Higgs Boson self-coupling measurements @ the LHC

Andreas Papaefstathiou

Institute for Theoretical Physics University of Zürich

Beyond the LHC Workshop, Stockholm, 25-27 July 2013.

aims:

- provide summary of 'recipe' of the electroweak sector of the Standard Model.
- provide overview of status of Higgs Boson self-coupling measurements.*
- consider the prospects for the future.

* concentrate on the SM: I will only briefly mention BSM.

electroweak cooking

• ingredients:

SU(2) imes U(1) gauge symmetry + complex doublet scalar, ϕ + potential for ϕ : $\mathcal{V}(\phi^{\dagger}\phi)$

electroweak cooking, steps

- choose a minimum in a particular direction, maintaining U(1) invariance \hookrightarrow symmetry breaking. $\phi_{\min} \propto (0, v)$
- consider fluctuations of the scalar field about the minimum:

$$\phi \propto (0, v + H)$$

- make a gauge transformation to absorb the Goldstone modes into the gauge bosons.
- Recipe makes massive W, Z, massless photons and Higgs boson (H). Topped with QCD and served with fermions to complete the SM.

Higgs potential

focus on the resulting potential for the scalar field H:

$$\mathcal{V} = \frac{1}{2}M_H^2 H^2 + \frac{\lambda v H^3}{4} + \frac{\tilde{\lambda}}{4}H^4.$$

- M_H , the Higgs mass, has been measured in July 2012 ~125 GeV.
- v, the vacuum expectation value, from the 4-fermion interaction at low energies ~ 246 GeV.

• two 'unknowns':
$$\lambda$$
, the triple self-coupling \longrightarrow not measured $\tilde{\lambda}$, the quartic self-coupling directly

why should we care?

- $\bullet\,$ standard model prediction: $\tilde{\lambda}=\lambda=\frac{M_{H}^{2}}{2v^{2}}\simeq0.13$.
- here: regard SM as an effective theory, with the selfcouplings as per se free parameters.
- direct confirmation of the standard model relation probes new physics effects, e.g.
 - extended Higgs sectors.
 - heavy particles running in loops.
 - + other higher-dimensional operators.
- + probes the general consistency of the standard model.

probing Higgs boson self-interactions

- determination of λ and $\tilde{\lambda}$: through <u>multi-Higgs</u> boson production @ colliders:
- triple coupling, λ , \rightarrow Higgs pair production.
- quartic coupling, $\tilde{\lambda}$, \rightarrow Higgs triple production.

quartic Higgs coupling (I)

• consider <u>triple</u> Higgs boson production at hadron colliders,

 $\bullet~{\rm contributing~diagrams:}~gg \to HHH$

quartic Higgs coupling (I)

• consider <u>triple</u> Higgs boson production at hadron colliders,

 $\bullet~{\rm contributing~diagrams:}~gg \to HHH$

quartic Higgs coupling (I)

• consider <u>triple</u> Higgs boson production at hadron colliders,

 $\bullet~{\rm contributing~diagrams:}~gg \to HHH$

quartic Higgs coupling (II)

• <u>total</u> HHH production @ LHC:

 $\sigma_{HHH}(\text{LHC}@14 \text{ TeV}) \simeq 0.04 \text{ fb}$

• even for VⁿLHC:

```
\sigma_{HHH}(V^{n}LHC@200 \text{ TeV}) \simeq 10 \text{ fb}
```

• <u>AND</u>: must know the triple coupling <u>and</u> top Yukawa well.

(compare to: $\sigma_{gg \to H}(LHC@14 \text{ TeV}) \simeq 50 \times 10^3 \text{ fb}$)

focus on triple Higgs coupling (through HH production)

triple coupl. @ lin. colliders (I)

- at a linear collider, a few studies exist,
- based on processes such as:

 $e^+e^- \to ZHH$

triple coupl. @ lin. colliders (I)

- at a linear collider, a few studies exist,
- based on processes such as:

 $e^+e^- \to ZHH$

triple coupl. @ lin. colliders (II)

• e.g. ILC [1306.6352] or TESLA TDR [hep-ph/0106315]:

 $e^+e^- \to ZHH$ (and both $H \to b\bar{b}$)

with:

$$\sigma(\sqrt{S} = 500 \text{ GeV}) \simeq 0.15 \text{ fb}$$
 for: $M_H \simeq 125 \text{ GeV}$

<u>TESLA TDR</u> (2001): cross section with ~20% error, and λ with accuracy ~20%: at 1000 fb⁻¹.

