Direct Dark Matter Searches

Context Elastic scattering rates Detection principle: signal and backgrounds Review of current experiments

> J. Gascon UCB Lyon 1, CNRS/IN2P3/IPNL

IDM2012 conference slides

https://hepconf.physics.ucla.edu/dm12/agenda.html

 Most recent and complete collection of talks on almost all Direct Search experiments and projects

3.1- NOBLE LIQUID + GAS

XENON S1/S2 discrimination

- Different scintillation (S1) and ionisation (S2) yields for nuclear / electronic recoils
- PMT array for (x,y), drift time for z : fiducial volume
- Xenon 100: 170 kg LXe, 34 kg fiducial, 30 cm drift, 98(top)+80(bottom) PM's
- Trigger on 3 PM coincidence: bad energy resolution, but excellent noise suppression
- 10 keV nuclear recoil: S1 ~ 5 P.E. S2 ~ 800 P.E. (from ~30 ionization e⁻)

XENON100

(S2/S1) 34kg Xe fiducial ($h \sim 25$ cm, r ~ 13 cm) og 2.6 225 day exposure, 3 PE S1 threshold 2.4 2.2 Profile Likelihood analysis of ~7600 kg.day ⁶⁰Co (γ) (Equivalent to ~2300 kg.d max. gap analysis) 1.2 log₁₀(S2/S1) Low g background (19 ppt ⁸⁵Kr) AmBe (n Observe 2 evts, compatible with expected $bkg = 1.0 \pm 0.2 \text{ evt} (0.2 \text{ n} + 0.8 \text{ Compton})$ 2 1.8 1.6 S1 [PE] 1.4E 20 15 30 10 20 25 5 15 35 0.4 Nuclear Recoil Equivalent Energy [keV] Radius [cm] log₁₀(S2/S1)-ER mean -10 -0.4z [cm] -20 -1.0 -1.2 10 15 20 25 30 35 40 45 50 150 200 100 250 Energy [keVnr] Radius² [cm²]

XENON-100 Discrimination

ISAPP 2013: Direct Dark Matter Searches

Compton « anomalous leakage » : also in XENON10

XENON limits

- <2x10⁻⁹ pb at 55 GeV/c²
- Steep increase at low M_W
- Below ~12 GeV/c², efficiency relies on Poisson fluctuations from evts below S1 threshold
- The full simulations of the S1 S2 response of a 8
 GeV WIMP at +: should have seen 223±³⁰³₈₅ evts.
- 25 GeV WIMP at X: should have seen 1409±⁵³₄ evts

Uncertainties: S1 S2 Quenching

XENON10 S2-only analysis

- Intrinsic ratio hv/e⁻ decreases at low energy
- 2. Higher efficiency to collect electrons than photons
- Difficult to use S1 at low energy
 - ... but nuclear recoil discrimination may not be required to exclude relevant cross-sections of WIMPs below 10 GeV/c²

XENON10 analysis using S2 only

 $E_{recoil} = S2$ / Ionization quenching

- Delicate: not well known below 5 keV
- New bkgs appear (single-photon S2 events)
- For now not very competitive with normal XENON100 analysis > 7 GeV/c²
- XENON100 + improved studies to come

[PRL 107 (2011) 051301]

- XENON 1t: in construction. Reduction of radioactive background (cryostat, PM, purification).
- LUX (Homestake): 300 kg + improved light collection. Calibration starting.
- XMASS (Kamioka): 100 kg + 642 PMs. Monophase, rejection based on fiducialization. Need to study and reduce internal radioactive background.
- DEAP-CLEAN (SNOLAB): 100 kg Ar, need 10⁸ rejection of radioactive ³⁹Ar (pulse shape discr., τ = 1.6 μs)
- DarkSide-50: 33 kg fiducial Ar, *depleted in ³⁹Kr* (underground source, depletion 10⁻² to 10⁻³)
- ArDM: see poster
- PANDA: Low-mass Xe in JinPing tunnel, China

