 10^{-36} cm^2$

The Magnificent WIMP (Weakly Interacting Massive Particle)

 One naturally obtains the right cosmic density of WIMPs

Thermal production in hot primordial plasma.

 One can experimentally test the WIMP hypothesis
 The same physical processes that produce the right density of WIMPs make their detection possible

The magnificent WIMP

To first order, three quantities characterize a WIMP

- Mass m
 - Simplest models relate mass to cosmic density: I I0⁴ GeV/c²

- Scattering cross section off nucleons σ_{XN}
 - Usually different for protons and neutrons

- Spin-dependent or spin-independent governs scaling to nuclei

- Annihilation cross section into ordinary particles χ .
 - $\sigma \simeq \text{const}/v$ at small v, so use σv
 - Simplest models relate cross section to cosmic density

 f,γ

Friday, August 2, 13

do not confuse with minimal dark matter

"Higgs portal scalar dark matter"

Gauge singlet scalar field S, stabilized by Z_2 symmetry ($S \rightarrow -S$)

$$\mathcal{L}_S = \frac{1}{2} \partial^\mu S \partial_\mu S - \frac{1}{2} \mu_S^2 S^2 - \frac{\lambda_S}{4} S^4 - \lambda_L H^\dagger H S^2$$

Silveira, Zee 1985 Andreas, Hambye, Tytgat 2008

do not confuse with minimal dark matter

Andreas, Arina, Hambye, Ling, Tytgat 2010

He, Tandean 2011

do not confuse with minimal dark matter

Constraints from diffuse Galactic gamma-rays

Arina, Tytgat 2010

do not confuse with minimal dark matter

Constraints from the LHC: a 125 Higgs is not 99.2% invisible

do not confuse with minimal dark matter

Constraints from the LHC: a 125 GeV Higgs is not 99.2% invisible

Djouadi, Falkowski, Mambrini, Quevillon 2012

arxiv:1306.4710

Update on scalar singlet dark matter

James M. Cline^{*} and Pat $Scott^{\dagger}$

Department of Physics, McGill University, 3600 Rue University, Montréal, Québec, Canada H3A 2T8

Kimmo Kainulainen[‡]

Department of Physics, P.O.Box 35 (YFL), FIN-40014 University of Jyväskylä, Finland and Helsinki Institute of Physics, P.O. Box 64, FIN-00014 University of Helsinki, Finland

Christoph Weniger[§]

GRAPPA Institute, University of Amsterdam, Science Park 904, 1098 GL Amsterdam, Netherlands

One of the simplest models of dark matter is that where a scalar singlet field S comprises some or all of the dark matter, and interacts with the standard model through an $|H|^2S^2$ coupling to the Higgs boson. We update the present limits on the model from LHC searches for invisible Higgs decays, the thermal relic density of S, and dark matter searches via indirect and direct detection. We point out that the currently allowed parameter space is on the verge of being significantly reduced with the next generation of experiments. We discuss the impact of such constraints on possible applications of scalar singlet dark matter, including a strong electroweak phase transition, and the question of vacuum stability of the Higgs potential at high scales.

$$V = \frac{1}{2}\mu_S^2 S^2 + \frac{1}{2}\lambda_{hs}S^2 |H|^2$$

 $\mu_S^2 + \frac{1}{2}\lambda_{hs}v_0^2$, (m_s)

Particle Dark Matter

Type Ia Candidates that exist

Type Ib Candidates in well-motivated frameworks

- have been proposed to solve genuine particle physics problems, a priori unrelated to dark matter
- have interactions and masses specified within a well-defined particle physics model

Type II All other candidates

Supersymmetric dark matter

Supersymmetry

A supersymmetric transformation Q turns a bosonic state into a fermionic state, and viceversa.

 $Q|\text{Boson}\rangle = |\text{Fermion}\rangle$ $Q|\text{Fermion}\rangle = |\text{Boson}\rangle$

 $\{Q_{\alpha}, Q_{\dot{\alpha}}^{\dagger}\} = P_{\mu}\sigma_{\alpha\dot{\alpha}}^{\mu}, \ \{Q_{\alpha}, Q_{\beta}\} = \{Q_{\dot{\alpha}}^{\dagger}, Q_{\dot{\beta}}^{\dagger}\} = 0, \ [P^{\mu}, Q_{\alpha}] = [P^{\mu}, Q_{\dot{\alpha}}^{\dagger}] = 0$

A supersymmetric theory is invariant under supersymmetry transformations

- bosons and fermions come in pairs of equal mass
- the interactions of bosons and fermions are related

Start with non-supersymmetric QED

photon A^{μ} left-handed electron e_L right-handed electron e_R

 $\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \overline{e}i\gamma^{\mu}\partial_{\mu}e - m\overline{e}e - q\overline{e}\gamma^{\mu}eA_{\mu}$

and and a second metallic and a second s	
"spinor QED')
e	e
and the second secon	and the second secon

photon A^{μ} left-handed electron e_L right-handed electron e_R photino λ left-handed selectron \tilde{e}_L right-handed selectron \tilde{e}_R

$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \bar{e}i\gamma^{\mu}\partial_{\mu}e - m\bar{e}e - q\bar{e}\gamma^{\mu}eA_{\mu}$$

+ $\partial^{\mu}\tilde{e}_{L}^{*}\partial_{\mu}\tilde{e}_{L} - m^{2}\tilde{e}_{L}^{*}\tilde{e}_{L} - iqA^{\mu}[\tilde{e}_{L}^{*}\partial_{\mu}\tilde{e}_{L} - \tilde{e}_{L}\partial_{\mu}\tilde{e}_{L}^{*}] + q^{2}A^{\mu}A_{\mu}\tilde{e}_{L}^{*}\tilde{e}_{L}$
+ $\partial^{\mu}\tilde{e}_{R}^{*}\partial_{\mu}\tilde{e}_{R} - m^{2}\tilde{e}_{R}^{*}\tilde{e}_{R} - iqA^{\mu}[\tilde{e}_{R}^{*}\partial_{\mu}\tilde{e}_{R} - \tilde{e}_{R}\partial_{\mu}\tilde{e}_{R}^{*}] + q^{2}A^{\mu}A_{\mu}\tilde{e}_{R}^{*}\tilde{e}_{R}$
+ $\frac{1}{2}\overline{\lambda}i\gamma^{\mu}\partial_{\mu}\lambda - \sqrt{2}q\left(\tilde{e}_{L}^{*}\overline{\lambda}e_{L} - \tilde{e}_{R}^{*}\overline{\lambda}e_{R} + \text{h.c.}\right)$
- $\frac{1}{2}q^{2}\left(\tilde{e}_{L}^{*}\tilde{e}_{L} - \tilde{e}_{R}^{*}\tilde{e}_{R}\right)^{2}$

photon A^{μ} left-handed electron e_L right-handed electron e_R photino λ left-handed selectron \tilde{e}_L right-handed selectron \tilde{e}_R

 $\mathcal{L} = -\frac{1}{\Lambda} F_{\mu\nu} F^{\mu\nu} + \overline{e}i\gamma^{\mu}\partial_{\mu}e - m\overline{e}e - q\overline{e}\gamma^{\mu}eA_{\mu}$ $+\partial^{\mu}\tilde{e}_{L}^{*}\partial_{\mu}\tilde{e}_{L} - m^{2}\tilde{e}_{L}^{*}\tilde{e}_{L} - iA^{\mu}[\tilde{e}_{L}^{*}\partial_{\mu}\tilde{e}_{L} - \tilde{e}_{L}\partial_{\mu}\tilde{e}_{L}^{*}] + q^{2}A^{\mu}A_{\mu}\tilde{e}_{L}^{*}\tilde{e}_{L}$ $\overline{\left[R - \tilde{e}_R \partial_\mu \tilde{e}_R^*\right]} + q^2 A^\mu A_\mu \tilde{e}_R^* \tilde{e}_R$ $+ \partial^{\mu} \tilde{e}_{R}^{*} \partial_{\mu} \epsilon$ "spinor QED" $+ {1\over 2} \overline{\lambda} i \gamma^\mu \partial_\mu$ - h.c.) $-rac{1}{2}q^2\left(ilde{e}_L^*
ight)$

photon A^{μ} left-handed electron e_L right-handed electron e_R photino λ left-handed selectron \tilde{e}_L right-handed selectron \tilde{e}_R

