Direct Dark Matter Searches

Context Elastic scattering rates Detection principle: signal and backgrounds Review of current experiments

> J. Gascon UCB Lyon 1, CNRS/IN2P3/IPNL

IDM2012 conference slides

https://hepconf.physics.ucla.edu/dm12/agenda.html

 Most recent and complete collection of talks on almost all Direct Search experiments and projects Apply to any particle able to scatter elastically on an atomic nucleus (*Neutralino* χ , *Kaluza-Klein, mirror, scalar...*)

- ... If the kinetic energy of the WIMP E_{WIMP} is not too small
 - $M_{WIMP} \sim 100 \text{ GeV/c}^2$ (supersymmetry) and v $\sim 200 \text{ km/s}$ correspond to an average $E_{WIMP} \sim 20 \text{ keV}$ (hard X ray).
- ... If $M_{WIMP} \sim M_{nucleus}$

 Optimal momentum transfer for M_{WIMP} = M_{nucleus} ~ 100 GeV/c² corresponding to A ~ 100 g/mol

- ... If the scattering probability is not zero
 - Small, otherwise already seen?
 - WIMP miracle suggests Weak scale
 - Weak force, supersymmetry:

kilo.day... to ton.year (10⁻¹⁰ pb). ←

2.1- SIGNALS

- Exponential recoil spectrum
- A³ dependence of rate

It's not a neutron-induced nuclear recoil ($\sigma = \pi R^2 \propto A^{2/3}$)

- No coincidence between adjacent detectors (detector array)
- Uniform rate within the fiducial volume (large detectors)
- Directionality (correlation with \vec{v}_{SUN} direction): need to measure nuclear recoil trajectory
- Annual modulation (large statistics needed)

Identification of nuclear recoils (vs electron recoils)

Directionality: use v_{Earth} to detect WIMP wind

- Average WIMP wind **WIMP Wind** 12:00h direction due to v_{F} $\bullet_{\mathsf{RECOIL}} \neq \Theta_{\mathsf{WIMP}}$ 42º but $\langle \theta_{\text{RECOIL}} \rangle = \langle \theta_{\text{WIMP}} \rangle$ Spooner, IDM2008 M_w 100GeV Naka, IDM2008 Br recoil 17500 Eth >100keV 0:00h 5000 head tail 2500 -0.5cosθ
 - Need a good resolution on the recoil direction (and head/tail discrimination) despite the very short range of the recoil
 - Astrophysics bonus: measure of f(v)

 Molecular Dynamic Simulations of « hot » atoms produced by a 10 keV Si or Ge recoil (Nordlund, 1998)

Permanent damages due to this « femtoGray » dose (negligible in metals, but maybe not in semiconductors?)

R&D on direction-sensitive techniques

- Idea: check for recoil tracks in ancient mica, $\theta_{recoil} \sim -v_{sun}$
 - Problem: direction of v_{sun}, v_{earth} changes constantly, continental drift...
- Idea: low-pressure gas TPC detector

Expt		Target (bar)	F mass (g)	Vol. (L)	Thresh. (keV)
DRIFT	UK	CS ₂ (0.04) CF ₄ (0.01)	33	800	50
NEWAGE	JPN	CF ₄ (0.2)	9	15	140
MIMAC	F	$CF_4 + CHF_3$ (0.05)	1	5	20
DM-TPC	US	CF ₄ (0.1)	3	9	80

- Problems: low-density target to expand track length to ~cm, reduce diffusion of e−/ion (negative CS₂ ions instead of e⁻)
- Idea: scan tracks in emulsions
 - ~100 nm resolution; ~200 keV threshold for Br recoils (200 nm)

Annual modulation in DAMA

- Need large statistics: flux modulation is ~½ (±15/235) = ±3%, or less when considering experimental thresholds
- Claimed to be observed (~±2%) at low-energy in NaI (DAMA)
- Non-modulating component (~1 evt/kg/day) is ~total rate in NaI, but not observed in Ge, Xenon, CaWO₄ and CsI.
- Signal in low-efficiency, near-threshold region
- No "source off" expt. possible

