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Performance engineering 

We want to get the most 
science and engineering 
through a supercomputing 
system as possible 

 

The more efficient codes are 
the more productive scientists 
and engineers can be 
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Performance analysis 

To optimise code we must know what is taking the time 

 

 

Application Inputs Output 

Profile Data 

Top time consuming routines 

Load balance across processes and 

threads 

Parallel overhead 

Communication patterns 

Hardware utilization details 



Fortran95 

Performance Engineering module overview 

Tuesday 

11.15-12.00 Introduction to 

performance 

engineering 

12.00-13.15 Lunch 

13.15-14.00 Application 

performance 

analysis 

14.00-14.15 Break 

14.15-15.00 Lab session 

15.00-15.15 Coffee break 

15.15-17.00 Lab session 

Wednesday 

8.30-9.00 Interim summary, 

Q&A 

11.15-12.00 Improving parallel 

scalability 

12.00-13.15 Lunch 

13.15-15.00 Lab session 



• About code optimization in general 
• Not going to touch the source code? 
• Data locality 
• Why does scaling end? 
• Application optimization flow chart 

Part I: Introduction to performance 
engineering 



Code optimization 

● Obvious benefits 

● Better throughput => more science 

● Cheaper than new hardware  

● Save energy, compute quota etc. 

● ..and some non-obvious ones 

● Collaboration opportunities 

● Potential for cross-disciplinary research 

● Deeper understanding of application 

● Several trends making code optimization even more 
important 

● More and more cores 

● CPU‟s vector units getting wider 

● The gap between CPU and memory speed ever increasing 

● Datasets growing rapidly but disk I/O performance lags behind 

 

 



Code optimization 

● Adapting the problem to the underlying hardware 

● Combination of many aspects 

● Effective algorithms 

● Implementation: Processor utilization & efficient memory use 

● Parallel scalability 

● Important to understand interactions 

● Algorithm – code – compiler – libraries – hardware 

● Performance is not portable! 



Not going to touch the source code? 

● Find the compiler and its compiler flags that yield the best 
performance 
 

● Employ tuned libraries wherever possible 
 

● Find suitable settings for environment parameters 
 

● Mind the I/O 
● Do not checkpoint too often 

● Do not ask for the output you do not need 

 



Keep your friends close and data even closer 

Registers 

L1 Cache 

L2 Cache 

L3 Cache 

Physical memory 

Remote memory (over interconnect) 

Swap, file system disks 

<= 1 

~4 
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~ 300 
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Why does scaling end? 

● Amount of data per process small - computation takes 
little time compared to communication 

● Amdahl’s law in general 

● E.g., single-writer or stderr I/O 

● Load imbalance 

● Communication that scales badly with Nproc 

● E.g., all-to-all collectives 

● Congestion on network – too  
many messages or lots of data 



Application optimization flow chart 

Next lecture 

Tricks & tips 

for this 

tomorrow 

Validation in every step! 



Part II: Application performance analysis 

• Tools for performance analysis 

• Eight-stage procedure for identifying 
performance bottlenecks 

• Example: Cray Performance Analysis 
Toolkit 



Application timing 

● Most basic information: total wall clock time 

● Built-in timers in the program (e.g. MPI_Wtime) 

● System commands (e.g. time) or batch system statistics 

● Built-in timers can provide also more fine-grained 
information 

● Have to be inserted by hand 

● Typically, no information about hardware related issues e.g. cache 
utilization 

● Information about load imbalance and communication statistics of 
parallel program is difficult to obtain 

 

 



Performance analysis tools 

● Instrumentation of code 

● Adding special measurement code to binary 

● Special commands, compiler/linker wrappers 

● Automatic or manual 

● Normally all routines do not need to be measured 

● Measurement: running the instrumented binary 

● Profile: sum of events over time 

● Trace: sequence of events over time 

● Analysis 

● Text based analysis reports 

● Visualization 
 

 



Sampling 
 

Advantages 

• Only need to instrument 

main routine 

• Low Overhead – depends 

only on sampling frequency 

• Smaller volumes of data 

produced 

 

Disadvantages 

• Only statistical averages 

available 

• Limited information from 

performance counters 
 

Event Tracing 
 

Advantages 

• More accurate and more detailed 

information 

• Data collected from every traced 

function call not statistical averages 

 

 

