7/23/13

MPI - History and Basic Concepts

Erwin Laure
Director PDC-HPC

What is MPI

M P | = Message Passing Interface

MPI is not an implementation — it is a specification

m Specifies the interface of the library

Interface specifications have been defined for C/C++ and
Fortran programs.

Commonly used implementations of MPI:
MPICH (Argonne)
MVAPICH
OpenMPI
Vendor specific
« Cray
* Platform
- IBM

MPI History

m Many different message passing implementations in the
late 80s
m Very difficult to port an application to another platform, sometimes
even between two generations of the same platform
m 1992-1994: community process to standardize MPI

m 1996: MPI-2 ‘ EUI

Express

a 2017: MPI-3 \ /
Ch I
ame eon\\‘ ‘// PARMACS

CMNMD

P4-————
TCGMSG — MP' T

Y

MPI-2

MPI (+/-) :

Reasons for MPI

m Standardization - MPI is the only message passing library which can
be considered a standard. It is supported on virtually all HPC
platforms. Practically, it has replaced all previous message passing
libraries.

m Portability - There is no need to modify your source code when you
port your application to a different platform that supports (and is
compliant with) the MPI standard.

m Performance Opportunities - Vendor implementations should be
able to exploit native hardware features to optimize performance.

m Functionality - 128 routines are defined in MPI-1 alone — some 333
in MPI-2

m Availability - A variety of implementations are available, both vendor
and public domain.

7/23/13

Main MPI Concepts

A basic MP library

send(address, length, destination, tag)

address: memory location signifying the beginning of the
buffer containing the data to be sent,

length: is the length in bytes of the message,
destination: is the receiving process identifier
tag: arbitrary integer to restrict receipt of message

recv (address, maxlen, source, tag, actlen)

Process 0

tag

Process 1

Messaée Buffer

Recv Buffer

7/23/13

7/23/13

Message Buffers

m (address, length) is insufficient in case of non-contiguous
data and the need of data conversion

m MPI introduces datatypes
m Basic datatypes predefined (MPI_INT, MPI_DOUBLE, ...)
m User can define own (non-contiguous) data types

m A message buffer in MPI is described as

(buf, count, datatype)

MPI Basic Datatypes (Fortran)

MPI Datatype Fortran Datatype

MPI_INTEGER INTEGER

MPI_REAL REAL
MPI_DOUBLE_PRECISION DOUBLE_PRECISION
MPI_COMPLEX COMPLEX
MPI_LOGICAL LOGICAL
MPI_CHARACTER CHARACTER(1)
MPI_BYTE

MPI_PACKED

Note: the names of the MPI C datatypes are slightly different

Processes and Communicators

m Processes belong to groups
m Processes within a group are identified with their rank
m A group of n processes has ranks O ... n-1

m MPI uses objects called communicators and groups to
define which collection of processes may communicate with

each other MPI_COMM_WORLD
= MPI_COMM_WORLD
is the default o

communicator o
©

covering all of the

original MPI
processes o e o o e

Why Communicators?

m How to chose safe (unique) tags when writing a library?
l.e. how to avoid a message being picked up by the wrong
receiver?

m Collective operations (broadcast, reductions) can be
easily defined over subgroups by using communicators

10

7/23/13

Note: Processes vs. Processors

m MPI defines processes, it does not specify how these
processes are mapped to physical processors/cores

m The mapping of processes to processors/cores is done at
program start and dependent on the startup mechanism
available on a certain resource — more about that later on.

11

Send/Receive in MPI

MPI Send (buf, count, datatype, dest, tag, comm)

m (buf, count, datatype) describes the datato be
sent

m Dest is the rank of the destination in the group
associated with communicator comm

m tag is an identifier of the message
m comm identifies a group of processes

MPI Recv (buf, count, datatype, source, tag,
comm, status)

m status provides information on the message received,

including source, tag, and count 1]

7/23/13

7/23/13

Recap: Basic MPI Concepts

m Message buffers described by address, data type, and
count

m Processes identified by their ranks

= Communicators identifying communication contexts/
groups

13

MPI has over 300 functions ...
m How many years do | have to study before | can use it?
m In fact, you will hardly ever use most of the MPI functions

m 6 functions are sufficient for simple programs:
m MPI Init — to initialize the MPI environment
m MPI Comm Size —to know the number of processes
m MPI Comm Rank —to know the rank of the calling process
m MPI Send —tosend a message
m MPI Recv — to receive a message
m MPI Finalize —to exitin a clean way