Friday, August 2, 13

photon A^{μ} left-handed electron e_L right-handed electron e_R photino λ left-handed selectron \tilde{e}_L right-handed selectron \tilde{e}_R

$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \bar{e}i\gamma^{\mu}\partial_{\mu}e - m\bar{e}e - q\bar{e}\gamma^{\mu}eA_{\mu} + \partial^{\mu}\tilde{e}_{L}^{*}\partial_{\mu}\tilde{e}_{L} - m^{2}\tilde{e}_{L}^{*}\tilde{e}_{L} - iqA^{\mu}[\tilde{e}_{L}^{*}\partial_{\mu}\tilde{e}_{L} - \tilde{e}_{L}\partial_{\mu}\tilde{e}_{L}^{*}] + q^{2}A^{\mu}A_{\mu}\tilde{e}_{L}^{*}\tilde{e}_{L} + \partial^{\mu}\tilde{e}_{R}^{*}\partial_{\mu}\tilde{e}_{R} - m^{2}\tilde{e}_{R}^{*}\tilde{e}_{R} - iqA^{\mu}[\tilde{e}_{R}^{*}\partial_{\mu}\tilde{e}_{R} - \tilde{e}_{R}\partial_{\mu}\tilde{e}_{R}^{*}] + q^{2}A^{\mu}A_{\mu}\tilde{e}_{R}^{*}\tilde{e}_{R} + \frac{1}{2}\overline{\lambda}i\gamma^{\mu}\partial_{\mu}\lambda - \sqrt{2}q\left(\tilde{e}_{L}^{*}\overline{\lambda}e_{L} - \tilde{e}_{R}^{*}\overline{\lambda}e_{R} + \text{h.c.}\right) - \frac{1}{2}q^{2}\left(\tilde{e}_{L}^{*}\tilde{e}_{L} - \tilde{e}_{R}^{*}\tilde{e}_{R}\right)^{2}$$

photon A^{μ} left-handed electron e_L right-handed electron e_R photino λ left-handed selectron \tilde{e}_L right-handed selectron \tilde{e}_R

 $\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \bar{e}i\gamma^{\mu}\partial_{\mu}e - m\bar{e}e - q\bar{e}\gamma^{\mu}eA_{\mu}$ $+ \partial^{\mu}\tilde{e}_{L}^{*}\partial_{\mu}\tilde{e}_{L} - m^{2}\tilde{e}_{L}^{*}\tilde{e}_{L} - iqA^{\mu}[\tilde{e}_{L}^{*}\partial_{\mu}\tilde{e}_{L} - \tilde{e}_{L}\partial_{\mu}\tilde{e}_{L}^{*}] + q^{2}A^{\mu}A_{\mu}\tilde{e}_{L}^{*}\tilde{e}_{L}$ $+ \partial^{\mu}\tilde{e}_{R}^{*}\partial_{\mu}\tilde{e}_{R} - m^{2}\tilde{e}_{R}^{*}\tilde{e}_{R} - iqA^{\mu}[\tilde{e}_{R}^{*}\partial_{\mu}\tilde{e}_{R} - \tilde{e}_{R}\partial_{\mu}\tilde{e}_{R}^{*}] + q^{2}A^{\mu}A_{\mu}\tilde{e}_{R}^{*}\tilde{e}_{R}$ $+ \frac{1}{2}\overline{\lambda}i\gamma^{\mu}\partial_{\mu}\lambda - \sqrt{2}q\left(\tilde{e}_{L}^{*}\overline{\lambda}e_{L} - \tilde{e}_{R}^{*}\overline{\lambda}e_{R} + \text{h.c.}\right)$ $- \frac{1}{2}q^{2}\left(\tilde{e}_{L}^{*}\tilde{e}_{L} - \tilde{e}_{R}^{*}\tilde{e}_{R}\right)^{2}\left[-m_{L}^{2}\tilde{e}_{L}^{*}\tilde{e}_{L} - m_{R}^{2}\tilde{e}_{R}^{*}\tilde{e}_{R} - \frac{1}{2}M\overline{\lambda}\lambda\right]$

"soft supersymmetry-breaking terms"

photon A^{μ} left-handed electron e_L right-handed electron e_R photino λ left-handed selectron \tilde{e}_L right-handed selectron \tilde{e}_R

 $\begin{aligned} \mathcal{L} &= -\frac{1}{4} \overline{F_{\mu\nu} F^{\mu\nu} + \overline{e}i\gamma^{\mu}\partial_{\mu}e} - m\overline{e}e - q\overline{e}\gamma^{\mu}e\overline{A_{\mu}} \\ &+ \partial^{\mu}\tilde{e}_{L}^{*}\partial_{\mu}\tilde{e}_{L} - m^{2}\tilde{e}_{L}^{*}\tilde{e}_{L} - iqA^{\mu}[\tilde{e}_{L}^{*}\partial_{\mu}\tilde{e}_{L} - \tilde{e}_{L}\partial_{\mu}\tilde{e}_{L}^{*}] + q^{2}A^{\mu}A_{\mu}\tilde{e}_{L}^{*}\tilde{e}_{L} \\ &+ \partial^{\mu}\tilde{e}_{R}^{*}\partial_{\mu}\tilde{e}_{R} - m^{2}\tilde{e}_{R}^{*}\tilde{e}_{R} - iqA^{\mu}[\tilde{e}_{R}^{*}\partial_{\mu}\tilde{e}_{R} - \tilde{e}_{R}\partial_{\mu}\tilde{e}_{R}^{*}] + q^{2}A^{\mu}A_{\mu}\tilde{e}_{R}^{*}\tilde{e}_{R} \\ &+ \frac{1}{2}\overline{\lambda}i\gamma^{\mu}\partial_{\mu}\lambda - \sqrt{2}q\left(\tilde{e}_{L}^{*}\overline{\lambda}e_{L} - \tilde{e}_{R}^{*}\overline{\lambda}e_{R} + \text{h.c.}\right) \\ &- \frac{1}{2}q^{2}\left(\tilde{e}_{L}^{*}\tilde{e}_{L} - \tilde{e}_{R}^{*}\tilde{e}_{R}\right)^{2} - m_{L}^{2}\tilde{e}_{L}^{*}\tilde{e}_{L} - m_{R}^{2}\tilde{e}_{R}^{*}\tilde{e}_{R} - \frac{1}{2}M\overline{\lambda}\lambda \end{aligned}$

Softly-broken superQED

Names		spin 0	spin $1/2$	$SU(3)_C, SU(2)_L, U(1)_Y$		
squarks, quarks	Q	$(\widetilde{u}_L \ \ \widetilde{d}_L)$	$egin{array}{ccc} (u_L & d_L) \end{array}$	$(\ {f 3},\ {f 2}\ ,\ {f 1\over 6})$		
$(\times 3 \text{ families})$	\overline{u}	\widetilde{u}_R^*	u_R^\dagger	$(\overline{3},1,-rac{2}{3})$		
	\overline{d}	\widetilde{d}_R^*	d_R^\dagger	$(\overline{old 3}, {old 1}, {1\over 3})$		
sleptons, leptons	L	$(\widetilde{ u} \hspace{0.1in} \widetilde{e}_{L})$	$(u \ e_L)$	$({f 1}, {f 2}, -{1\over 2})$		
$(\times 3 \text{ families})$	\overline{e}	\widetilde{e}_R^*	e_R^\dagger	(1, 1, 1)		
Higgs, higgsinos	H_u	$\begin{pmatrix} H_u^+ & H_u^0 \end{pmatrix}$	$(\widetilde{H}^+_u \ \widetilde{H}^0_u)$	$({f 1}, {f 2}, + {1\over 2})$		
	H_d	$\begin{pmatrix} H^0_d & H^d \end{pmatrix}$	$(\widetilde{H}^0_d \ \widetilde{H}^d)$	$({f 1}, {f 2}, -{1\over 2})$		

Names	spin $1/2$	spin 1	$SU(3)_C, SU(2)_L, U(1)_Y$
gluino, gluon	\widetilde{g}	g	(8, 1, 0)
winos, W bosons	\widetilde{W}^{\pm} \widetilde{W}^{0}	$W^{\pm} W^0$	(1, 3, 0)
bino, B boson	\widetilde{B}^0	B^0	(1, 1, 0)