3.2 - SCINTILLATION+HEAT

Heat-scintillation: CRESST

- 300 g CaWO₄ Crystals with Tungsten film thermometer
- Light detector = thin Si wafer
 + same type of thermometer
- 3 targets in same detector
 A = 16, 40 and 184
 Q = 0.10, 0.06 and 0.04

Reflecting scintillating housing to increase light yield

BONUS: tags ²¹⁰Po $\rightarrow \alpha$ +²⁰⁶Pb two body decay ²⁰⁶Pb recoil ~ W recoil

CRESST detectors

The phonon detector: 300 g cylindrical CaWO₄ crystal. Evaporated tungsten thermometer with attached heater.

Light detector: Ø=40 mm silicon on sapphire wafer. Tungsten thermometer with attached aluminum phonon collectors and thermal link. Part of thermal link used as heater

CRESST Cryostat and shield

ISAPP 2013: Direct Dark Matter Searches

CRESST Likelihood analysis

Results of Likelihood Analysis

Energy spectra of α, neutron or Pb backgrounds do not resemble the expected WIMP signal and only the e/γ contribution has a similar shape

 Light yield spectrum of *e*/γ differs significantly from the expected WIMP signal and thus cannot explain the total LY distribution

06.09.2011

Favored regions not compatible with other direct searches

- New run with 33 detectors started
 - Improved neutron shielding
 - Radio-pure clamps + improved scintillation coverage
 - Reduce exposure to radon

3.3 GE IONIZATION + PHONON

Nuclear recoil / gamma discrimination

- With good resolution on both ionization & heat, very clear discrimination based on the different ionization yields for nuclear recoils (WIMP or neutron scattering) and electronic recoils (β,γ decays)
 - discrimination of dominant background
 - Stable and reliable rejection performances

Limitation: poor ionization yield for surface events

- With good resolution on both ionization & heat, very clear discrimination based on the different ionization yields for *nuclear recoils* (WIMP or neutron scattering) and *electronic recoils* (β,γ decays)
- Limitation: deficient charge collection near surface (trapping, dead layer)
 => different surface rejection strategy for CDMS & EDELWEISS

ISAPP 2013: Direct Dark Matter Searches

(If anone asks...) Luke-Neganov effect

- The current I corresponding to the charge drift in the potential V heats up the detector with a power VI: Luke-Neganov (~Joule effect)
- Total work = heat = e N_{charge} x |V_{polar}|
- Amplification of heat signal:

$$E_{totalheat} = E_{recoil} + eN_{charge} \times |V_{polar}|$$

Germanium: 3.0 eV/e for electron recoils:
 For ionization signals E_{ion} using gamma-ray source:

$$E_{ion} = N_{charge} \times 3.0 \text{ eV/e}$$

We can deduce E_{recoil} from de E_{totalheat} et E_{ion}:

 $E_{totalheat} = E_{recoil} + E_{ion} \times |V_{polar}|/3.0V$

 $E_{recoil} = E_{totalheat} - E_{ion} \times |V_{polar}|/3.0V$

- Increasing V_{polar} improves the charge collection (trapping becomes important below 1 V/cm) and relative heat resolution, but not the nuclear/electronic recoil discrimination which depends on E_{ion}/E_{recoil}
- Compromise: typical V_{polar} 2V to 8V

Heat sensor in EDELWEISS: Ge-NTD

- $\Delta T = E/C$ (après thermalisation)
- Neutron-Transmutation Doped Ge crystal: R(T) = R₀exp[(T₀/T)^{1/2}]
- Small sensor (~80 mg) glued on
 0.4 0.8 kg absorber crystals
- Coupling to fully thermalized phonons: $\Delta T = E/C$, independent of position.
- High impedance $(1-10 M\Omega)$
- Current excitation, voltage readout
- Rise time ~ms, Fall time ~100 ms

