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dlims.

® provide summary of ‘recipe’ of the
electroweak sector of the Standard Model.

® provide overview of status of Higgs Boson
self-coupling measurements.”

® consider the prospects for the future.

* concentrate on the SM: | will only briefly mention BSM.



electroweak cooking

® ingredients:
SU(2) x U(1) gauge symmetry

+ complex doublet scalar, @

+ potential for ¢ : V(¢! o)
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electroweak cooking, steps ‘...

® choose a minimum in a particular direction, maintaining
U(1) invariance «— symmetry breaking. Prmin. < (0,v)

® consider fluctuations of the
scalar field about the minimum:

¢ o (0,v+ H)

® make a gauge transformation to
absorb the Goldstone modes into
the gauge bosons.

® Recipe makes massive W, Z, massless photons and Higgs
boson (H). Topped with QCD and served with fermions

to complete the SM.



Higgs potential

® focus on the resulting potential for the scalar field H:

1 A
Y = 5MI%[H2 + \H" + ZH4'

® /g, the Higgs mass, has been measured in July 2012
~125 GeV.

® U, the vacuum expectation value, from the 4-fermion
interaction at low energies ~ 246 GeV.

measured

® two ‘unknowns’: A, the triple self-coupling > not
directly

~

A\, the quartic self-coupling



why should we care?

- M2
® standard model prediction: A = A = 2—1;] ~ (.13 .
v

® here: regard SM as an effective theory, with the self-
couplings as per se free parameters.

® direct confirmation of the standard model relation probes
new physics effects, e.qg.

® ecxtended Higgs sectors.
® heavy particles running in loops.

® -+ other higher-dimensional operators.

® + probes the general consistency of the standard model.
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probing Higgs boson self-interactions =~

® determination of A and )\ : through multi-Higgs boson production
@ colliders:

® triple coupling, A\, —> Higgs pair production.

® quartic Coupling,S\, — Higgs triple production.



quartic Higgs coupling (I)

® consider triple Higgs boson production at hadron colliders,

® contributing diagrams: 99 — HHH
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® consider triple Higgs boson production at hadron colliders,

® contributing diagrams: 99 — HHH
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quartic Higgs coupling (ll)

® total HHH production @ LHC:
O'HHH(LHC@14 TeV) ~ (.04 {b

® ecven for V'LHC:
O'HHH(VHLHC@QOO TGV) ~ 10 {b

® AND: must know the triple coupling and top Yukawa well.

extremely difficult to measure this coupling @ LHC or even
any future hadron collider. [piehn, Rauch, hep-ph/0507321]

(compare to: 0gg—u(LHCQ@14 TeV) ~ 50 x 10° fb )
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focus on triple Higgs coupling
(through HH production)
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triple coupl. @ lin. colliders (I)

® at a linear collider, a few studies exist,

® based on processes such as:

ete” — ZHH
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triple coupl. @ lin. colliders (ll)

® c.g.ILC [1306.6352] or TESLA TDR [hep-ph/0106315]:

eTe” — ZHH (and both H — bb)
with:

o(VS =500 GeV) ~ 0.15 fb for: My ~ 125 GeV

TESLA TDR (2001): cross section with ~20% error,

_ 1 ILC discrepancy:
and A with accuracy ~20%: at 1000 fb™ . ‘mis-clustering of
color-singlet groups’
ILC TDR (2013): cross section with ~27% error, )
‘A new jet clustering
and \ with accuracy ~44%: at 2000 fb™ " . algorithm is now

being developed.’
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what about HH @ LHC (14 TeV)?

first: dissection of the
production cross section.
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(LO) HH production @ LHC

® focus on dominant initial state: gluon-gluon fusion.

@® leading order, two diagrams:

g t, b
OO0 H S H
t7b //
V ____Q< v A
(00000000 000) \\H — N T o
g g

. L . . 2 2
@ cffective theory (infinite top mass) insufficient: & 2 MtOp .

® loop calculation necessary to reproduce kinematical properties.
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box and triangle topologies, Lorentz structures corresponding
to spin-0 and spin-2 gg configurations.

OHH — ‘Z )\ch(spln 0) ZC(Spln 0) ‘2‘|— |Z QC(Spln 2)

q,tri q q,box q q,box

(sum over quarks g = t, b)

(couplings normalized to SM)
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box and trlangle topologies, Lorentz structures correspondlng
to spin-0 and spln -2 g9 Conﬁguratlons

OHH — ‘Z )\ch(spln 0) ZC(Spln 0) ‘2‘|— |Z QC(Spln 2)

q,tri q q,box q q,box

(sum over quarks g = t, b)

(couplings normalized to SM)
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HH production @ LHC

NLO calculation is only available in the infinite top mass

limit. [Dawson, Dittmaier, Spira, [hep-ph/98052441].