From Martin hep-ph/9709356

- Gauge interactions (covariant derivatives + D-terms)
- Superpotential (Yukawa terms + F-terms) $W = \epsilon_{ij} (-\hat{\mathbf{e}}_{\mathrm{R}}^{*} \mathbf{Y}_{E} \hat{\mathbf{l}}_{\mathrm{L}}^{i} \hat{H}_{1}^{j} - \hat{\mathbf{d}}_{\mathrm{R}}^{*} \mathbf{Y}_{D} \hat{\mathbf{q}}_{\mathrm{L}}^{i} \hat{H}_{1}^{j} + \hat{\mathbf{u}}_{\mathrm{R}}^{*} \mathbf{Y}_{U} \hat{\mathbf{q}}_{\mathrm{L}}^{i} \hat{H}_{2}^{j} - \mu \hat{H}_{1}^{i} \hat{H}_{2}^{j})$ $\mathcal{L}_{\mathrm{Yuk}} = -\frac{1}{2} \frac{\partial^{2} W}{\partial \phi_{i} \partial \phi_{j}} \overline{\psi}_{i} \psi_{j} \qquad \qquad \mathcal{L}_{\mathrm{F-terms}} = \left| \frac{\partial W}{\partial \phi_{i}} \right|^{2}$
- Soft terms

$$\begin{split} V_{\text{soft}} &= \epsilon_{ij} \big(-\tilde{\mathbf{e}}_{\text{R}}^* \mathbf{A}_E \mathbf{Y}_E \tilde{\mathbf{l}}_{\text{L}}^i H_1^j - \tilde{\mathbf{d}}_{\text{R}}^* \mathbf{A}_D \mathbf{Y}_D \tilde{\mathbf{q}}_{\text{L}}^i H_1^j + \tilde{\mathbf{u}}_{\text{R}}^* \mathbf{A}_U \mathbf{Y}_U \tilde{\mathbf{q}}_{\text{L}}^i H_2^j - B \mu H_1^i H_2^j + \text{h.c.} \big) \\ &+ H_1^{i*} m_1^2 H_1^i + H_2^{i*} m_2^2 H_2^i + \tilde{\mathbf{q}}_{\text{L}}^{i*} \mathbf{M}_Q^2 \tilde{\mathbf{q}}_{\text{L}}^i + \tilde{\mathbf{l}}_{\text{L}}^{1*} \mathbf{M}_L^2 \tilde{\mathbf{l}}_{\text{L}}^i + \tilde{\mathbf{u}}_{\text{R}}^* \mathbf{M}_U^2 \tilde{\mathbf{u}}_{\text{R}} + \tilde{\mathbf{d}}_{\text{R}}^* \mathbf{M}_D^2 \tilde{\mathbf{d}}_{\text{R}} \\ &+ \tilde{\mathbf{e}}_{\text{R}}^* \mathbf{M}_E^2 \tilde{\mathbf{e}}_{\text{R}} + \frac{1}{2} M_1 \tilde{B} \tilde{B} + \frac{1}{2} M_2 (\tilde{W}^3 \tilde{W}^3 + 2 \tilde{W}^+ \tilde{W}^-) + \frac{1}{2} M_3 \tilde{g} \tilde{g}. \end{split}$$

124 parameters (cfr. 18 in SM)

From Martin hep-ph/9709356

Neutralinos are linear combinations of neutral gauginos and higgsinos

$$\tilde{\chi}_{i}^{0} = N_{i1}\tilde{B} + N_{i2}\tilde{W}^{3} + N_{i3}\tilde{H}_{1}^{0} + N_{i4}\tilde{H}_{2}^{0},$$

$$\mathcal{M}_{\tilde{\chi}_{1,2,3,4}^{0}} = \begin{pmatrix} M_{1} & 0 & -\frac{g'v_{1}}{\sqrt{2}} & +\frac{g'v_{2}}{\sqrt{2}} \\ 0 & M_{2} & +\frac{gv_{1}}{\sqrt{2}} & -\frac{gv_{2}}{\sqrt{2}} \\ -\frac{g'v_{1}}{\sqrt{2}} & +\frac{gv_{1}}{\sqrt{2}} & \delta_{33} & -\mu \\ +\frac{g'v_{2}}{\sqrt{2}} & -\frac{gv_{2}}{\sqrt{2}} & -\mu & \delta_{44} \end{pmatrix}$$

Charginos are linear combinations of charged gauginos and higgsinos

Squarks and sleptons are linear combinations of interaction eigenstates

$$\tilde{f}_{\mathrm{L}a} = \sum_{k=1}^{6} \tilde{f}_k \Gamma_{FL}^{*ka},$$
$$\tilde{f}_{\mathrm{R}a} = \sum_{k=1}^{6} \tilde{f}_k \Gamma_{FR}^{*ka}.$$

$$\mathcal{M}_{\tilde{u}}^{2} = \begin{pmatrix} \mathbf{M}_{Q}^{2} + \mathbf{m}_{u}^{\dagger}\mathbf{m}_{u} + D_{\mathrm{LL}}^{u}\mathbf{1} & \mathbf{m}_{u}^{\dagger}(\mathbf{A}_{U}^{\dagger} - \mu^{*}\cot\beta) \\ (\mathbf{A}_{U} - \mu\cot\beta)\mathbf{m}_{u} & \mathbf{M}_{U}^{2} + \mathbf{m}_{u}\mathbf{m}_{u}^{\dagger} + D_{\mathrm{RR}}^{u}\mathbf{1} \end{pmatrix}, \\ \mathcal{M}_{\tilde{d}}^{2} = \begin{pmatrix} \mathbf{K}^{\dagger}\mathbf{M}_{Q}^{2}\mathbf{K} + \mathbf{m}_{d}\mathbf{m}_{d}^{\dagger} + D_{\mathrm{LL}}^{d}\mathbf{1} & \mathbf{m}_{d}^{\dagger}(\mathbf{A}_{D}^{\dagger} - \mu^{*}\tan\beta) \\ (\mathbf{A}_{D} - \mu\tan\beta)\mathbf{m}_{d} & \mathbf{M}_{D}^{2} + \mathbf{m}_{d}^{\dagger}\mathbf{m}_{d} + D_{\mathrm{RR}}^{d}\mathbf{1} \end{pmatrix}.$$

$$\mathcal{M}_{\tilde{\nu}}^{2} = \mathbf{M}_{L}^{2} + D_{LL}^{\nu} \mathbf{1}$$

$$\mathcal{M}_{\tilde{e}}^{2} = \begin{pmatrix} \mathbf{M}_{L}^{2} + \mathbf{m}_{e} \mathbf{m}_{e}^{\dagger} + D_{LL}^{e} \mathbf{1} & \mathbf{m}_{e}^{\dagger} (\mathbf{A}_{E}^{\dagger} - \mu^{*} \tan \beta) \\ (\mathbf{A}_{E} - \mu \tan \beta) \mathbf{m}_{e} & \mathbf{M}_{E}^{2} + \mathbf{m}_{e}^{\dagger} \mathbf{m}_{e} + D_{RR}^{e} \mathbf{1} \end{pmatrix}.$$

$$D_{LL}^{f} = m_{Z}^{2} \cos 2\beta (T_{3f} - e_{f} \sin^{2} \theta_{W}),$$

$$D_{RR}^{f} = m_{Z}^{2} \cos (2\beta) e_{f} \sin^{2} \theta_{W}$$

Intersections of supersymmetric models

Supersymmetric dark matter

Neutralinos (the most fashionable/studied WIMP)

Goldberg 1983; Ellis, Hagelin, Nanopoulos, Olive, Srednicki 1984; etc.

Sneutrinos (also WIMPs)

Falk, Olive, Srednicki 1994; Asaka, Ishiwata, Moroi 2006; McDonald 2007; Lee, Matchev, Nasri 2007; Deppisch, Pilaftsis 2008; Cerdeno, Munoz, Seto 2009; Cerdeno, Seto 2009; etc.

Gravitinos (SuperWIMPs)

Feng, Rajaraman, Takayama 2003; Ellis, Olive, Santoso, Spanos 2004; Feng, Su, Takayama, 2004; etc.

Axinos (SuperWIMPs)

Tamvakis, Wyler 1982; Nilles, Raby 1982; Goto, Yamaguchi 1992; Covi, Kim, Kim, Roszkowski 2001; Covi, Roszkowski, Ruiz de Austri, Small 2004; etc.