<u>ILC discrepancy:</u> 'mis-clustering of color-singlet groups'

'A new jet clustering algorithm is now being developed.'

what about HH @ LHC (14 TeV)?

first: dissection of the production cross section.

(LO) HH production @ LHC

- focus on dominant initial state: gluon-gluon fusion.
- leading order, two diagrams:

- $\bullet\,$ effective theory (infinite top mass) insufficient: $Q^2\gtrsim M_{\rm top}^2$.
- loop calculation necessary to reproduce kinematical properties.

box and triangle topologies, Lorentz structures corresponding to spin-0 and spin-2 gg configurations.

$$\begin{split} \sigma_{HH}^{LO} &= |\sum_{q} (\lambda y_q C_{q,\text{tri}}^{(\text{spin}-0)} + y_q^2 C_{q,\text{box}}^{(\text{spin}-0)})|^2 + |\sum_{q} y_q^2 C_{q,\text{box}}^{(\text{spin}-2)}|^2 \\ & (\text{sum over quarks q} = \text{t, b}) \\ & (\text{couplings normalized to SM}) \end{split}$$

(LO) HH production @ LHC

box and triangle topologies, Lorentz structures corresponding to spin-0 and spin-2 gg configurations:

$$\sigma_{HH}^{LO} = |\sum_{q} (\lambda y_q C_{q,\text{tri}}^{(\text{spin}-0)} + y_q^2 C_{q,\text{box}}^{(\text{spin}-0)})|^2 + |\sum_{q} y_q^2 C_{q,\text{box}}^{(\text{spin}-2)}|^2$$
(sum over quarks q = t, b)
(couplings normalized to SM)

HH production @ LHC

- NLO calculation is only available in the infinite top mass limit. [Dawson, Dittmaier, Spira, [hep-ph/9805244]].
- K-factor in this limit ~ 2.
- recently, corrections in inverse powers of the top quark mass have been computed, found to be <u>significant</u>. [Grigo, Hoff, Melnikov, Steinhauser, [1305.7340]].
- interesting fact: gg box and triangle contributions <u>exactly</u> <u>cancel</u> at the partonic threshold at LO. This causes a large enhancement of the K-factor in the threshold region.

HH production @ LHC

• using HPAIR (M. Spira), fits:

Florian Goertz, AP, Li Lin Yang, and José Zurita [1301.3492]

$$\begin{split} \sigma_{HH}^{\rm LO}[{\rm fb}] &= 5.22\lambda^2 y_t^2 - 25.1\lambda y_t^3 + 37.3y_t^4 & \text{(c} \\ & \text{norm} \\ \sigma_{HH}^{\rm NLO}[{\rm fb}] &= 9.66\lambda^2 y_t^2 - 46.9\lambda y_t^3 + 70.1y_t^4 \end{split}$$

(couplings normalized to SM)

neglecting bottom quark contributions: O(1%) at total cross section

- negative interference term between triangle and box.
- [interesting: a symmetry point exists at $\lambda \sim 2.5 y_t$ (NLO)].

HH production @ LHC

the decay channels

branching ratios

single production

pair production

branching ratios ($M_H = 125$ GeV)

pair production

BR[bbbb] = 33.3%BR[bbWW] = 24.8% $BR[b\overline{b}\tau\tau] = 7.29\%$ BR[WWWW] = 4.62% $BR[WW\tau\tau] = 2.71\%$ $BR[\tau\tau\tau\tau\tau] = 0.399\%$ BR[bbZZ] = 0.305% $BR[bb\gamma\gamma] = 0.263\%$ $BR[b\overline{b}Z\gamma] = 0.178\%$ $BR[b\overline{b}\mu\mu] = 0.025\%$