K-factor in this limit ~ 2.

recently, corrections in inverse powers of the top quark

mass have been computed, found to be significant. (crigo,
Hoff, Melnikov, Steinhauser, [1305.73401]].

interesting fact: gg box and triangle contributions exactly
cancel at the partonic threshold at LO. This causes a large
enhancement of the K-factor in the threshold region.
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HH production @ LHC

® using HPAIR (M. Spira), fitg:  Florian Goertz, AP, Li Lin Yang,
and José Zurita [1301.3492]

ot [fb] = 5.22X\%y? — 251y + 37.3y;

(couplings
normalized to

oNLO[fb] = 9.660%y2 — 46.9My7 + 701y} W

neglecting bottom quark contributions:
O(1%) at total cross section

® negative interference term between triangle and box.

® [interesting: a symmetry point exists at A ~ 2.5 y: (NLO)].
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o (gg — hh) [1b]

50
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10

HH production @ LHC

Vs =14 TeV, myp/2 < urp=pg < 2 my,

15

my, [GeV]

NLO 5.6
- O(Mp=125 GeV) — 32.3157 fb

AP, Li Lin Yang, and José Zurita
[arXiv:1209.1489]

(using HPAIR)

(NLO calculation exists only
in the heavy top limit)

18



the decay channels
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BR(H)
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branching ratios
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branching ratios (Myp = 125 GeV) ™

BR
BR

BR

BR
BR
BR
BR

BR

BR
BR

pair production

bbbb] = 33.3% note: each 1% corresponds
- to ~100 events per 300
POW W] = 24.8% fb™' of luminosity.
bbrT| = 7.29%

WWWW] = 4.62%

WWrr| =2.71%
Tr77| = 0.399%
bbZ 7] = 0.305%
bbyy] = 0.263%
bbZy] = 0.178%
bbup] = 0.025%
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branching ratios (MH =

pair production

BR[bbbb] = 33.3%

-------------------------------------------

BRIDDWW] = 24.8% /

-------------------------------------------
-------------------------------------------

- BR[pbr7] =7.29% | ./

BRWWWW]| = 4. 62%
BRWWrt| = 2.71%
BR|rT7T71] = 0.399%
BR[bbZZ] = 0.305%

-------------------------------------------

-------------------------------------------

BR[bbZ~] = 0.178%
BR[bbup] = 0.025%

WY
T <
e A =\
(= LE) o
\z [EM o
- BN -/
) \* A g

shown to be

potentially viable

(in the SM)

nhote: each 1% corresponds
to ~100 events per 300
fb™' of luminosity.
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establishment of HH
pProcess

@® first step towards constraining the triple
coupling: establishing (i.e. discovering) the HH
process @ LHC.

® need large integrated luminosity: 600 fb™
(certain) and 3000 fb™' (possible).

® first: look at the channels that are considered
to be ‘viable’.
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HH — bbrr

Dolan, Englert, Spannowsky, [1206.5001 ], Baglio, Djouadi, Gréber, Mihlleitner, Quevillon, Spira
[1212.5581].

® BR =7.29%, cross section ~ 2.4fb (~700 events @ 300
fb').

® reconstruction of T leptons experimentally delicate.

® backgrounds relatively low: electroweak and top decays
with taus in the final states.

® Higgses naturally boosted: use a fat jet: sub-structure of

the two b-quark system: like in Higgs+vector boson.
[Butterworth, Davison, Rubin, Salam, 0802.2470]

® results promising given a high t-tagging efficiency (80%),
b-tagging assumed 70%, low fake rates.

® S~ 50 versus B= 100 at 600 fb' (~50).
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HH — bbyy

Baur, Plehn, Rainwater, [hep-ph/031005], Baglio, Djouadi, Grober, Mihlleitner, Quevillon, Spira [1212.5581].

® BR = 0.263%, cross section = 0.09 fb, (~27 events @
300 fb).

® low rate but ‘clean’. backgrounds generally low and
mostly coming from reducible backgrounds due to mis-
identification of b-jets or photons (jet-to-y).

® S ~ 30 versus B ~ 60 at 3000 fb! (~40).
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HH — bbWW

Dolan, Englert, Spannowsky, [1206.5001], Baglio, Djouadi, Gréber, Mihlleitner, Quevillon, Spira [1212.5581],
AP, Li Lin Yang, and José Zurita [arXiv:1209.1489]

BR = 24.8%, cross section = 8.0 fb, (~2400 events @
300 fb).

high rate, can have leptons + missing energy in the final
state.

but: huge backgrounds from top-anti-top production.

with one leptonic W and one hadronic W was shown to be

viable using jet sub-structure techniques. [Ap, LiLin Yang, and
José Zurita [arXiv:1209.1489]]

S=11versus B =7 at 600 fb' (~40).
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more HH channels?

