
7/23/13

1

1!

Basic MPI
Collective Communication

Erwin Laure  
Director PDC-HPC!

What we know already!

n  Everything to write MPI programs!
n  Program structure!
n  Point-to-point communication!
n  Communication modes!
n  Blocking/non-blocking communication!

2!

7/23/13

2

Collective Communication!

n  Often more than 2 processes are involved in
communication!
n  Send input data to all processes!
n  Collect results from all processes!
n  Synchronize all processes!
n  Update all processes with partial results!
n  …!

n  All this can be implemented with the commands you
already know!
n  But it is tedious, error-prone, and difficult to implement efficiently!

n  Hence MPI provides ready-made commands for this!

3!

Collective Communication Cont’d!

n  Communication involving all processes in a group (i.e. a
communicator)!

n  All processes in a group MUST participate to the collective
operation!

n  No tag mechanism, only order of program execution!
n  Remember that MPI messages cannot overtake another one!

n  All collective routines are blocking!
n  With the standard completion semantics of blocking

communication – thus no guarantee there is a full synchronization!

4!

7/23/13

3

List of Collective Routines!

n  Barrier synchronization across all processes.!
n  Broadcast from one process to all other processes!
n  Global reduction operations such as sum, min, max or

user-defined reductions!
n  Gather data from all processes to one process!
n  Scatter data from one process to all processes!
n  All-to-all exchange of data!
n  Scan across all processes!

5!

Barrier Synchronization!

n  Sometimes there is a need to synchronize all processes
before them continuing independently!
n  E.g. read in input data!

n  MPI_Barrier blocks the calling process until all
processes in the group have also called MPI_Barrier!

int MPI_Barrier (MPI_comm comm)!
!
MPI_BARRIER (COMM, ERROR)!

6!

7/23/13

4

Broadcast!

n  Broadcast sends data from one process to the same
memory location in all other processes!
n  send and receive buffer are the same!!

7!

Broadcast Cont’d!

int MPI_Bcast (void* buffer, int count,  
 MPI_Datatype datatype,  
 int root, MPI_Comm comm) !
MPI_BCAST (BUFFER, COUNT, DATATYPE, ROOT,  
 COMM, IERR)!
!
n  Note:!

n  Only one (send/receive) buffer!
n  No tag!
n  Root indicates the process owning the data to be broadcasted!

8!

7/23/13

5

Broadcast Example!
#include <mpi.h>!
void main(int argc, char *argv[]) {!
 int rank;!
 double param;!
 MPI_Init(&argc, &argv);!
 MPI_Comm_rank(MPI_COMM_WORLD,&rank);!
!
 if(rank==5) param=23.0;!
 MPI_Bcast(¶m,1,MPI_DOUBLE,5,MPI_COMM_WORLD);!
 printf("P:%d after broadcast parameter is %f \n",  
 rank,param);!
 MPI_Finalize();!
}!

9!

Gather!

n  Gather is a all-to-one operation that collects the data from
all processes in target process!

10!

7/23/13

6

Gather Cont’d!
int MPI_Gather (void* send_buffer, int send_count,  
 MPI_datatype send_type, void* recv_buffer,  
 int recv_count, MPI_Datatype recv_type,  
 int rank, MPI_Comm comm)!
!
MPI_GATHER (SEND_BUFFER, SEND_COUNT, SEND_TYPE,RECV_BUFFER,  
 RECV_COUNT, RECV_TYPE, RANK, COMM, ERROR) !

n  Note:!
n  Each process (including the root process) sends the contents of

its send buffer to the root process. The root process receives the
messages and stores them in rank order.!

n  Receive buffer needs to be large enough to store all data!
n  The gather could also be accomplished by each process calling
MPI_SEND and the root process calling MPI_RECV N times to
receive all of the messages.!

n  all processes, including the root, must send the same amount of
data, and the data are of the same type. !

11!

Gather Example!
int rank,size;!
double param[16],mine;!
int sndcnt,rcvcnt; I;!
 !
sndcnt=1;!
mine=23.0+rank;!
if(rank==7) rcvcnt=1;!
!
MPI_Gather(&mine,sndcnt,MPI_DOUBLE,param,rcvcnt,  
 MPI_DOUBLE,7,MPI_COMM_WORLD);!
!
if(rank==7)!
for(i=0;i<size;++i) printf("PE:%d param[%d] is %f \n",  
 rank,i,param[i]]); !
 !

12!

7/23/13

7

Allgather!

n  Sometimes it is also useful to gather the data not only into
one process but all!

n  Equivalent to MPI_Gather plus MPI_Bcast!
n  MPI_Allgather has same syntax as MPI_Gather!

13!

Scatter!

n  Distribute data to all processes – one-to-all
communication!

n  Inverse to gather!

14!