14

7/23/13

What is not specified

m Certain aspects are not specified in the MPI standard but
left as implementation detail:
m Process startup (how to start an MPI program)
+ All what happens before MPI_Init is executed
m Richer error codes are allowed

= Message
buffering

process A process B

application SEND network application RECV

system buffer system buffer I

Path of a message buffered at the receiving process

A first MPI Program

MPI Program Structure
|MPI include file #include "mpi.h"

Declarations, prototypes, etc.
Program Begins
: Serial code rc = MPI Init(&argc,&argv);

|Inilialize MPI environment Parallel code begins MPI_Comm_size(MPI_COMM_WORLD, &

numtasks) ;

MPI_Comm_ rank(MPI_COMM WORLD, &

|Do work & make message passing calls rank);

|Terminate MPI environment parallel code ends MPI Finalize();

Serial code

Program Ends

17

Format of MPIl Routines

= C Binding:

m rc = MPI_Xxxxx(parameter, ...)

m Exampleirc = MPI_Send(&buf,count,type,dest,tag,comm)

m Error code: Returned as "rc". MPI_SUCCESS if successful

m Fortran Binding
m call mpi xxxxx(parameter,..., ilerr)

m Example: CALL
MPI SEND(buf,count,type,dest,tag,comm,ierr)

m Error code: Returned as "ierr" parameter. MPI_SUCCESS |if
successful

18

7/23/13

Example: Hello, World (C)

#include "mpi.h"
#include <stdio.h>

int main(argc,argv)

int argc;

char *argv[]; {

int numtasks, rank, rc;

rc = MPI_Init(&argc,&argv);

if (rc != MPI_SUCCESS) {
printf ("Error starting MPI program. Terminating.\n");
MPI_Abort(MPI_COMM WORLD, rc);
}

MPI_Comm size(MPI_COMM_WORLD, &numtasks);

MPI_Comm rank(MPI_COMM_ WORLD, &rank) ;

printf ("Hello, World from rank %d out of %d\n", rank, numtasks);
MPI_Finalize();

}

19
Example: Hello, World (Fortran)
program simple
include 'mpif.h’'
integer numtasks, rank, ierr, rc
call MPI INIT(ierr)
if (ierr .ne. MPI_ SUCCESS) then
print *,'Error starting MPI program. Terminating.'
call MPI_ABORT(MPI_COMM_WORLD, rc, ierr)
end if
call MPI COMM RANK(MPI COMM WORLD, rank, ierr)
call MPI COMM SIZE(MPI_COMM WORLD, numtasks, ierr)
print *, 'Hello, World from rank ',rank, ' out of=', numtasks
call MPI FINALIZE(ierr)
end
20

7/23/13

10

Sample Output (24 processes)

Hello,
Hello,
Hello,
Hello,
Hello,
Hello,
Hello,
Hello,
Hello,
Hello,
Hello,
Hello,
Hello,
Hello,
Hello,
Hello,
Hello,
Hello,
Hello,
Hello,
Hello,
Hello,
Hello,
Hello,

World
World
World
World
World
World
World
World
World
World
World
World
World
World
World
World
World
World
World
World
World
World
World
World

from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from

rank
rank
rank
rank
rank
rank
rank
rank
rank
rank
rank
rank
rank
rank
rank
rank
rank
rank
rank
rank
rank
rank
rank
rank

9 out of 24
17 out of 24
13 out of 24
7 out of 24
11 out of 24
14 out of 24
16 out of 24
4 out of 24
15 out of 24
3 out of 24
23 out of 24
10 out of 24
5 out of 24
12 out of 24
2 out of 24
19 out of 24
21 out of 24
8 out of 24
18 out of 24
1 out of 24
6 out of 24
22 out of 24
20 out of 24
0 out of 24

Note the
random order!

21

How to launch MPI Programs?

m Not specified by MPI standard

m Many implementations use mpirun —np X
m Hostfile used to specify processes/hardware mapping

m MPI standard proposes, but does not mandate, a common
mpiexec syntax/semantics, similar to mpirun

m Cray uses aprun —n x

22

7/23/13

11

Summary

= MPI Basics

Message buffers

Processes and communicators
Structure of MPI programs
Implementation specific features

m To find out the exact syntax of certain commands:
m On Lindgren use > man MPI xxX
m Look up Web resources

23

7/23/13

12