® bbbb : highest BR, but fully hadronic (triggering?) and
huge QCD backgrounds (o ~ 10.8 fb).

® bbufi : small initial cross section, essentially found to be
impossible (O' ~ 0.008 fb) [Baur, Plehn, Rainwater [hep-ph/0304015]].

® W WW W : good for high-mass Higgs. for low mass seems
to be hard due to BR of Ws (o ~ 1.5 fb).

® 7777 :low rate and T-tagging (o ~ 0.13 fb).

® W W t7: t-tagging, W BRs (o ~ 0.86 fb)

® 6627 : bbZ Z: low rates and BR for Zs (o0 < 0.1 fb).
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other production modes?

® several associated production modes exist:

cross section@14 TeV

qq — qqH H ~1.8 fb
Baglio, Djouadi, Gréber,
~ thlleitner, Quevillon, Spira
qq — WHH 0.4 fb IE/|1212.t5581(]2 >
qq — L HH ~0.3 fb

® note that: behaviour w.r.t. A\ is different for each channel.

® with HH — bbbb, could be looked into with sub-structure
techniques, but initial cross section low.
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summary of HH ‘searches’:

- 3 channels shown to be
potentially viable.

- these should be looked at by
experimentalists.

- some others could be
investigated again.

Now: what about measuring A?
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first: how well do we need to measure A? '«

® recent study estimates that A will likely need to be
measured to better than 20% to see a deviation from the
SM expectation. [Gupta, Rzehak, Wells [1305.63971]

® (considers new mixed-in singlets, MSSM Higgses and
composite models.)

® other studies of HH in relation to BSM:

N Composite nggS models, €.J. [Gillioz, Grober, Grojean, Muhlleitner,
Salvioni, 1206.7120],

iIn warped extra-dimensional models, e.g. [Gouzevitch, Oliveira,
Rojo, Rosenfeld, Salam, Sanz, 1303.6636],

Higgs portal/MSSM/pseudo-Nambu-Goldstone boson,

€.J. [Dolan, Englert, Spannowsky, 1210.8166],

+ many more... o



how well can we measure A?

® large theoretical uncertainties: scale, PDF, as & effective

theory (EFT) uncertainty: ~30-40%. [Baglio, Djouadi, Grober,
Mihlleitner, Quevillon, Spira [1212.5581]].

® note: cross section has been shown to be larger than NLO
EFT:

® including top mass corrections: ~10% increase. [crigo, Hoff,
Melnikov, Steinhauser, [1305.7340]]. Moreover, the scale dependence
reduced (~5%).

® in the effective theory at NNLO: ~20% increase. [de
Florian, Mazzitelli, [1305.5206]]
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how well can we measure A\?

® older studies considered analysis of shapes of
distributions. [e.g. Baur, Plehn, Rainwater [hep-ph/
0310056]].

® shapes may not be so well predicted at the moment: use
rates instead. [Goertz, AP, Yang, Zurita [arXiv:
1301.3492]]1.
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how well can we measure A? =

® claim: single H and double H production possess similar
topologies and hence QCD corrections could be also similar.

G
=

® can use ratios of cross section of HH to single H to cancel
out part of the theoretical uncertainties.

Vs =14 TeV, 0.5uy <p <2.0uy, NLO (MSTW2008nlo68cl)

50 pemn o(H)
e o( HH) x10°

GHrx1000 _ _

OH

1.03 r
1.02f [ A(pdf)

~  1.01f
S 100 [ A(scale)

CHH=OHH/ OH > X oo — ~
(ST" 0.97 A

0.96f . ) S
0.95

120 121 122 123 124 135 126 127 128 129
My (GeV)

Goertz, AP, Yang, Zurita [arXiv:1301.3492]
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how well can we measure A?

® using the three channels shown to be potentially viable, at
3000 fb!', LHC@14 TeV:

HH — bbrT = A=1.000% -
HH — bbyy = A=100555—the s
HH — bbWW = A=100755

[Goertz, AP, Yang, Zurita [arXiv:1301.3492]]
® “naively” combining: ~+30%, ~-20% error.

® with this method, to get down to e.g. O(10%), we would
need an extra 3-4 channels with an error of ~40%-50% each.
33



outlook: theoretical improvements =~

® a better NLO calculation could be performed. hard: two
loops with two mass scales (H and top mass).