<u>note</u>: each 1% corresponds to ~100 events per 300 fb⁻¹ of luminosity.

branching ratios ($M_H = 125$ GeV)

pair production

BR[bbbb] = 33.3%<u>note</u>: each 1% corresponds to ~100 events per 300 $BR[b\bar{b}WW] = 24.8\%$ fb⁻¹ of luminosity. $BR[b\bar{b}\tau\tau] = 7.29\%$ BR[WWWW] = 4.62%shown to be $BR[WW\tau\tau] = 2.71\%$ potentially viable (in the SM) $BR[\tau\tau\tau\tau\tau] = 0.399\%$ $BR[b\bar{b}ZZ] = 0.305\%$ $BR[b\bar{b}\gamma\gamma] = 0.263\%$ $BR[b\bar{b}Z\gamma] = 0.178\%$ $BR[b\overline{b}\mu\mu] = 0.025\%$

establishment of HH process

- first step towards constraining the triple coupling: <u>establishing</u> (i.e. discovering) the HH process @ LHC.
- need large integrated luminosity: 600 fb⁻¹ (certain) and 3000 fb⁻¹ (possible).
- first: look at the channels that are considered to be 'viable'.

$HH \to b\bar{b}\tau\tau$

Dolan, Englert, Spannowsky, [1206.5001], Baglio, Djouadi, Gröber, Mühlleitner, Quevillon, Spira [1212.5581].

- BR = 7.29%, cross section ~ 2.4fb (~700 events @ 300 fb⁻¹).
- reconstruction of τ leptons experimentally delicate.
- backgrounds relatively low: electroweak and top decays with taus in the final states.
- Higgses <u>naturally</u> boosted: use a fat jet: sub-structure of the two b-quark system: like in Higgs+vector boson.
 [Butterworth, Davison, Rubin, Salam, 0802.2470]
- results promising given a high τ-tagging efficiency (80%), b-tagging assumed 70%, low fake rates.
- S ~ 50 versus B = 100 at 600 fb⁻¹ (~5 σ).

Baur, Plehn, Rainwater, [hep-ph/031005], Baglio, Djouadi, Gröber, Mühlleitner, Quevillon, Spira [1212.5581].

- BR = 0.263%, cross section = 0.09 fb, (~27 events @ 300 fb⁻¹).
- low rate but 'clean'. backgrounds generally low and mostly coming from reducible backgrounds due to misidentification of b-jets or photons (jet-to-γ).
- S ~ 30 versus B ~ 60 at 3000 fb⁻¹ (~4 σ).

$HH \rightarrow b\bar{b}WW$

Dolan, Englert, Spannowsky, [1206.5001], Baglio, Djouadi, Gröber, Mühlleitner, Quevillon, Spira [1212.5581], <u>AP</u>, Li Lin Yang, and José Zurita [arXiv:1209.1489]

- BR = 24.8%, cross section = 8.0 fb, (~2400 events @ 300 fb⁻¹).
- high rate, can have leptons + missing energy in the final state.
- but: huge backgrounds from top-anti-top production.
- with one leptonic W and one hadronic W was shown to be viable using jet sub-structure techniques. [AP, Li Lin Yang, and José Zurita [arXiv:1209.1489]]
- S = 11 versus B = 7 at 600 fb⁻¹ (~4 σ).

more HH channels?

- \underline{bbbb} : highest BR, but fully hadronic (triggering?) and huge QCD backgrounds ($\sigma \sim 10.8$ fb).
- $b\bar{b}\mu\bar{\mu}$: small initial cross section, essentially found to be impossible ($\sigma \sim 0.008$ fb). [Baur, Plehn, Rainwater [hep-ph/0304015]].
- <u>WWWW</u>: good for high-mass Higgs. for low mass seems to be hard due to BR of Ws ($\sigma \sim 1.5$ fb).
- $\underline{\tau\tau\tau\tau}$: low rate and τ -tagging ($\sigma \sim 0.13$ fb).
- $WW\tau\tau$: τ -tagging, W BRs (σ ~ 0.86 fb)
- $\underline{bbZ\gamma}$, $\underline{b\bar{b}ZZ}$: low rates and BR for Zs (σ < 0.1 fb).

several associated production modes exist:

 $\begin{array}{ll} cross \ section@14 \ TeV \\ qq \rightarrow qqHH & ~1.8 \ fb \\ qq \rightarrow WHH & ~0.4 \ fb \\ qq \rightarrow ZHH & ~0.3 \ fb \end{array}$

- note that: behaviour w.r.t. λ is different for each channel.
- with $HH \rightarrow b\overline{b}b\overline{b}$, could be looked into with sub-structure techniques, but initial cross section low.

summary of HH 'searches':

- 3 channels shown to be potentially viable.