CoGeNT Modulation

- 440 g Ge diode, point-contact electrode
- Arxiv:1002.4703 (Risetime discr. of surface evts)
- Arxiv:1106.0650 (Annual modulation)

Am gammas on n+ contact

6

10

12

Arxiv:1208.5737 (Revised evaluation of rejection performance, reduction of annual modulation)

56 da

0.33 kg

counts / 0.125 keV

 $t_{10-90}(\mu s)$

ime

ISAPP 2013: Direct Dark Matter Searches

ioniz. energy (keVee)

ionization energy (keVee)

8 GeV WIMP?

Quick estimate of annual modulation uncertainties

- Measuring a ~2% annual modulation requires a lot of statistics
- Modulation signal comes down to the fact that you observe N₁ counts at one time of the year and N₂ at some other time.
 Assume here no background.
- The modulation amplitude S_m (relative to the constant term S_0) will be $S_m/S_0 \propto f(N_1-N_2)/(N_1+N_2)$ with $f \sim O(1)$
- For large N₁,N₂, the statistical uncertainty $\sigma(N_1-N_2) = \sqrt{N_1+N_2}$ dominates and $\sigma(S_m/S_0) \sim \sqrt{N_1+N_2}/(N_1+N_2) = 1/\sqrt{N_1+N_2}$
- To obtain $\sigma(S_m/S_0) = 0.004$ (i.e. measure 2.0±0.4%), need $N_1+N_2 \sim (1/.004)^2 = 6 \times 10^4$ events
- From XENON $<2x10^{-9}$ pb limit, we expect S₀<0.001 evt/kg/day, i.e. we need an exposure > $6x10^4/0.001 = 6x10^7$ kg.d = 160 t.y!
- ... provocative, but in any case, to measure a significant modulation S_m , must do $\sim 10^4$ better than the experiment that saw $S_0 < 2.3$ events

Effect of a nuclear recoil in matter

Two type of energy losses:

- Ion-ion collisions (producing displacements and vibrations in the crystal: athermal phonons): nuclear dE/dx.
- Ionization (electronic dE/dx)
 - Cascade of collisions and mix of nuclear & electronic dE/x well described by Lindhard's theory + measured dE/dx
- In a closed system, after a while, all excitation decays into thermal energy -> rise in temperature

Effect of an electron recoil in matter

- Most common (long range) radioactive background: γ-rays, producing electron recoils (photoelectron, Compton)
- No ion-ion collisions only electronic dE/dx
- Comparing ionization and scintillation
 yields is a powerful tool to separate
 nuclear and electron recoils
 Other effects due to difference in
 dE/dx: density of energy deposit are
 not the same. This may also affect
 the risetime of the scintillation signal
 (pulse shape discrimination)

(+ No permanent crystaline defects?)

Rough picture of ionization signals

- Apply electric field on the detector volume to make the ionized charge drift to the surface, and count the number of charges NQ arriving on the electrodes. E=NQ.
- Ge: 10 keV nuclear recoil ~ 800 e⁻-hole⁺ pairs ~ 0.1 fC.
- Fano factor in Ge: $\sigma_E/E = 0.13/\sqrt{N} = 0.5\%$ for 800 pairs.
- Resolution in fact limited by constant charge noise
- Loss of charge during the drift deteriorates the resolution.

Rough picture of scintillation signals

- Count the number of photons (visible-UV) with a photoelectric tube, a photodiode or a bolometer
- Xe: 10 keV nuclear recoil ~ 5 photons counted (depends on light collection efficiency)
- NaI: 10 keV nuclear recoil ~ 3 (I) or 10 (Na) photons
- Resolution dominated by statistics (but 1 photon is 1 photon)

Rough picture of heat/phonon signals

- True calorimetric measurement: $\Delta T = \Delta E/C$, with C = heat capacity of absorber. $\Delta T \sim$ Large number \sim meV phonons.
- Phonon sensor: start to count phonons even before they are fully thermalized: faster + position-sensitive device
- C ~ T³, use T ~ 10-50 mK to get ~ μ K signal on ~kg absorber
- Baseline resolution can be as a good as 20-50 eV