7/23/13

8

Scatter Cont’d!
int MPI_Scatter (void* send_buffer, int send_count,  
 MPI_datatype send_type,  
 void* recv_buffer, int recv_count,  
 MPI_Datatype recv_type, !
 int rank, MPI_Comm comm) !
!
MPI_Scatter (SEND_BUFFER, SEND_COUNT, SEND_TYPE,  
 RECV_BUFFER, RECV_COUNT, RECV_TYPE,  
 RANK, COMM, ERROR) !

!
n  root process breaks up the send buffer into equal chunks

and sends one chunk to each processor. !
n  The outcome is the same as if the root executed N MPI_SEND

operations and each process executed an MPI_RECV. !

15!

Scatter Example!
rcvcnt=1;!
if(rank==3) {!
 for(i=0;i<8;++i) param[i]=23.0+i;!
 sndcnt=1;!
}!
MPI_Scatter(param,sndcnt,MPI_DOUBLE,&mine,rcvcnt,  
 MPI_DOUBLE,3,MPI_COMM_WORLD);!
for(i=0;i<size;++i) {!
 if(rank==i) printf("P:%d mine is %f \n",rank,mine);!
 fflush(stdout);!
 MPI_Barrier(MPI_COMM_WORLD);!
}!
MPI_Finalize();!
}!

16!

Why is there a
barrier here?

7/23/13

9

Other Gather/Scatter Variants!

n  Gather/Scatter is also defined over vectors!
n  MPI_GATHERV and MPI_SCATTERV allow a varying count of

data from/to each process.!
n  MPI_ALLTOALL!

n  Every process performs 
a scatter!

17!

Reduction!

n  Collect data from each processor!
n  Reduce these data to a single value (such as a sum or

max)!
n  Store the reduced result on the root processor!

18!

7/23/13

10

Reduction Cont’d!
int MPI_Reduce (void* send_buffer, void* recv_buffer, int  
 count, MPI_Datatype datatype, MPI_Op  
 operation, int rank, MPI_Comm comm) !
!
MPI_REDUCE (SEND_BUFFER, RECV_BUFFER, COUNT, DATATYPE, !
 OPERATION, RANK, COMM, ERROR)!
!

n  Note:!
n  Rank denotes the process that stores the result in recv_buffer!
n  Operation can be one of 12 pre-defined operations or user-

defined!
n  Both send and receive buffers must have the same number of

elements with the same type. !
•  The arguments count and datatype must have identical values in

all processes. !
n  The argument rank must also be the same in all processes.!

19!

Predefined Reduction Operations!
Operation! Description!
MPI_MAX ! !! maximum!
MPI_MIN ! ! !! minimum!
MPI_SUM ! !! sum!
MPI_PROD ! !! product!
MPI_LAND ! !! logical and!
MPI_BAND ! !! bit-wise and!
MPI_LOR ! !! logical or!
MPI_BOR ! !! bit-wise or!
MPI_LXOR ! !! logical xor!
MPI_BXOR ! !! bitwise xor!
MPI_MINLOC ! !!
!

computes a global minimum and an index attached to the
minimum value -- can be used to determine the rank of the
process containing the minimum value!

MPI_MAXLOC !! computes a global maximum and an index attached to the
rank of the process containing the maximum value! 20!

7/23/13

11

Reduction Example!
#include <stdio.h>!
#include <mpi.h>!
void main(int argc, char *argv[]) {!
 int rank;!
 int source,result,root;!
!
 MPI_Init(&argc, &argv);!
 MPI_Comm_rank(MPI_COMM_WORLD,&rank);!
!
 root=7;!
 source=rank+1;!
!
 MPI_Reduce(&source,&result,1, MPI_INT, MPI_PROD, root,  
 MPI_COMM_WORLD);!
 if(rank==root) printf("P:%d MPI_PROD result is %d \n", rank,  
 result);!

!
MPI_Barrier(MPI_COMM_WORLD);!
MPI_Finalize();!
}! 21!

Reduce Variations!
n  MPI_Allreduce makes the result available in the

receive buffers of all processes!
n  Equivalent to MPI_Reduce plus MPI_Bcast!

n  MPI_Reduce_scatter scatters the result vector across
the processes in the group!

22!

7/23/13

12

Reduce Variations Cont’d!

n  MPI_Scan performs a partial reduction in which process i
receives data from processes 0 through i, inclusive!

23!

Summary!

n  Collective communication routines provide convenient
calls for standard communication patterns!

n  Depending on the implementation they may be much
more efficient than hand-coding (or not)!
n  Synchronization overhead might be substantial!

n  Collective communication makes extensive use of groups/
communicators!

24!

7/23/13

13

What’s next!

n  Intermediate MPI!
n  Overlapping communication/computation!
n  Using communicators!
n  Derived datatypes!

25!