Disadvantages 

• Increased overheads as number of 

function calls increases 

• Huge volumes of data generated 
 

Guided tracing = trace only program parts that consume a significant 

portion of the total time 

In Cray Performance Analysis Toolkit this is referred to as 

”automatic profiling analysis ”(APA) 



Step 1: Choose a test problem 

● The dataset used in the analysis should 

● Make scientific sense, i.e. resemble the intended use of the code 

● Be large enough for getting a good view on scalability 

● Be runable in a reasonable time  

● For instance, with simulation codes almost a full-blown model but run 
only for a few time steps 

● Should be run long enough that initialization/finalization 
stages are not exaggerated 

● Alternatively, we can exclude them during the analysis 
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Step 2: Measure scalability 

● Run the uninstrumented 
code with different core 
counts and see where the 
parallel scaling stops 
 

● Usually we look at strong 
scaling 
● Also weak scaling is definitely 

of interest 

What is happening in 
here? 



Step 3: Instrument the application 

● Obtain first a sampling profile to find which user functions 
should be traced 

● With a large/complex software, one should not trace them all: it 
causes excessive overhead 

● Make an instrumented exe with tracing time-consuming 
user functions plus e.g. MPI, I/O and library (BLAS, FFT,...) 
calls 

● Execute and record the first analysis with 

● The core count where the scalability is still ok 

● The core count where the scalability has ended 

 and identify the largest differences between these profiles 



Example with CrayPAT (1/2) 

. 

● Load performance tools software 
 
 module load perftools 
 

● Re-build application (keep .o files) 
 
 make clean 
 make 

 

● Instrument application for automatic profiling analysis 
● You should get an instrumented program a.out+pat 
 
 pat_build –O apa a.out 

 

● Run the instrumented application (...+pat) to get top time 
consuming routines 
● You should get a performance file (“<sdatafile>.xf”)  or                    

multiple files in a directory <sdatadir> 
 

  



Example with CrayPAT (2/2) 

. 

 

● Generate text report and an .apa instrumentation file 
 

pat_report [<sdatafile>.xf | <sdatadir>] 
 

● Inspect the .apa file and sampling report whether additional 
instrumentation is needed 

● See especially sites “Libraries to trace” and “HWPC group to collect” 
 

● Instrument application for further analysis (a.out+apa) 
 

pat_build –O <apafile>.apa 
 

● Run application (...+apa) 
● Generate text report and visualization file (.ap2) 

 
pat_report –o my_text_report.txt [<datafile>.xf | <datadir>] 
 

● View report in text and/or with Cray Apprentice2 
 

app2 <datafile>.ap2 
 

 
 



Some important options to pat_report -O 

callers                  Profile by Function and Callers 

callers+hwpc             Profile by Function and Callers 

callers+src              Profile by Function and Callers, with Line Numbers 

callers+src+hwpc         Profile by Function and Callers, with Line Numbers 

calltree                 Function Calltree View 

heap_hiwater             Heap Stats during Main Program 

hwpc                     Program HW Performance Counter Data 

load_balance_program+hwpc  Load Balance across PEs 

load_balance_sm          Load Balance with MPI Sent Message Stats 

loop_times               Loop Stats by Function (from -hprofile_generate) 

loops                    Loop Stats by Inclusive Time (from -hprofile_generate) 

mpi_callers              MPI Message Stats by Caller 

profile                  Profile by Function Group and Function 

profile+src+hwpc         Profile by Group, Function, and Line 

samp_profile             Profile by Function 

samp_profile+hwpc        Profile by Function 

samp_profile+src         Profile by Group, Function, and Line 

 

For a full list see pat_report –O help 



Step 4: Assessing the big picture 

● Profile = Where the most of the time is really being spent? 

● See also the call-tree view 

● Ignore (from the optimization point-of-view) user routines with less 
than 5% of the execution time 

● Why does the scaling end: the major differences in these 
two profiles? 

● Has the MPI fraction ‟blown up‟ in the larger run? 

● Have the load imbalances increased dramatically? 

● Has something else emerged to the profile? 

● Has the time spent for user routines decreased as it should (i.e. do 
they scale independently)? 



Example with CrayPAT 
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Step 5: Analyze load imbalance 

● What is causing the imbalance? 