Detection techniques

γ , β discrimination:

- Two simultaneous signals
 - Heat/Phonon
 - Ionisation
 - Scintillation
- Pulse shape discrimination
 - Noble gas/liq.
 - Cristal
- Other "dE/dx" related ideas

Nuclear and Electronic stopping power

- S_n and S_e : Nuclear and electronic stopping power (1/n)dE/dx
 - S_n peaked at low energy (100 keV for Ge recoils in Ge)
 - $S_e = k \sqrt{\epsilon}$ at low energy, and small compared to S_n at 100 keV
- Lindhard[student of O. Klein], Scharff and Schiøtt (LSS) 1963: model of the energy loss during the cascade of ion-ion collisions to calculate the range, ionization yield and its dispersion
- Model extensively used and tested, parameterized (k) using data

- Ratio of ionization yields for nuclear recoils and gammaray of equal energy (=Q)
- Reliable measurements using mono-energetic *n* beams, with tagged scattering angle
 - Jones: recoils following γ emission in ⁷²Ge, ⁷³Ge.
- Well parameterized by Lindhard & known dE/dx
- $E_{RECOIL} = E_{ee} / Q$, with $E_{ee} = ionization signal$ calibrated with γ sources

*Inorganic scintillators (Nal, Csl, CaWO*₄, ...)

- A good scintillator should NOT reabsorb its own light
 Emission hv>E_{gap} from e⁻ conduction band is easily absorbed by valence e⁻
- Emission from less abundant ingap states is much less absorbed
- ~Birk's rule: if dE/dx is large, the population of the in-gap states is saturated: reduced emission per incident keV.
- Electron recoils are subject to this (E-dependent) quenching.
 Additional Lindhard quenchin for nuclear recoils.
- Scintillation time constants may be affected: pulse shape discr.

Scintillation in noble liquids: Xe, Ar

 Nuclear recoils are very efficient at producing Xe₂* excimers, decaying via scintillation

 $\tau(Xe_2^*) \sim 4 - 20 \text{ ns}$

τ(Ar₂*) ~ 7ns – 1.5 μs Hitachi, PRB 27 (1983) 5279

- Discrimination of nuclear recoil by comparing S1 (scintillation) with S2 (ionization)
- Discrimination using fast/slow scintillation yields in Ar

Manzur, PRC 81 (2010) 025808

Nuclear recoil energy scale

Ge ionization: # of collected
 e⁻ hole⁺ pairs

Corrected for ionization quenching

 (only energy scale measurement in CoGeNT)

 Phonon/heat: calorimetric measurement of total energy [influence of permanent defects small, but not yet measured: see NIM A577 (2007) 558]
 +correction for energy escaping via scintillation: small % (CRESST)
 +correction for Luke-Neganov effect: heating proportional to number of collected charges x applied voltage. Large but well-

defined correction. (CDMS, EDELWEISS)

More measurements at low energy to come Xenon: # of photons S1 _∓ 0.30 Manzur 2010 Corrected for Leff: Ratio of Light 0.25 Plante 2011 Horn 2011 yield Nucl. Rec. / Light yield γ Aprile 2011 0.20 - XENON100 (this work) Corrected for Ly: number of 0.15 photoelectrons per keV from γ 0.10 calibration at 122 keV 0.05 + effect of electric field on electrons 10² Energy [keV_{pr}] 10 + on nuclear recoils [Aprile, arXiv:1304.1427] ∆log₁₀(cS2/cS1) 0.4 **0.2**E Correlation between the 16 keV 0.0 32 keV -0.2 scintillation (S1) and -0.4 -0.6 8 keV ionization (S2) signals -0.8 4 keV -**1.0** -1.2 20 25 30 5 10 15 cS1 [PE]

Nuclear recoil energy scale

Detection techniques

γ, β discrimination:

- Two simultaneous signals
 - Heat/Phonon
 - Ionisation
 - Scintillation
- Pulse shape discrimination
 - Noble gas/liq.
 - Cristal
- Other "dE/dx" related ideas

dEdx discrimination: Picasso detectors (Canada)