- these should be looked at by experimentalists.
- some others could be investigated again.

Now: what about measuring λ ?

first: how well do we <u>need</u> to measure λ ?

- recent study estimates that λ will likely need to be measured to better than 20% to see a deviation from the SM expectation. [Gupta, Rzehak, Wells [1305.6397]]
- (considers new mixed-in singlets, MSSM Higgses and composite models.)
- other studies of HH in relation to BSM:
 - in composite Higgs models, e.g. [Gillioz, Gröber, Grojean, Mühlleitner, Salvioni, 1206.7120],
 - in warped extra-dimensional models, e.g. [Gouzevitch, Oliveira, Rojo, Rosenfeld, Salam, Sanz, 1303.6636],
 - Higgs portal/MSSM/pseudo-Nambu-Goldstone boson,
 e.g. [Dolan, Englert, Spannowsky, 1210.8166],

- large theoretical uncertainties: scale, PDF, α_s & effective theory (EFT) uncertainty: <u>~30-40%</u>. [Baglio, Djouadi, Gröber, Mühlleitner, Quevillon, Spira [1212.5581]].
- <u>note</u>: cross section has been shown to be larger than NLO EFT:
 - including top mass corrections: ~10% increase. [Grigo, Hoff, Melnikov, Steinhauser, [1305.7340]]. Moreover, the scale dependence reduced (~5%).
 - in the effective theory at NNLO: ~20% increase. [de Florian, Mazzitelli, [1305.5206]]

- older studies considered analysis of shapes of distributions. [e.g. Baur, Plehn, Rainwater [hep-ph/ 0310056]].
- shapes may not be so well predicted at the moment: use rates instead. [Goertz, <u>AP</u>, Yang, Zurita [arXiv: 1301.3492]].

- claim: single H and double H production possess similar topologies and hence QCD corrections could be also similar.
- can use ratios of cross section of HH to single H to cancel out part of the theoretical uncertainties.

Goertz, AP, Yang, Zurita [arXiv:1301.3492]

 using the three channels shown to be potentially viable, at 3000 fb⁻¹, LHC@14 TeV:

$$\begin{array}{lll} HH \rightarrow b\bar{b}\tau\tau & \Rightarrow & \lambda = 1.00^{+0.40}_{-0.31} \\ HH \rightarrow b\bar{b}\gamma\gamma & \Rightarrow & \lambda = 1.00^{+0.87}_{-0.52} \end{array} \begin{array}{l} \text{times} \\ \text{times} \\ \text{the SM} \\ \text{value} \end{array}$$

$$\begin{array}{l} HH \rightarrow b\bar{b}WW & \Rightarrow & \lambda = 1.00^{+0.46}_{-0.35} \end{array}$$

[Goertz, <u>AP</u>, Yang, Zurita [arXiv:1301.3492]]

- "naively" combining: ~+30%, ~-20% error.
- with this method, to get down to e.g. O(10%), we would need an extra 3-4 channels with an error of ~40%-50% each.

outlook: theoretical improvements

- a better NLO calculation could be performed. <u>hard</u>: two loops with two mass scales (H and top mass).
- then this could be matched with the parton shower (MC@NLO/POWHEG) to provide better description of kinematical distributions.
- until then perhaps resummed calculations?
- or an improved Monte Carlo with the real emission matrix elements?
- with an improvement on the kinematical description, shape analyses could improve the limits from each channel.