Supersymmetric superWIMPs

Interaction scale with ordinary matter suppressed by large mass scale Axino dark matter ($f_{PO} \sim 10^{11} \text{GeV}$)

thermally and non-thermally produced in early universe

 $m_{\tilde{a}} \gtrsim 0.1 \text{ MeV}$

scattering cross section with ordinary matter

$$\sigma \approx (m_W/f_{PQ})^2 \sigma_{\text{weak}} \approx 10^{-18} \sigma_{\text{weak}} \approx 10^{-56} \text{ cm}^2$$

Gravitino dark matter ($m_{\rm Pl} \sim 10^{19} {\rm GeV}$)

thermally and non-thermally produced in early universe $m_{3/2} \approx 1 \,\, {\rm GeV}{-}700 \,\, {\rm GeV}$

scattering cross section with ordinary matter

$$\sigma \approx 10^{-72} \text{ cm}^2$$

Neutralino dark matter

	Diagrams					
Process	S	t	u	p		
$\chi_i^0 \chi_j^0 \to B_m^0 B_n^0$	$H^0_{1,2,3}, Z$	χ_k^0	χ_l^0			
$\chi_i^0 \chi_j^0 \to B_m^- B_n^+$	$H^0_{1,2,3}, Z$	χ_k^+	χ_l^+			
$\chi^0_i \chi^0_j \to f \bar{f}$	$H^0_{1,2,3}, Z$	$\tilde{f}_{1,2}$	$\tilde{f}_{1,2}$			
$\chi_i^+ \chi_j^0 \to B_m^+ B_n^0$	H^+, W^+	χ_k^0	χ_l^+			
$\chi_i^+ \chi_j^0 \to f_{\rm u} \bar{f}_{\rm d}$	H^+, W^+	$\tilde{f}_{\mathrm{d}_{1,2}}'$	$\tilde{f}'_{\mathrm{u}_{1,2}}$			
$\overline{\chi_i^+\chi_j^- \to B_m^0 B_n^0}$	$H^0_{1,2,3}, Z$	χ_k^+	χ_l^+			
$\chi_i^+\chi_j^- \to B_m^+B_n^-$	$H^0_{1,2,3},Z,\gamma$	χ_k^0				
$\chi_i^+ \chi_j^- \to f_{\rm u} \bar{f}_{\rm u}$	$H^0_{1,2,3}, Z, \gamma$	$\tilde{f}'_{\mathrm{d}_{1,2}}$				
$\chi_i^+ \chi_j^- \to \bar{f}_{\rm d} f_{\rm d}$	$H^0_{1,2,3}, Z, \gamma$	$\tilde{f}'_{\mathrm{u}_{1,2}}$				
$\chi_i^+\chi_j^+ \to B_m^+ B_n^+$		χ_k^0	χ_l^0			
$\tilde{f}_i \chi^0_j \to B^0 f$	f	$\tilde{f}_{1,2}$	χ_l^0			
$\tilde{f}_{\mathrm{d}_i}\chi_j^0 \to B^- f_{\mathrm{u}}$	$f_{ m d}$	$\tilde{f}_{\mathrm{u}_{1,2}}$	χ_l^+			
$\tilde{f}_{\mathrm{u}_i}\chi_j^0 \to B^+ f_\mathrm{d}$	$f_{ m u}$	$\tilde{f}_{\mathrm{d}_{1,2}}$	χ_l^+			
$\tilde{f}_{\mathrm{d}_i}\chi_j^+ \to B^0 f_{\mathrm{u}}$	$f_{ m u}$	$\tilde{f}_{\mathrm{d}_{1,2}}$	χ_l^+			
$\tilde{f}_{\mathrm{u}_i}\chi_j^+ \to B^+ f_{\mathrm{u}}$		$\tilde{f}_{\mathrm{d}_{1,2}}$	χ_l^0			
$\tilde{f}_{\mathrm{d}_i}\chi_j^+ \to B^+ f_{\mathrm{d}}$	f_{u}		χ_l^0			
$\tilde{f}_{\mathrm{u}_i}\chi_j^- \to B^0 f_\mathrm{d}$	$f_{ m d}$	$\tilde{f}_{\mathrm{u}_{1,2}}$	χ_l^+			
$\tilde{f}_{\mathbf{u}_i}\chi_j^- \to B^- f_{\mathbf{u}}$	$f_{ m d}$		χ_l^0			
$\tilde{f}_{\mathrm{d}_i}\chi_j^- \to B^- f_{\mathrm{d}}$		$\tilde{f}_{\mathrm{u}_{1,2}}$	χ_l^0			
$\tilde{f}_{\mathrm{d}_i}\tilde{f}^*_{\mathrm{d}_j} \to B^0_m B^0_n$	$H^0_{1,2,3}, Z, g$	$\tilde{f}_{\mathrm{d}_{1,2}}$	$\tilde{f}_{\mathrm{d}_{1,2}}$	p		
$\tilde{f}_{\mathrm{d}_i}\tilde{f}^*_{\mathrm{d}_j} \to B^m B^+_n$	$H^0_{1,2,3}, Z, \gamma$	$\tilde{f}_{\mathrm{u}_{1,2}}$		p		
$\tilde{f}_{\mathrm{d}_{i}}\tilde{f}_{\mathrm{d}_{j}}^{\prime*} \to f_{\mathrm{d}}^{\prime\prime}\bar{f}_{\mathrm{d}}^{\prime\prime\prime}$	$H^0_{1,2,3}, Z, \gamma, g$	χ^0_k, \tilde{g}				
$\tilde{f}_{\mathrm{d}_{i}}\tilde{f}_{\mathrm{d}_{j}}^{\prime*} \to f_{\mathrm{u}}^{\prime\prime}\bar{f}_{\mathrm{u}}^{\prime\prime\prime}$	$H^0_{1,2,3}, Z, \gamma, g$	χ_k^+				
$\tilde{f}_{\mathrm{d}_i}\tilde{f}'_{\mathrm{d}_j} \to f_{\mathrm{d}}f'_{\mathrm{d}}$		χ^0_k, \tilde{g}	χ^0_l, \tilde{g}			
$\tilde{f}_{\mathbf{u}_i}\tilde{f}^*_{\mathbf{d}_j} \to B^+_m B^0_n$	H^+, W^+	$\tilde{f}_{\mathrm{d}_{1,2}}$	$\tilde{f}_{\mathrm{u}_{1,2}}$	p		
$\tilde{f}_{\mathrm{u}_i}\tilde{f}_{\mathrm{d}_j}^{\prime*} \to f_{\mathrm{u}}^{\prime\prime}\bar{f}_{\mathrm{d}}^{\prime\prime\prime}$	H^+, W^+	$\chi^0_k, ilde g$				
$\tilde{f}_{\mathrm{u}_i}\tilde{f}'_{\mathrm{d}_j} \to f''_{\mathrm{u}}f'''_{\mathrm{d}}$		χ^0_k, \tilde{g}	χ_l^+			

Cosmic density

Thousands of annihilation (and coannihilation) processes

Use publicly-available computer codes, e.g. DarkSUSY, micrOMEGAs

Neutralino dark matter: minimal supergravity

Range of $\Omega_{\chi}h^2$ for millions of points in minimal supergravity (mSUGRA)

Ted Baltz 2005
The density of points in parameter space

- Density of points depends on priors in parameters
- Priors describe our beliefs in the value of the model parameters
- What is a sensible prior for M_2 , say?
 - Flat in M₂? Flat in log(M₂)? Exponential in arctan(M₂)?
- Example: a scan in parameter space using an anthropic prior

Neutralino dark matter: minimal supergravity

Narrow regions of $\Omega_{\chi}h^2$ within the WMAP range in minimal supergravity (mSUGRA)

Edsjo et al 2003

Neutralino dark matter: minimal supergravity

Only in special regions the density is not too large.

Friday, August 2, 13

Neutralino dark matter: impact of LHC

Cahill-Rowell et al 1305.6921

"the only pMSSM models remaining [with neutralino being 100% of CDM] are those with bino coannihilation" pMSSM (phenomenological MSSM) $\mu, m_A, \tan \beta, A_b, A_t, A_{\tau}, M_1, M_2, M_3,$ $m_{Q_1}, m_{Q_3}, m_{u_1}, m_{d_1}, m_{u_3}, m_{d_3},$ $m_{L_1}, m_{L_3}, m_{e_1}, m_{e_3}$ (19 parameters)

Neutralino dark matter: impact of LHC

Kowalska et al 1211.1693 [PRD 87(2013)115010]

CNMSSM: Alive and well!