- Derives from a neutron dosimeter technique
- Tiny (200µm) liquid droplets of freon suspended in a gel as active material.
- The droplets are kept in a superheated state.
- When a WIMP hits the droplet the freon changes phase to a gaseous bubble.
- Shock wave that is detected by a piezo-electric sensor
- Temperature adjusted so that α dE/dx can't burst droplets
- Further α discrimination using audio pulse shape

Discrimination « dE/dx»: COUPP

It's simple... until it gets complicated

- We saw that we can get fairly precise description of the recoil spectrum shape.
- We can think of at least three signals proportional to the recoil energy: ionization, scintillation and phonons. All three can work for recoil energy down to a few keV
- The real problem will to get rid of fake signals
- Signal: somewhere between 1 event/kg/year (best current limits) and 1 event/ton/year
- Typical radioactive background (ex.: your body, 8000 Bq): 3x10⁹ evt/kg/year, off by ~10 orders of magnitude!

2.2- BACKGROUNDS

List of radioactive backgrounds

- Neutrons (~MeV) are a real nuisance because they create nuclear recoils, with recoil spectra comparable to those made by WIMPs
 - Can use ~3cm range to reject coincidences and use self-shielding
- Surface events (<1mm) matters because of mis-reconstruction problems

Туре	Attenuation Range in solids	Finite Range	Produces neutrons	Produces nuclear recoils
Muon	100 m		Yes	
Gamma	Few cm			
Beta		<1 mm		
Alpha		<20 μm	Yes (~10 ⁻⁵)	
Neutron	3 cm			Yes

Radioactive background (1): cosmics

- About half of the radioactive background in your body is due to activation by cosmic rays
 - Direct hits: 1 /hand/second
 - Later decays of activated nuclei
- Solution: deep underground laboratories in mine or road tunnels
- Ex: LSM (Frejus tunnel)
 - 1.6 km of rock
 - 4.8 km equivalent of water
 - 5 μ / m² /day
 - ~1 nuclear recoil /kg/month from n in Pb shield: μ veto!

Radioactive background (2): Uranium + Thorium

- One of the most common radioactive background $^{238}U: T_{1/2} = 4.5 \times 10^9$ years $^{232}Th: T_{1/2} = 14 \times 10^9$ years
 - Ratio 10⁻⁶:1 in ordinary rock: ~10⁶ decay / kg / day
 - Long decay chain down to ²⁰⁶Pb and ²⁰⁸Pb, respectively
 - Multiplies by ~ 10 the activity once the chain is in equilibrium
 - Alpha and beta emitter ("contained" inside the rock)
 - Range of particles: Alpha = 20 microns, beta < 1 mm
 - But some gamma's, + beta bremmstrahlung ...
 - Neutrons from U fission + alpha reactions with Al, F, Pb, ...
 - *Radon: 10⁶ produced per kg/day*
 - Can escape the rock! Travels in air at sonic speed! Deposits ²¹⁰Pb daughters down to ~20 nm below the surface of all materials! Difficult to get rid with a T_{1/2} of 22 years, + diffusion inside solids!

Example of gamma background in Ge detector

- Red: natural background in a

 normal » environment
 (Undergraduate students work there...)
- Green: ~5 cm lead shield (large Z), reduction x ~10
- Blue: EDELWEISS-II in LSM, before the rejection of electron recoils.

Reduction $3x10^4$ at ~50 keV (Pb shield, material selection)

 Further reduction >10⁴ after nuclear recoil identification

Archeological lead

- Lead is one of the most dense and economical anti-gamma shielding (high Z, 11 g/cm³). Range of gamma ~few cm.
- ²¹⁰Pb (Period 22 years) chemically identical to stable lead: this pollution survives when refining.
- Archeological lead

Ploumanach shipwreck, IVth century

 Unfortunately, lead is a source of neutron when bombarded by cosmic rays... in future, experiments might consider ~20 thicker water shields (2 to 3m thick) futurs

- A neutron with kinetic energy ~ 2 MeV (produced in U fission or via α scattering) has a momentum pc = sqrt(2 x 939 MeV x 2 MeV) ~ 61 MeV
- Same as 100 GeV WIMP at 200 km/s in previous lecture!
- With energy transfer, this produce a dangerous recoil