outlook: 'other' improvements

- use 'improved' boosted jet techniques to push the channels further: e.g. Shower deconstruction or Q-jets. [Soper, Spannowsky, [1102.3480, 1211.3140], Ellis, Hornig, Roy, Krohn, Schwartz [1201.1914]].
- other channels could be made viable.
- further 'technological' improvements in jet sub-structure techniques?
- long-term (& expensive!): an LHC energy upgrade will allow for more events to 'play with'. e.g. σ(HH@33TeV) ~ 210 fb.

summary (I)

- with the discovery of the Higgs boson, an important next step is to determine the form of its potential.
- this can be done via measurement of the self-couplings.
- the triple Higgs coupling, λ , can be probed via Higgs pair production (HH).
- total cross section is low and the HH process is challenging.

summary (II)

- several investigations performed so far,
- but more work needs to be done:
- theoretically: improving description of the kinematics and the total cross section,
- in phenomenology: re-examine channels, search new,
- experimentally: to assess the viability of the promising channels.

special thanks

special thanks to my collaborators: Florian Goertz, José Zurita, Li Lin Yang.

special thanks

special thanks to my collaborators: Florian Goertz, José Zurita, Li Lin Yang.

• ...and thanks for your attention!

auxiliary slides

how do we (actually) measure the triple coupling λ ?

using differential distributions

- (as seen in: Baur, Plehn, Rainwater [hep-ph/ 0310056])
- \bullet perform the analysis, e.g. for $b\overline{b}\gamma\gamma$.
- construct a differential distribution for signal and background using Monte Carlo.
- compare to Monte Carlo events to get expected bounds on the self-coupling.

using differential distributions (an example from Baur, Plehn, Rainwater):

using rates (i.e. cross sections)

- differential distributions for both signal and background may not be very well modeled.
- we can use the total rate predictions for signal and background instead.
- BUT: these can be dominated by large systematic uncertainties, originating either from:
 - unknown higher-order corrections,
 - parton density function uncertainties,
 - experimental errors,

+ more.

using ratios of cross sections

• consider:
$$C_{HH} = \frac{\sigma(gg \to HH)}{\sigma(gg \to H)}$$
,

- single Higgs production may possess similar higher-order QCD corrections to Higgs pair production.
- these may cancel out in the ratio, leading to a more stable prediction.
- moreover, experimental systematic uncertainties may cancel out, e.g. the luminosity uncertainty.
- we can check the degree to which extent the scale and pdf uncertainties cancel out.

 M_H (GeV)

comments on ratio

- assuming that the scale uncertainties are correlated is a reasonable assumption.
- ratio goes from ~1.25 to ~1.0 from LO to NLO even though the K-factor is ~2.
- a total theoretical uncertainty of ~5% is not unreasonable for the ratio, as opposed to ~20% for the cross section itself.
- we used the ratio, along with conservative expected experimental uncertainties to construct expected exclusion regions.

H+V, BDRS Analysis

• "BDRS" analysis:

[Butterworth, Davison, Rubin, Salam, 0802.2470]

- Higgs decays to two b-quarks.
- Cambridge/Aachen jet algorithm, R=1.2, get "fat jets".
- <u>apply a "mass-drop" condition</u> on a hard jet:
 - $\bullet\,$ picks up the decay of a massive particle, e.g. $H \to bb$
- <u>"filter" the jet:</u> re-apply the jet algorithm with a smaller R, on the "fat" jet constituents, take three hardest "sub-jets".
- ask for the two hardest "sub-jets" to contain <u>b-tags</u>.
- "filtering" reduces the effective area of the "Higgs"-jet,
- hence reduces pollution from Underlying Event.

BDRS analysis on H+H

• the Higgs bosons in HH are **naturally boosted**:

 $\lambda = -1 \times \lambda_{\rm SM}$ $\lambda = 0 \times \lambda_{\rm SM}$ ------ $1/\sigma \, {
m d}\sigma/{
m d}p_{T,h} \, \left[1/{
m GeV}\right]$ 0.01 $\lambda = 1 \times \lambda_{\rm SM}$ $\lambda = 2 \times \lambda_{\mathrm{SM}}$ -----0.001 0.0001 $m_h = 125 \text{ GeV}$ 100 200 300 400 500 0 $p_{T,h}$ [GeV]

[Dolan, Englert, Spannowsky, 1206.5001]

+ other arguments of BDRS technique apply.