NMSSM (Next-to-MSSM) $W = \lambda SH_u H_d + \frac{\kappa}{3}S^3 + (MSSM Yukawa terms),$ $V_{\text{soft}} = m_{H_u}^2 |H_u|^2 + m_{H_d}^2 |H_d|^2 + m_S^2 |S|^2$ $+ \left(\lambda A_\lambda SH_u H_d + \frac{1}{3}\kappa A_\kappa S^3 + \text{H.c.}\right),$

Constrained NMSSM

 $m_0, m_{1/2}, A_0, \tan \beta, \lambda, \operatorname{sgn}(\mu_{eff}),$ GUT & radiative EWSB

Marginalized 2D posterior PDF of global analysis including LHC, WMAP, $(g-2)_{\mu}$, $B_s \rightarrow \mu^+ \mu^-$ etc.

The strong CP problem

In QCD, the neutron electric dipole moment d_n should be ~10⁻¹⁶ ecm, but experimentally $d_n < 1.1 \times 10^{-26}$ ecm

The Peccei-Quinn solution

Introduce a new $U(I)_{PQ}$ symmetry and a new field to break it spontaneously. The remaining pseudoscalar Goldstone boson is the axion. It acquires mass through QCD instanton effects.

Axions as solution to the strong CP problem The strong CP problem

Vacuum potentials $A_{\mu} = i\Omega \partial_{\mu} \Omega^{-1}$ with $\Omega \to e^{2\pi i n}$ as $r \to \infty$

Vacuum state $|\theta\rangle = \sum_{n} e^{-in\theta} |0\rangle$

New term in lagrangian $\mathcal{L}_{\theta} = \theta \frac{g^2}{32\pi^2} F_a^{\mu\nu} \tilde{F}_{a\mu\nu}$

 \mathcal{L}_{θ} violates P and T but conserves C, thus produces a neutron electric dipole moment $d_n \approx e(m_q/M_n^2)\theta$

Experimentally $d_n < 1.1 \times 10^{-26} ecm$ so $\theta < 10^{-9} - 10^{-10}$

Why θ should be so small is the strong CP problem

The Peccei-Quinn solution

axion Introducing a $U(I)_{PQ}$ symmetry replaces $\theta_{\text{total}} = \theta + \arg \det M_{\text{quark}} \implies \theta(x) = a(x)/f_a$ static CP-violating angle dynamic CP-conserving field New lagrangian $\mathcal{L}_a = -\frac{1}{2}\partial^{\mu}a\partial_{\mu}a + \frac{a}{f_a}\frac{g^2}{32\pi^2}F_a^{\mu\nu}\tilde{F}_{a\mu\nu} + \mathcal{L}_{int}(a)$ Before QCD phase transition, $\langle \theta \rangle$ can be anything After QCD phase transition, instanton effects generate $V(\theta) = m_a^2 f_a^2 (1 - \cos \theta)$ and $\langle \theta \rangle = 0$ dynamically

Wilczek realized this leads to a very light pseudoscalar particle he called the "axion" after the name of a famous laundry detergent

Axions

"Whenever you come up with a good idea, somebody tries to copy it." (Axion Commercial with Arthur Godfrey, 1968)

Constraints from laboratory searches and astrophysics

Peccei & Quinn had 2 Higgs doublets and $f_a \sim 200 \text{ GeV}$ (electroweak), with an axion-quark coupling too high and quickly excluded by laboratory searches

Raffelt, Rosenberg 2012

Beyond Peccei-Quinn: the invisible axion

Kim (1979) Shifman,Vainshtein, Zakharov (1980)

I Higgs doublets, I Higgs singlet, I exotic quark (SU(2)_w-singlet SU(3)_c-triplet)

 $\mathcal{L}_{y} = f \overline{Q}_{L} \sigma Q_{R} + f * \overline{Q}_{R} \sigma * Q_{L}$

Judicious choice of $U(1)_{PQ}$ charges

$$V(\varphi,\sigma) = -\mu_{\varphi}^{2}\varphi^{\dagger}\varphi - \mu_{\sigma}^{2}\sigma^{*}\sigma + \lambda_{\varphi}(\varphi^{\dagger}\varphi)^{2}$$

+ $\lambda_{\sigma}(\sigma * \sigma)^2$ + $\lambda_{\varphi\sigma} \varphi^+ \varphi \sigma * \sigma$.

Axion not coupled to quarks at tree level

Zhitnistki (1980) Dine, Fischler, Srednicki (1981)

2 Higgs doublets, I Higgs singlet

 $\mathcal{L}_{Y} = G_{u}(\bar{u}\bar{d})_{L}\phi_{u}u_{R} + G_{d}(\bar{u}\bar{d})_{L}\phi_{d}d_{R} + h.c.$

Judicious choice of $U(I)_{PQ}$ charges

$$V(\phi, \phi_{\rm u}, \phi_{\rm d}) = \lambda_{\rm u} (|\phi_{\rm u}|^2 - V_{\rm u}^2)^2 + \lambda_{\rm d} (|\phi_{\rm d}|^2 - V_{\rm d}^2)^2 + \lambda (|\phi|^2 - V^2)^2 + (a|\phi_{\rm u}|^2 + b|\phi_{\rm d}|^2)|\phi|^2$$
(5)
+ $c(\phi_{\rm u}^i \epsilon_{ij} \phi_{\rm d}^j \phi^2 + \text{h.c.}) + d|\phi_{\rm u}^i \epsilon_{ij} \phi_{\rm d}^j|^2 + e|\phi_{\rm u}^* \phi_{\rm d}|^2 .$

Axion-quark couplings suppressed by $200~{\rm GeV}/\langle\phi\rangle\ll 1$

Beyond Peccei-Quinn: the invisible axion

Model-dependent axion-photon coupling

$$L_{a\gamma\gamma} = \frac{\alpha}{2\pi f_a} (C - C') a \mathbf{E} \cdot \mathbf{B}$$

$$C' = \frac{2}{3} \frac{m_u m_d + 4m_d m_s + m_s m_u}{m_u m_d + m_d m_s + m_s m_u} = 1.93 \pm 0.04$$
$$C_{\text{DFSZ}} = \frac{8}{3}$$
$$C_{\text{KSVZ}} = 6Q^2$$

Model-dependent axion-fermion coupling

$$\mathcal{L}_{Aff} = \frac{C_f}{2f_A} \bar{\Psi}_f \gamma^\mu \gamma_5 \Psi_f \partial_\mu \phi \qquad C_e^{\text{DFSZ}} = \frac{\cos^2 \beta}{3} \qquad C_e^{\text{KSVZ}} \ll 1$$

See e.g. Srednicki hep-th/0210172, Review of Particle Properties

Friday, August 2, 13

Axions as dark matter

Hot

Produced thermally in early universe Important for $m_a > 0.1 eV$ ($f_a < 10^8$), mostly excluded by astrophysics

Cold

Produced by coherent field oscillations around mimimum of $V(\theta)$ (Vacuum realignment)

 Produced by decay of topological defects

 (Axionic string decays)

 Still a very complicated and

 uncertain calculation!

 uncertain calculation!