® then this could be matched with the parton shower
(MC@NLO/POWHEG) to provide better description of
kinematical distributions.

® until then perhaps resummed calculations?

® or an improved Monte Carlo with the real emission matrix
elements?

® with an improvement on the kinematical description,
shape analyses could improve the limits from each
channel.
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outlook: ‘other’ improvements “*”

® use ‘improved’ boosted jet techniques to push the

channels further: e.g. Shower deconstruction or Q-jets.

[Soper, Spannowsky, [1102.3480, 1211.3140], Ellis, Hornig, Roy, Krohn, Schwartz
[1201.1914]].

® other channels could be made viable.

® further ‘technological’ improvements in jet sub-structure
techniques?

® long-term (& expensive!): an LHC energy upgrade will
allow for more events to ‘play with’. e.g. c(HH@33TeV) ~
210 fb.
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summary ()

with the discovery of the Higgs boson, an important next
step is to determine the form of its potential.

this can be done via measurement of the self-couplings.

the triple Higgs coupling, A, can be probed via Higgs pair
production (HH).

total cross section is low and the HH process is
challenging.
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summary (ll)

several investigations performed so far,
but more work needs to be done:

theoretically: improving description of the kinematics and
the total cross section,

in phenomenology: re-examine channels, search new,

experimentally: to assess the viability of the promising
channels.
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® special thanks to my collaborators:
Florian Goertz, José Zurita, Li Lin
Yang.
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special thanks

® special thanks to my collaborators:
Florian Goertz, José Zurita, Li Lin
Yang.

® ...and thanks for your attention!
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how do we (actually) measure the
triple coupling A?
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using differential distributions -

® (as seen in: Baur, Plehn, Rainwater [hep-ph/
0310056])

® perform the analysis, e.g. for bby~ .

® construct a differential distribution for signal
and background using Monte Carlo.

® compare to Monte Carlo events to get
expected bounds on the self-coupling.

41



using differential distributions (an example (_:_
from Baur, Plehn, Rainwater):

0.000125 | | |

: " bgd, high pp > bbyy, LHC

0.000100 [— my =120 GeV _-

= i :
Q) i ]
2 : :
: (1000075: R :
EE 0.000050 |— HH, Agup=1 (SM) B
’ﬁ i ]
oo :
— 0.000025 — . 7
: . :

0.000000 &= == e

200 1000
mvis (G@V)
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using rates (i.e. cross sections) “”

® differential distributions for both signal and background
may not be very well modeled.

® we can use the total rate predictions for signal and
background instead.

® BUT: these can be dominated by large systematic
uncertainties, originating either from:

® unknown higher-order corrections,
® parton density function uncertainties,
® cxperimental errors,

® -+ more.
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using ratios of cross sections

@® consider: Cyg =

o(gg — HH)
o(99 — H)

)

single Higgs production may possess similar higher-order
QCD corrections to Higgs pair production.

these may cancel out in the ratio, leading to a more stable
prediction.

moreover, experimental systematic uncertainties may
cancel out, e.g. the luminosity uncertainty.

we can check the degree to which extent the scale and pdf
uncertainties cancel out.
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leading order

30 Vs =14TeV, 0.5uy < <2.04y, LO (MSTW2008l068c|)

T o(H)

2> | o(HH) x10°

20

o (pb)

15

| s A(pdf)
1.40f — A(scale)

% 1:25_ _

120 121 122 123 124 125 126 127 128 129
M, (GeV)



next-to-leading order

vs =14 TeV, 0.5uy <p <2.0py, NLO (MSTW2008nl068cl)
50; = o(H)

=  o(HH) x10°

1.021 —— A(pdf)

I —
< 1.00f A(scale)

120 121 122 123 124 125 126 127 128 129
M, (GeV)
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comments on ratio

assuming that the scale uncertainties are correlated is a
reasonable assumption.

ratio goes from ~1.25 to ~1.0 from LO to NLO even
though the K-factor is ~2.

a total theoretical uncertainty of ~5% is not unreasonable
for the ratio, as opposed to ~20% for the cross section
itself.

we used the ratio, along with conservative expected
experimental uncertainties to construct expected
exclusion regions.
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H+V, BDRS Analysis

[Butterworth, Davison, Rubin, Salam, 0802.2470]

® “BDRS” analysis:
® Higgs decays to two b-quarks.
® Cambridge/Aachen jet algorithm, R=1.2, get “fat jets”.