EDELWEISS Ge-NTD Heat pulse

Phonon sensors in CDMS

photolithographic patterning produces 4144 "thermometers" (quasi-particle-assisted electrothermal-feedback transition-edge sensors)

CDMS ZIP detectors

- Large area: sensitivity to athermal phonons
- Sensitivity to surface interactions

SQUID array,

D

Vahia

 Photolithographic patterns of W-TES + Al collector (CDMS)

₹_{feedback}

Z-sensitive

Ionization and

Phonon-mediated

- Athermal phonon signal amplitudes in four quadrants depend on the (x,y) position of the interaction (mm resolution)
- Position-dependent energy calibration

- Phonon risetime $< 50 \ \mu s$
- Ionization risetime < 1 μs</p>
- « Timing parameter » combines rise time and phonon-ionization delay
- Nuclear/electronic recoil discrimination!

Phonon time discrimiation

- Sensivity to « z »? (no, works even if sensors on only one side)
- Due instead to a difference between the phonons produced in the primary interaction and in the Luke-Neganov process.

EDELWEISS surface rejection: Interleaved electrodes

Simple Surface event selection:

- First criteria: absence of signal on "veto" rings
- Redundancy: requires equality between "fiducial" rings on both sides

Added bonus: "Grid effect":

 High-field region close to the fiducial electrodes improves charge collection in that critical region close to the surface

Charge transport effects:

 Diffusion (T=20mK) and charge repulsion insures that charges are never "stuck" in zero-field regions

Interleaved electrodes + guards rings biased to produce an electric field:

➔ horizontal near the surface (~1 mm)

 Ψ vertical in the bulk

Understanding charge transport in Germanium

a) Simulation includes impurity scattering but neglects electron transport anisotropy

ID203: $N_{scatt} = 1.5 \times 10^{10} cm^{-3}$, $V_a = 1V$.

LTD14 Heidelberg, Germany Aug. 1-5, 2011

c) Simulation treats the combined effects of impurity scattering and electron transport anisotropy

- Surface rejection tested with ²¹⁰Pb source of surface events
- Technique applied to WIMP search with 10 x 400 g detectors

ISAPP 2013: Direct Dark Matter Searches

CDMS-II and EDELWEISS-II WIMP searches

Combined results: PRD 84 (2011) 011102

	kg.day fiducial	Recoil range (keV)	Ge mass (kg)	NR candidates	Estimated bkg
CDMS	379	5-100	15x0.25	4	~2
EDW	384	20-200	10x0.40	5	~3

- * Comparable and consistent results
- * Limits improved by1.6 a high mass
- * Confirms that bkgs must be present

SuperCDMS Soudan: 650g iZIPs

- ZIP Phonon-based rejection not reliable enough: go to bigger detectors, more phonon channels with better geometry and ID
 electrodes (but no "veto" electrode readout)
- Data started in 2012
 with 9 kg (6 kg fiducial
- 2200 kgd by 2014
 6x10⁻⁹ pb for 100 GeV/c²
- Also: goals for lowering thresholds for low-mass WIMPs (at the expense of surface event rejection from phonon timing)

CDMS iZIP

iZIP detector design - II

Electrode Scheme

- NEW interleaved layout of ionization and phonon sensors
- We now have phonon sensors and ionization sensors on BOTH the top and bottom of the detector
- Major improvements in discrimination from this new technology

÷

Old EDELWEISS-ID design drawback

Problem: large non-fiducial **EDELWEISS-II:** volume (blue) with low field 10x400g ID, under flat guard electrodes 1.6 kg tot. fiducial ¹³³Ba calib: 350 000 γ the state with the set of the set of the set lonization yield 1.2 10² 400g cylindrical ID detector 1 Fiducial electrodes 0.8 -1.5V Veto +1V electrodes 10 0.6 Guard 0.4 Electrodes Mfid ≈ 40% 0.2 e+ 0 50 100 200 250 300 350 150 400 Recoil energy [keV] Compton produces "anomalous Guard -0.5 Electrodes leakage" à la XENON GeNTD Heat signal Large uncertainty from this bkg Veto electrodes .4V Fiducial Only 160 g fiducial / 400 g! electrodes