 $r = 4m_n M_A / (m_n + m_A)^2 \sim 4m_n / M_A \sim 4/A$ $T_{recoil} max = 2 \text{ MeV } x (4/A) = 80 \text{ keV}$ for A=100

- Neutron scattering cross-section $\pi R^2 \sim 5 A^{2/3}$ barn (R = radius of nucleus). \rightarrow attenuation length in solid matter ~ few cm.
- Neutron attenuation: shield with Hydrogen (A=1 \rightarrow r=1) to quickly decelerate these neutrons, so that they cannot produce nuclear recoils with T_{recoil}>1 keV
- Polyethylene and / or water shields against neutrons!
- Neutrons above 10 MeV (produced by muon interaction in rock and lead) have h/p << R: cross-section decreases due to F(q), and these are hard to stop. They also can produce other neutrons. → Large muon veto.

Shielding strategies

Rock (1km)	CDMS EDELWEISS 10-20 detector	Rock (1km)	
Muon Veto	unit array	Polyethylene/water	
Outer polyethylene (50 cm)	XENON100	(20 cm) Lead	
Lead (15 cm)	1 detector with x,y,z measurement	(20 cm) Polyethylene (20 cm)	
Inner polyethylene (5-10 cm)		Copper (5 cm)	
Non-fiducial region (mm)	Euturo trondu	Non-fiducial region (cm)	
Fiducial region (3-4cm)	Use 2-3 m of water as combined γ/neutron shield?	Fiducial region (20 cm)	

- Crystals
 - A crystalline structure, when perfect, is pure
 - But beware of radioactive isotopes, and chemical attractiveness
- Semiconductors
 - Exceptional control of the crystal purity has been mastered by industry (zone refining) over the last 60 years, for better performance. Surface contaminations are more difficult to control.
- Noble Gas and Liquids
 - Chemically stable
 - Purification in gaseous phase, continuous recirculation
 - Beware of argon and krypton radioactive isotopes
 - ~100 ppb Kr in XENON100, 85 Kr/Kr ~10⁻¹¹. Distillation for x10⁻³.
 - 39 Ar/Ar = 8x10⁻¹⁶ in air: 6x10⁴ evt/kg/day... must reduce by 10⁸!
- All close materials matter (support, cabling, electronics, ...)

- In a background-free experiment, the sensitivity grows as the exposure. In the presence of a background rate, it grows as sqrt (exposure)
 - Major progress comes from developing techniques to get rid of the background, not to subtract them
- More importantly, the WIMP model is well defined by convention while background uncertainties are very large
 - Levels of backgrounds are so low that the experiments themselves are the only means to study them: not many independent background samples are available.
 - The remaining backgrounds are the tails of those seen in previous experiments, and not as well under control
 - Detailed knowledge of detector imperfections is critical

Yellin maximum gap and optimal interval

See S. Yellin, Phys. Rev. D66, 032005 (2002).

- Ideal for cases with
 - Large uncertainties in background models and detector imperfections
 - Few candidates
- Do not subtract any background, do not use model: just accept that all candidates are potential WIMPs
- Derive upper limit on rate from the compatibility of the candidate energy distribution with the model that is tested: *Probability of observing a large interval with few events*

Yellin maximum gap and optimal interval

See S. Yellin, Phys. Rev. D66, 032005 (2002).

- Ideal for cases with
 - Large uncertainties in background models and detector imperfections
 - Few candidates
- Do not subtract any background, do not use model: just accept that all candidates are potential WIMPs
- Derive upper limit on rate from the compatibility of the candidate energy distribution with the model that is tested: *Probability of observing a large interval with few events*
- Compared with Likelihood or Feldman-Cousin subtraction:
 - Does not depend on background model assumption they have large uncertainties and they do not improve the sensitivity significantly
 - But you need to study the backgrounds anyways...
 - ... and can only provide upper limits, no measurement

... what can we do about all these backgrounds?

3- DETECTORS WITH NUCLEAR RECOIL DISCRIMINATION