® apply a “mass-drop” condition on a hard jet:

® picks up the decay of a massive particle, e.g. H — bb

® “filter” the jet: re-apply the jet algorithm with a smaller R, on
the “fat” jet constituents, take three hardest “sub-jets”.

® ask for the two hardest “sub-jets” to contain b-tags.
® “filtering” reduces the effective area of the “Higgs”-jet,
® hence reduces pollution from Underlying Event.
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BDRS analysis on H+H

® the Higgs bosons in HH are naturally boosted:

A= —1X Agp =ee
= A=0X Agy s
0.01
g E . .......-.'l’ﬁr-hi_ . >\ — 1 >< )\SM ...........
— T TR N = 2 X gy~
< ::--‘.-_ 4 i~ -_
B .-rJ . = [ | "
= [y S )
= 0.001 H
o [: =,
~— - =
— - Lol "'l..!--‘
0.0001 f my, = 125 GeV RS
| St

0 100 200 300 400
pT,h [GGV]

® + other arguments of BDRS technique apply.

[ Dolan, Englert,
Spannowsky, 1206.5001]
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H+V

® “BDRS” analysis, pictorially: [Butterworth, Davison, Rubin, Salam, 0802.2470]
SL \
g —_— —_—
mass drop filter

l

“fat jet”

® HV: yields good sensitivity (4.50) @ 14 TeV @ 30 fb'.

® perhaps an improvement of previous HH results can be also
achieved!
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electroweak Lagrangian (l)

® ingredients of the ‘recipe’:
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electroweak Lagrangian (l)

® ingredients of the ‘recipe’:

an SU(2) x U(1) gauge symmetry

+ a complex doublet scalar, @.
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® ingredients of the ‘recipe’:

an SU(2) x U(1) gauge symmetry ( )

+ a complex doublet scalar, @. ()
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electroweak Lagrangian (l)

® ingredients of the ‘recipe’:

an SU(2) x U(1) gauge symmetry ( )

+ a complex doublet scalar, @. ()

® start by writing (i.e. Higgs boson Lagrangian):

L= (D"$)(Dup) = V(¢'¢)

52



electroweak Lagrangian (l)

® ingredients of the ‘recipe’:

an SU(2) x U(1) gauge symmetry ( )

+ a complex doublet scalar, @. ()

® start by writing (i.e. Higgs boson Lagrangian):

the covariant derivative:
DV = 0 +igo(T - WH) +1Y g, BH

SU(2) coupl.ﬁ \SU(Z) gens. U(1‘l) coupl.
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electroweak Lagrangian (Il) =

® with potential:

V(¢T¢) _ )\(ng¢)2 1 M2¢T¢, ( )
(A >0, p® <0) N
(L)
4
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electroweak Lagrangian (Il)

® with potential:

V(6') = A(6'¢)* + n*¢'e. ( )
(A >0, p* <0) +
(L)
—> vacuum expectation value (vev) at: n
0] = —p?/(2)) = v /2. (...)

(infinite number of degenerate minima)

— implies symmetry breaking
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electroweak Lagrangian (ll) &

® with potential:

V(6') = A(6'¢)* + n*¢'e. ( )
(A >0, p* <0) +
(L)
—> vacuum expectation value (vev) at: n
0] = —p?/(2)) = v /2. (...)

(infinite number of degenerate minima)

(&)

— implies symmetry breaking
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electroweak Lagrangian (lll)

® further steps:

® choose minimum in particular direction:

(v

1 0
<€b> — ﬁ ( ) »  (implies: residual U(1) invariance)

® consider fluctuations of scalar field about that minimum,

® and make a gauge transformation to absorb the Goldstone
modes into the gauge bosons.
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electroweak Lagrangian (IV)

® hence, after symmetry breaking, the Higgs + SU(2)xU(1)

Lagrangian becomes:

---------
~

S
s
~

s
s
~

s
s
~

, fluct. about min.
¢ o (0,0 + H)

1., (recall: y, A and v are

related and hence
only 2/3 are
independent.)

— ‘Free’ parameters: v, g1, go, A
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‘fixing’ free params. (I)

® diagonalize the quadratic terms in vector boson fields,

® and deduce the masses of Z and W bosons:

® 4-fermion interaction at IGW energies can fix the Fermi
constant: “
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‘fixing’ free params. (I)

® diagonalize the quadratic terms in vector boson fields,

® and deduce the masses of Z and W bosons:

WARNING: Leading

Order!

® 4-fermion interaction at IGW energies can fix the Fermi

constant:
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‘fixing’ free params. (ll)

® until very recently, only had 3 out of 4 constraining
equations...

® ...in July 2012, we obtained the fourth:

Measured!

— ~ 125 GeV
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