Friday, August 2, 13

Axion cold dark matter parameter space

fa	Peccei-Quinn symmetry breaking scale
N	Peccei-Quinn color anomaly
N_d	Number of degenerate QCD vacua
Kim-Shifman-Vainshtein-Zakharov Dine-Fischler-Srednicki-Zhitnistki	Couplings to quarks, leptons, and photons
H_{I}	Expansion rate at end of inflation
$ heta_i$	Initial misalignment angle
Harari-Hagmann-Chang-Sikivie Davis-Battye-Shellard	Axionic string parameters

Assume $N = N_d = 1$ and show results for KSVZ and HHCS string network

Thus 3 free parameters f_a , θ_i , H_I and one constraint $\Omega_a = \Omega_{CDM}$

Cold axion production in cosmology

Vacuum realignment

- Initial misalignment angle θ_i
- Coherent axion oscillations start at temperature T_1

 $3H(T_1)=m(T_1)$

Hubble expansion parameter non-standard expansion histories differ in the function H(T) T-dependent axion mass axions acquire mass through instanton effects at $T < \Lambda \approx \Lambda_{\rm QCD}$

• Density at T_1 is $n_a(T_1) = \frac{1}{2}m_a(T_1)f_a^2\chi\langle\theta_i^2f(\theta_i)\rangle$

Anharmonicity correction $f(\theta)$

axion field equation has anharmonic terms $\ddot{\theta} + 3H(T)\dot{\theta} + m_a^2(T)\sin\theta = 0$

• Conservation of comoving axion number gives present density Ω_a

Cold axion production in cosmology

Axionic string decays

• Energy density ratio (string decay/misalignment)

Fast-oscillating strings (Harari-Hagmann-Chang-Sikivie)

$$=\frac{1-\beta}{3\beta-1}0.8$$

r

$$\begin{split} \xi &= \frac{1}{4c^2} \left(2 - 3\beta + \sqrt{(4c+0)\beta^2 - 12\beta + 4} \right)^2 \qquad \text{with } a(t) \propto t^\beta \\ c &= (1 + 2\sqrt{\xi^{\text{std}}})/(4\xi^{\text{std}}) \end{split}$$

Standard cosmology

Axion CDM - Standard cosmology

Axion condensate

- Axions thermalize due to gravitational interactions
- An axionic Bose-Einstein condensate is formed at $T_{\gamma} \sim 500 \text{ eV} \left(\frac{f_a}{10^{12} \text{ GeV}}\right)^{1/2}$
- Dark halos are vortices of axion BEC
- The baryon angular momentum distributions are better explained than in standard CDM

Sikivie, Yang 2009; Sikivie, Banik 2013

Bose-Einstein Condensate If (identical bosons, high phase-space density, conserved total number, thermalized) then {most of them go to the lowest energy state}

Caveats on cosmic density

"If you want to lie and not be caught, testify about far away things."

Cosmic density: caveats

- Velocity dependence of cross section
 - p-waves, resonances, Sommerfeld enhancement
- Non-thermal production of dark matter particles
 - from decay of heavy particles
- Non-standard expansion before nucleosynthesis
 - low-temperature reheating, kination

Cosmic density of thermal WIMPs

- In general, (σv) is a complicated function of the WIMP mass m and the WIMP velocity v, including resonances, thresholds, and coannihilations.
- At small v, $\langle \sigma v \rangle$ can be expanded as

$$\langle \sigma v \rangle = a + bv^2 + \cdots$$
 s-wave $\langle \sigma v \rangle = bv^2 + cv^4 + \cdots$ p-wave

(These expansions are not good near a resonance or threshold.)

Cosmic density of thermal WIMPs

$\langle \sigma v \rangle$ =const required for right cosmic density

Steigman, Dasgupta, Beacom 2012 Gondolo, Steigman (in prep.)

Cosmic density of WIMPs: caveats

 σv in galaxies (entering gamma-ray predictions) may be different from $\sigma v \simeq 3 \times 10^{-26} {\rm cm}^3/{\rm s}$

Example

lightest neutralino in minimal supersymmetric standard model

Resonances, p-waves, coannihilations brake simplest relation between cosmic density and annihilation cross section

Cosmic density: caveats

- Velocity dependence of cross section
 - p-waves, resonances, Sommerfeld enhancement
- Non-standard expansion before nucleosynthesis
 - low-temperature reheating, kination
- Non-thermal production of dark matter particles
 - from decay of heavy particles

The expansion of the Universe

The Friedman equation governs the evolution of the scale factor a

$$H^2 = \frac{8\pi}{3M_{\rm Pl}^2}\,\rho$$

 $H = \dot{a}/a$ = Hubble parameter = expansion rate ρ =total energy density

Dominant dependence of ρ on a determines the expansion rate

Standard cosmology

Non-standard cosmology

Low Temperature Reheating cosmology

Turner 1983, Scherrer, Turner 1983, Dine, Fischler 1983

Kination cosmology

Ford 1987

How to get a non-standard abundance

• **Decrease** the DM density by producing photons after freeze-out [entropy dilution].

We only measure the ratio of DM and photon densities at the present cosmological epoch, so increasing the number of photons is tantamount to decreasing the DM density

How to get a non-standard abundance

- **Decrease** the DM density by producing photons after freeze-out [entropy dilution].
- Increase the density by creating DM from particle decays (or topological defects)
 [non-thermal production], or by increasing the expansion rate at freeze-out [quintessence, etc.].

Freeze-out occurs when the annihilation rate equals the expansion rate. Since the annihilation rate is proportional to the particle density, a higher expansion rate means a higher annihilation rate, which means a higher density.

How to get a non-standard abundance

• **Decrease** the DM density by producing photons after freeze-out [entropy dilution].

Increase the density by creating DM from particle decays (or topological defects)
 [non-thermal production], or by increasing the expansion rate at freeze-out [quintessence, etc.].

..... Barrow 1982; Kamionkowski, Turner 1990; McDonald 1991; Jeannerot, Zhang, Brandenberger 1999; Chung, Kolb, Riotto 1999; Lin et al 2000; Moroi, Randall 2000; Giudice, Kolb, Riotto 2001; Salati 2002; Fornengo, Kolb, Scopel 2002; Allahverdi, Drees 2002, 2004; Fujii, Hamaguchi 2002; Fujii, Ibe 2003; Profumo, Ullio 2003; Pallis 2004; Catena et al 2004, 2007; Okada, Seto 2004; Gelmini, Gondolo 2006; Gelmini et al. 2006, 2007; Donato et al 2007; Drees et al 2006, 2007;

Decrease the DM density

- Produce entropy after dark matter freeze-out
 - add massive particles that decay or annihilate late (e.g. NLSP,)

Analogous to $e^++e^- \rightarrow \gamma + \gamma$ at $T \sim I$ MeV, which increases the photon temperature and entropy, while the neutrino temperature is unaffected, $T_{\nu} = (4/11)^{1/3} T_{\nu}.$

This decreases the neutrino density with respect to the photon density,

$$n_{v} = (4/11) n_{\gamma}$$
Increase the DM density

- Increase the expansion rate at freeze-out by adding more energy to the Universe
 - add a scalar field, e.g. scalar-tensor gravity, quintessence, inflation
- or by modifying the Friedmann equation
 - add extra dimensions, e.g. braneworld models like Randall-Sundrum II
- Alternatively, produce DM from decays of heavier particles

There are multiple ways to produce and destroy WIMPs

Example

neutralinos in low reheating temperature cosmologies can always have the correct cosmic density

There are multiple ways to produce and destroy WIMPs

Example

neutralinos in low reheating temperature cosmologies can always have the correct cosmic density

There are multiple ways to produce and destroy WIMPs

Example

neutralinos in low reheating temperature cosmologies can always have the correct cosmic density

There are multiple ways to produce and destroy WIMPs

There are multiple ways to produce and destroy WIMPs

Example

neutralinos in low reheating temperature cosmologies can always have the correct cosmic density

Non-thermal supersymmetric singlet

Allahverdi, Dutta, Mohapatra, Sinha 2013

MSSM + singlet superfield + isosinglet color-triplet superfields

Dark matter and baryon asymmetry generated in moduli decays at low reheating temperatures

Model can accommodate light WIMPs as in CDMS-Si, etc.

Axion CDM - Standard cosmology

Axion CDM - Low Temp. Reheating cosmology

Axion CDM - Kination cosmology

Sterile neutrinos

Active-sterile neutrino mixing

Standard model + right-handed neutrinos

$$-\mathcal{L}_m = y_{\nu} v \overline{\nu}_L \nu_R + \frac{1}{2} M \overline{\nu_R^c} \nu_R + \text{h.c.} = \frac{1}{2} \begin{bmatrix} \overline{\nu_L^c} & \overline{\nu_R} \end{bmatrix} \begin{bmatrix} 0 & y_{\nu} v \\ y_{\nu} v & M \end{bmatrix} \begin{bmatrix} \overline{\nu_L} \\ \overline{\nu_R^c} \end{bmatrix} + \text{h.c.}$$

Neutrino mass eigenstates are obtained by diagonalization

$$-\mathcal{L}_m = \frac{1}{2}m_a\overline{\nu}_a\nu_a + \frac{1}{2}m_s\overline{\nu}_s\nu_s$$

$$\begin{cases} \nu_a = \cos \theta \, \nu_L - \sin \theta \, \nu_R^c \\ \nu_s = \sin \theta \, \nu_L + \cos \theta \, \nu_R^c \end{cases}$$
mixing angle