EDELWEISS-III new FID800 design

- FID: detectors FULLY covered with interleaved electrodes (and go from 400 -> 800 g)
- Commissioning 15 FID800
- Improved γ and surface rejection
- 40 detectors for end 2013

EDELWEISS low mass

- Avg ID FWHM baselines in 384 kgd sample:
 0.9 keV ionization, 1.25 keV heat
 (acceptable for >50 GeV WIMP search:
 ~100% eff. for 20 keV recoil threshold)
- Need improvement for ~10 GeV WIMPs
- Low-mass search with 113 kgd with best resolutions [PRD 86 (2012) 051701(R)]
- Fiducial selection applicable down to ~6 keV recoils: Surface event rejections
- Best Ge sensitivity at ~9 GeV

Axions and Axion-Like Particles search

- Analysis of final Soudan exposure: 140 kgd 2007-2008 Si data with better control of background than previous 56 kgd sample. [arXiv: 1304.4279]
- Estimated background: 0.4±0.3 surface events (phonon timing), <0.13 from neutrons, <0.08 from ²⁰⁶Pb

Exposure vs. Recoil Energy

Unblinding Results - after timing cut

CDMS Silicon

Three Events!

July 2013

Profile Likelihood of Silicon data

COGENT (2012)

CRESST-II final DAMA (2008) Monte Carlo simulations of the "XENON100 (2012) 8.6 GeV/c² *XENON10 S2 (2011) background-only model indicate the CDMSII Ge low-E 1.9x10⁻⁶ pb probability of a statistical fluctuation CDMSII Ge (2010) producing three or more events • 90% Upper limit, this data anywhere in our signal region is 5.4%. -90% Upper limit, CDMSII c34+c58 Si hep-ex:0695502 68% C.L., this data Distribution of the total number of events under H. 90% C.L., this data Normalised distribution ₩Best fit, this data Nobs = 3 : p-value = 5.4% WIMP-nucleon cross-section [cm²] 0 +Also barely above EDELWEISS low-mass within the grasp of Ge CDMS-Lite? 10 10 10 N But WIMP+bkg hypothesis favored over known bkg XENON100 estimate by 99.81% CL 10^{-43} 10 "Calls for futher investigations" WIMP Mass [GeV/c²]

- Using Luke-Neganov amplification, can lower the threshold
- Price to pay: no nuclear recoil discrimination (but can test it by varying V_{polar})
- Current threshold on $E_{electron-equivalent} \sim 1 \text{ keV}_{ee}$ with $V_{polar} = 3.2 \text{V}$
- Biasing at 70V reduces threshold by (1+3.2/3)/(1+70/3) = 12
- 85 eV_{ee} threshold on (standard iZIP) Ge detector

ISAPP 2013: Direct Dark Matter Searches

Future projects: USA

- 1.38 kg iZIPs
- R&D to be completed in 2013
- Funding request 2013-2014
- Goal: 200 kg Ge
 140 000 kgd
 (4 year run)
 10⁻¹⁰ pb in ~2017

Cushman, IDM2012

- European priority: completion of EDELWEISS-III (physics 2014-2015) and present CRESST runs
- EURECA: ~1 t combining Ge and CaWO₄ targets
- EURECA CDR recently completed
- Preferred site: extension of the Modane Laboratory (operational ~2019)
- 2013: discussions with SuperCDMS-SNOLAB (~2015): discussion on common strategy, collaboration for the cryogenics underway.

Recent published spin-independent results

- Little progress
 between original 80's
 experiments (~1 evt/ kg/d) until 2000,
 when discrimination
 techniques finally got
 operational. Long
 development time!
- We're still two orders of magnitude away from the physics goal
- Promising results to come!