"BDRS" analysis, pictorially:

[Butterworth, Davison, Rubin, Salam, 0802.2470]

- HV: yields good sensitivity (4.5 σ) @ 14 TeV @ 30 fb⁻¹.
- perhaps an improvement of previous HH results can be also achieved!

ingredients of the 'recipe':

• ingredients of the 'recipe':

an $SU(2)\times U(1)$ gauge symmetry

+ a complex doublet scalar, $\phi.$

• ingredients of the 'recipe':

an $SU(2)\times U(1)$ gauge symmetry

+ a complex doublet scalar, $\phi.$

• ingredients of the 'recipe':

an $SU(2) \times U(1)$ gauge symmetry

+ a complex doublet scalar, $\phi.$

start by writing (i.e. Higgs boson Lagrangian):

 $\mathcal{L} = (D^{\mu}\phi)(D_{\mu}\phi) - \mathcal{V}(\phi^{\dagger}\phi)$

• ingredients of the 'recipe':

an $SU(2)\times U(1)$ gauge symmetry

+ a complex doublet scalar, $\phi.$

start by writing (i.e. Higgs boson Lagrangian):

$$\mathcal{L} = (D^{\mu}\phi)(D_{\mu}\phi) - \mathcal{V}(\phi^{\dagger}\phi)$$

the covariant derivative:

$$D^{\mu} = \partial^{\mu} + ig_2(T \cdot W^{\mu}) + iYg_1B^{\mu}$$

SU(2) coupl. SU(2) gens. U(1) coupl.

• with potential:

 $\mathcal{V}(\phi^{\dagger}\phi) = \lambda(\phi^{\dagger}\phi)^2 + \mu^2 \phi^{\dagger}\phi,$ $(\lambda > 0, \ \mu^2 < 0)$

• with potential:

 $\begin{aligned} \mathcal{V}(\phi^{\dagger}\phi) &= \lambda(\phi^{\dagger}\phi)^2 + \mu^2 \phi^{\dagger}\phi, \\ (\lambda > 0, \ \mu^2 < 0) \end{aligned}$

 \Rightarrow vacuum expectation value (vev) at:

$$|\phi|^2 = -\mu^2/(2\lambda) \equiv v^2/2\lambda$$

(infinite number of degenerate minima)

 \hookrightarrow implies symmetry breaking

(...)

• with potential:

$$\begin{split} \mathcal{V}(\phi^{\dagger}\phi) &= \lambda(\phi^{\dagger}\phi)^2 + \mu^2 \phi^{\dagger}\phi, \\ (\lambda > 0, \ \mu^2 < 0) \end{split}$$

 \Rightarrow vacuum expectation value (vev) at:

$$|\phi|^2 = -\mu^2/(2\lambda) \equiv v^2/2.$$

(infinite number of degenerate minima)

 \hookrightarrow implies symmetry breaking

- further steps:
 - choose minimum in particular direction:

$$\langle \phi \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \end{pmatrix}$$
, (implies: residual U(1) invariance)

- consider fluctuations of scalar field about that minimum,
- and make a gauge transformation to absorb the Goldstone modes into the gauge bosons.

 \hookrightarrow 'Free' parameters: v, g_1, g_2, λ

'fixing' free params. (I)

- diagonalize the quadratic terms in vector boson fields,
- and deduce the masses of Z and W bosons:

4-fermion interaction at low energies can fix the Fermi constant:

'fixing' free params. (I)

- diagonalize the quadratic terms in vector boson fields,
- and deduce the masses of Z and W bosons:

 4-fermion interaction at low energies can fix the Fermi constant:

$$\bigvee \qquad \Longrightarrow \qquad \stackrel{\widehat{G_F}}{\longrightarrow} = \frac{1}{2v^2}$$

'fixing' free params. (II)

- until very recently, only had 3 out of 4 constraining equations...
- ...in July 2012, we obtained the fourth:

$$M_{H} = \sqrt{2\lambda v}$$
Measured!
$$\sim 125 \text{ GeV}$$