Active-sterile neutrino mixing

If
$$y_{\nu}v \ll M$$
, then $m_s \simeq M$, $m_a \simeq \frac{y_{\nu}^2 v^2}{M} \ll M$, $\theta \simeq \frac{y_{\nu}v}{M} \ll 1$
seesaw mechanis

 v_a are \approx LH, light, with tree-level couplings (active neutrinos) v_s are \approx RH, heavy, with no tree-level coupling (sterile neutrinos)

Neutrinos produced in weak interactions are left-handed, while mass eigenstates contain a (tiny) right-handed component

Oscillations between active and sterile neutrinos

Neutrino mixing

Limits on sterile neutrino mixing with ν_e, ν_μ, ν_τ

Kusenko 0906.2968

Neutrino mixing

Friday, August 2, 13

Sterile neutrino dark matter

- Mass > 0.3 keV (Tremaine-Gunn bound)
- Sterile neutrinos are produced from oscillations of active neutrinos in the early universe (T~100 MeV) Dodelson, Widrow 1994
- In the presence of a large lepton asymmetry, oscillation production is enhanced *Shi*, *Fuller 1999*
- In a model with three generations of sterile neutrinos (vMSM), decay of the two heavy neutrinos can generate a lepton asymmetry then converted to baryon asymmetry, and the light sterile neutrino can be the dark matter

Laine, Shaposhnikov 2008

Asaka, Laine, Shaposhnikov 2007

Limits on sterile neutrino dark matter

The main decay mode of keV sterile neutrinos ($v_s \rightarrow 3v$) is undetectable

Radiative decay of sterile neutrinos $\nu_s \rightarrow \gamma \nu_a$

Limits on sterile neutrino dark matter

Sterile neutrinos are warm dark matter

Abazajian 2005

Small scale structure is erased

Limits on sterile neutrino dark matter

Laine, Shaposhnikov 2008

Friday, August 2, 13

Light WIMPs with light Z'bosons

Break the annihilation/scattering relation

For example, for a \sim 4 GeV/c² dark matter neutrino, the scattering cross section is

$$\sigma_{\nu n} \simeq 0.01 \frac{\langle \sigma v \rangle}{c} \simeq 10^{-38} \,\mathrm{cm}^2$$

Break the annihilation/scattering relation

Resonant when $m_v \approx m_Z/2$

$$\sigma_{\nu n} \simeq \frac{0.02}{1 + m_n/m_\nu} \left(1 - \frac{4m_\nu^2}{m_Z^2} \right)^2 \frac{\langle \sigma v \rangle}{c}$$

 σ_{vn} would perhaps match DAMA/CoGeNT if m_Z were $\approx 2m_v$ Try a new particle X and a new vector boson Z'

A new particle X and a new gauge boson Z'

Leptophobic Z'

Gondolo, Ko, Omura 2011

no coupling to leptons to avoid stringent LEP and Tevatron bounds

Scalar X or Dirac X

but could be something else

Elastic scattering

Conserved vector current

nucleus-Z' interaction term

 $g'Q'_N Z'_\mu \overline{N} \gamma^\mu N$

 $Q'_N = ZQ'_p + (A - Z)Q'_n$ $Q'_p = 2Q'_u + Q'_d$ $Q'_n = Q'_u + 2Q'_d$

Scattering cross section

$$\sigma_{XN} = \frac{16\pi\alpha'^2}{m_{Z'}^4} Q_X'^2 Q_N'^2 \left(\frac{m_X m_N}{m_X + m_N}\right)^2$$

Once m_X and σ_{Xp} are determined in direct dark matter detection experiments, this expression directly constrains $m_{Z'}/g'$. $Q'_N=1$, $Q'_X\sim1$, $m_X\sim7$ GeV, $\sigma_{Xp}\sim10^{-40}$ cm² leads to $m_{Z'}/g'\sim1$ TeV.

Relic density

X-antiX pairs annihilate to quarks and Z' pairs

$$\sigma_{\rm ann} = \sum_{f} \sigma_{X\overline{X} \to f\overline{f}} + \sigma_{X\overline{X} \to Z'Z'}$$

Relic density calculation using DarkSUSY for non-SUSY model

$$\frac{dn}{dt} + 3Hn = -\langle \sigma_{\rm ann} v \rangle \left(n^2 - n_{\rm eq}^2 \right)$$

invariant rate $W = 8Ep\sigma_{ann}$

Solve $\Omega(\alpha', m_{Z'}, m_X) = \Omega_{cdm}$ for α' , and plug into $\sigma_{XN}(\alpha', m_{Z'}, m_X)$

Standard Model plus X, Z', and extra Higgs φ

 $\mathcal{L} = \mathcal{L}_{\mathrm{SM}} + \mathcal{L}'_{\mathrm{scalar}}$

$$\begin{aligned} \mathcal{L}_{\text{scalar}}' &= D_{\mu} X^{\dagger} D^{\mu} X - m_{X}^{2} X^{\dagger} X - \frac{\lambda_{X}}{4} (X^{\dagger} X)^{2} \\ &+ D_{\mu} \varphi^{\dagger} D^{\mu} \varphi - m_{\varphi}^{2} \varphi^{\dagger} \varphi - \frac{\lambda_{\varphi}}{4} (\varphi^{\dagger} \varphi)^{2} \\ &- \frac{\lambda_{HX}}{2} X^{\dagger} X H^{\dagger} H - \frac{\lambda_{X\varphi}}{2} \varphi^{\dagger} \varphi X^{\dagger} X \\ &- \frac{\lambda_{H\varphi}}{2} \varphi^{\dagger} \varphi H^{\dagger} H - \frac{1}{4} Z_{\mu\nu}' Z'^{\mu\nu} \end{aligned}$$

$$D_{\mu} = D_{\mu}^{\rm SM} - iQ'g'Z'_{\mu}$$

- This type of model has been studied by Wise et al for U(1)'=U(1)_B and Q'_X fixed by a Yukawa coupling that allows non-SM charged particles to decay.
- Stability of X requires $\langle X \rangle = 0$ to avoid e.g. $X \rightarrow H^*H$ arising from $\lambda_{HX} \langle X \rangle X H^*H$.
- Terms like $X\phi^{-Q'_X/Q'_{\phi}}$ arise from one-loop and non-renormalizable corrections.
 - $Q'_X = \pm 2Q'_f$, $3Q'_f$ forbids renormalizable terms,
 - non-renormalizable terms cannot be completely forbidden but can be made such that the DM particle is very long lived

 XX^* pairs annihilate to quarks and Z' pairs

$$\sigma_{XX^* \to f\overline{f}} = \frac{8\pi Q_X'^2 Q_f'^2 \alpha'^2 \beta \beta' (2E^2 + m_f^2)}{(4E^2 - m_{Z'}^2)^2 + m_{Z'}^2 \Gamma_{Z'}^2} \qquad \qquad \mbox{\rlapp-wave}$$

$$\sigma_{XX^* \to Z'Z'} = \frac{\pi Q_X'^4 \alpha'^2}{E^2} \frac{w}{v} \left[\frac{32 - 24z^2 + 5z^4 + 16v^2}{4 - 4z^2 + z^4 + 4v^2} - \frac{16 - 8z^2 - z^4 + 16v^2(2 - z^2)}{4vw(1 + v^2 + w^2)} \ln \frac{1 + (v + w)^2}{1 + (v - w)^2} \right]$$

We neglect H exchange contributions on the basis that H is heavy or its couplings $\lambda_{X\phi}$ and λ_{HX} are small.

$$\Gamma_{Z'} = \frac{\alpha'}{m_{Z'}} \sum_{f} Q_f'^2 (m_{Z'}^2 + 2m_f^2) \sqrt{1 - \frac{4m_f^2}{m_{Z'}^2}}$$

$$+ \frac{\alpha'}{12m_{Z'}}Q_X'^2(m_{Z'}^2 - 4m_X^2)\sqrt{1 - \frac{4m_X^2}{m_{Z'}^2}}$$

Gondolo, Ko, Omura 2011

Dirac X, leptophobic Z'

Standard Model plus X, Z', and extra Higgs φ

 $\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}'_{Dirac}$

$$\begin{aligned} \mathcal{L}'_{\text{Dirac}} &= \overline{\psi}_X \left(i \partial \!\!\!/ + g' Q'_X Z' - m_X \right) \psi_X \\ &+ D_\mu \varphi^\dagger \, D^\mu \varphi - m_\varphi^2 \varphi^\dagger \varphi - \frac{\lambda_\varphi}{4} (\varphi^\dagger \varphi)^2 \\ &- \frac{\lambda_{H\varphi}}{2} \varphi^\dagger \varphi H^\dagger H - \frac{1}{4} Z'_{\mu\nu} Z'^{\mu\nu} \end{aligned}$$

$$D_{\mu} = D_{\mu}^{\rm SM} - iQ'g'Z'_{\mu}$$

Dirac X, leptophobic Z'

 XX^* pairs annihilate to quarks and Z' pairs

$$\begin{split} \sigma_{X\overline{X}\to f\overline{f}} &= \frac{4\pi Q_X'^2 Q_f'^2 \alpha'^2}{E^2} \frac{\beta'}{\beta} \frac{(2E^2 + m_f^2)(2E^2 + m_X^2)}{(4E^2 - m_{Z'}^2)^2 + m_{Z'}^2 \Gamma_{Z'}^2} \qquad \text{s-wave} \\ \sigma_{X\overline{X}\to Z'Z'} &= \frac{\pi Q_X'^4 \alpha'^2}{E^2} \frac{w}{v} \left[-1 - \frac{(2+z^2)^2}{(1+v^2+w^2)^2 - 4vw} \right. \\ &+ \frac{6 - 2z^2 + z^4 + 12v^2 + 4v^4}{2vw(1+v^2+w^2)} \ln \frac{1+(v+w)^2}{1+(v-w)^2} \right] \end{split}$$

There is no *H* exchange contribution because kinetic mixing is negligible.

$$\Gamma_{Z'} = \frac{\alpha'}{m_{Z'}} \sum_{f} Q_f'^2 (m_{Z'}^2 + 2m_f^2) \sqrt{1 - \frac{4m_f^2}{m_{Z'}^2}}$$

$$+\frac{\alpha'}{12m_{Z'}}Q_X'^2(m_{Z'}^2+2m_X^2)\sqrt{1-\frac{4m_X^2}{m_{Z'}^2}}$$

Dirac X, leptophobic Z'

Gondolo, Ko, Omura 2011 and in prep.

Scalar or Dirac X and light leptophobic Z'

Reasonable values for Z' mass and α' coupling constant

Gondolo, Ko, Omura 2011

Effective operator approach (maverick WIMP)

For the agnostics and the uncommitted

Effective operator approach

if mediator mass » LHC energy scale

LHC limits on WIMP-quark and WIMP-gluon interactions are competitive with direct searches

Beltran et al, Agrawal et al., Goodman et al., Bai et al., 2010; Goodman et al., Rajaraman et al. Fox et al., 2011; Cheung et al., Fitzptrick et al., March-Russel et al., Fox et al., 2012......

These bounds do not apply to SUSY, etc.

Complete theories contain sums of operators (interference) and not-so-heavy mediator (Higgs)

Effective operator approach

Name	Operator	Coefficient
D1	$ar{\chi}\chiar{q}q$	m_q/M_*^3
D2	$ar{\chi}\gamma^5\chiar{q}q$	im_q/M_*^3
D3	$ar{\chi}\chiar{q}\gamma^5 q$	im_q/M_*^3
D4	$ar{\chi}\gamma^5\chiar{q}\gamma^5q$	m_q/M_*^3
D5	$\bar{\chi}\gamma^{\mu}\chi\bar{q}\gamma_{\mu}q$	$1/M_{*}^{2}$
D6	$\bar{\chi}\gamma^{\mu}\gamma^{5}\chi\bar{q}\gamma_{\mu}q$	$1/M_{*}^{2}$
D7	$\bar{\chi}\gamma^{\mu}\chi\bar{q}\gamma_{\mu}\gamma^{5}q$	$1/M_{*}^{2}$
D8	$\bar{\chi}\gamma^{\mu}\gamma^5\chi\bar{q}\gamma_{\mu}\gamma^5q$	$1/M_{*}^{2}$
D9	$\bar{\chi}\sigma^{\mu\nu}\chi\bar{q}\sigma_{\mu\nu}q$	$1/M_{*}^{2}$
D10	$\bar{\chi}\sigma_{\mu\nu}\gamma^5\chi\bar{q}\sigma_{lphaeta}q$	i/M_*^2
D11	$\bar{\chi}\chi G_{\mu\nu}G^{\mu\nu}$	$\alpha_s/4M_*^3$
D12	$\bar{\chi}\gamma^5\chi G_{\mu\nu}G^{\mu\nu}$	$i\alpha_s/4M_*^3$
D13	$\bar{\chi}\chi G_{\mu\nu}\tilde{G}^{\mu\nu}$	$i\alpha_s/4M_*^3$
D14	$\bar{\chi}\gamma^5\chi G_{\mu\nu}\tilde{G}^{\mu\nu}$	$\alpha_s/4M_*^3$

Name	Operator	Coefficient
C1	$\chi^\dagger\chiar q q$	m_q/M_*^2
C2	$\chi^{\dagger}\chi ar{q}\gamma^5 q$	im_q/M_*^2
C3	$\chi^{\dagger}\partial_{\mu}\chi \bar{q}\gamma^{\mu}q$	$1/M_{*}^{2}$
C4	$\chi^{\dagger}\partial_{\mu}\chi\bar{q}\gamma^{\mu}\gamma^{5}q$	$1/M_{*}^{2}$
C5	$\chi^{\dagger}\chi G_{\mu\nu}G^{\mu\nu}$	$\alpha_s/4M_*^2$
C6	$\chi^{\dagger}\chi G_{\mu\nu}\tilde{G}^{\mu\nu}$	$i\alpha_s/4M_*^2$
R1	$\chi^2 ar q q$	$m_q/2M_*^2$
R2	$\chi^2 ar q \gamma^5 q$	$im_q/2M_*^2$
R3	$\chi^2 G_{\mu\nu} G^{\mu\nu}$	$\alpha_s/8M_*^2$
R4	$\chi^2 G_{\mu\nu} \tilde{G}^{\mu\nu}$	$i\alpha_s/8M_*^2$

Table of effective operators relevant for the collider/direct detection connection

Goodman, Ibe, Rajaraman, Shepherd, Tait, Yu 2010
Constraints on scattering cross section

Direct detection and LHC

Fox, Harnik, Primulando, Yu 2012

Constraints on scattering cross section

Direct detection and LHC

Fox, Harnik, Primulando, Yu 2012

DN - 100

ndent

Effective operator approach

LHC limits and gammarays from dark matter

Mono-jet Mono-gamma

Kopp, Fox, Harnik, Tait 2011

Constraints on annihilation cross section

γ -rays, cosmological ionization, positrons, and LEP

Fox,Harnik,Kopp,Tsai 2011 & Bergstrom,Bringmann,Cholis,Hooper,Weniger 2013

Asymmetric dark matter

- Dark matter in a hidden mirror sector ("dark sector")
- Dark matter asymmetry similar to baryon asymmetry, generated by similar mechanisms

$$n_{\chi} \approx n_{\rm p}$$

• Dark matter mass is a few times the proton mass

$$\Omega_{\chi} \approx \frac{m_{\chi}}{m_p} \,\Omega_{\rm p} \approx ({\rm a \ few}) \,\Omega_{\rm p}$$

Nussinov 1985; Graciela, Hall, Lin 1986; Hooper, March-Russell, West 2008; Kouvaris 2008; Kaplan, Luty, Zurek 2009; Hall, March-Russell, West 2010; Buckley, Randall 2010; Dutta, Kumar 2011; Cohen, Phalen, Pierce, Zurek 2010; Falkowski, Ruderman, Volansky 2011; Frandsen, Sarkar, Schmidt-Hoberg 2011; etc.

Dynamical dark matter

Dienes, Thomas 2011, 2012 Dienes, Kumar, Thomas 2012, 2013

A vast ensemble of fields decaying one into another

Example: Kaluza-Klein tower of axions in extra-dimensions

Phenomenology obtained through scaling laws

$$m_n = m_0 + n^{\delta} \Delta m,$$

$$\rho_n \sim m_n^{\alpha}, \ \tau_n \sim m_n^{-\gamma}$$

Conclusions

A NEW AND DEFINITIVE META-COSMOLOGY THEORY

T. R. Lauer T. S. Statler B. S. Ryden D. H. Weinberg

Department of Astrophysical Sciences, Princeton University

Friday, August 2, 13