● Computation 

● Tasks call for computational kernels (user functions, BLAS routines,...) 
for varying times and/or the execution time varies depending on the 
input/caller 

● Communication 

● Large MPI_Sync times 

● I/O  

● One or more tasks are performing I/O and the others are just waiting 
for them in order to proceed 



Example with CrayPAT 
Min, Avg, and Max 

Values 



Step 6: Analyze communication 

● What communication pattern is dominating the true time 
spent for MPI (excluding the sync times) 

● Refer to the call-tree view on Apprentice2 and the “MPI Message 
Stats” tables in the text reports produced by pat_report 

● Note that the analysis tools may report load imbalances as 
”real” communication 

● Put an MPI_Barrier before the suspicious routine - load imbalance will 
aggregate into it in when then analysis is rerun 

● How does the message-size profile look like? 

● Are there a lot of small messages? 



Example with CrayPAT 

. 

   

 

 

Table 4:  MPI Message Stats by Caller 
 
    MPI Msg |MPI Msg |  MsgSz |  4KB<= |Function 
      Bytes |  Count |   <16B |  MsgSz | Caller 
            |        |  Count |  <64KB |  PE[mmm] 
            |        |        |  Count | 
 
 15138076.0 | 4099.4 |  411.6 | 3687.8 |Total 
|------------------------------------------------ 
| 15138028.0 | 4093.4 |  405.6 | 3687.8 |MPI_ISEND 
||----------------------------------------------- 
||  8080500.0 | 2062.5 |   93.8 | 1968.8 |calc2_ 
3|            |        |        |        | MAIN_ 
||||--------------------------------------------- 
4|||  8216000.0 | 3000.0 | 1000.0 | 2000.0 |pe.0 
4|||  8208000.0 | 2000.0 |     -- | 2000.0 |pe.9 
4|||  6160000.0 | 2000.0 |  500.0 | 1500.0 |pe.15 
||||============================================= 
||  6285250.0 | 1656.2 |  125.0 | 1531.2 |calc1_ 
3|            |        |        |        | MAIN_ 
||||--------------------------------------------- 
4|||  8216000.0 | 3000.0 | 1000.0 | 2000.0 |pe.0 
4|||  6156000.0 | 1500.0 |     -- | 1500.0 |pe.3 
4|||  6156000.0 | 1500.0 |     -- | 1500.0 |pe.5 
||||============================================= 
. . . 
 



Step 7: Analyze I/O 

● Trace POSIX I/O calls (fwrite, fread, write, read,...) 

● How much I/O? 

● Do the I/O operations take a significant amount of time? 

● Are some of the load imbalances or communication 
bottlenecks in fact due to I/O? 

● Synchronous single writer 

● Insert MPI_Barriers to investigate this 



Step 8: Find single-core hotspots 

● Remember: pay attention only to user routines that 
consume significant portion of the total time 

● View the key hardware counters, for example 

● L1 and L2 cache metrics 

● use of vector (SSE/AVX) instructions 

● Computational intensity (= ratio of floating point ops / memory 
accesses) 

● CrayPAT has mechanisms for finding “the” hotspot in a 
routine (e.g. in case the routine contains several and/or 
long loops) 
● CrayPAT API 

● Possibility to give labels to “PAT regions” 

● Loop statistics (works only with Cray compiler) 

● Compile & link with CCE using -h profile_generate 

● pat_report will generate loop statistics if the flag is being enabled 



 

 

 

 

 

=========================================================================== 
USER / conj_grad_.LOOPS 
------------------------------------------------------------------------------- 
  Time%                                               59.5% 
  Time                                            73.010370 secs 
  Imb. Time                                        3.563452 secs 
  Imb. Time%                                           4.7% 
  Calls                          1.383 /sec           101.0 calls 
  PERF_COUNT_HW_CACHE_L1D:ACCESS               183909710385 
  PERF_COUNT_HW_CACHE_L1D: 
    PREFETCH                                     7706793512 
  PERF_COUNT_HW_CACHE_L1D:MISS                  21336476999 
  ... 
  SIMD_FP_256:PACKED_DOUBLE                      1961227352 
  User time (approx)            73.042 secs    189983282830 cycles  100.0% Time 
  CPU_CLK                        3.454GHz 
  HW FP Ops / User time        969.844M/sec     70839736685 ops    9.3%peak(DP) 
  Total DP ops                 969.844M/sec     70839736685 ops 
  Computational intensity         0.37 ops/cycle       0.33 ops/ref 
  MFLOPS (aggregate)         124140.04M/sec 
  TLB utilization              1058.97 refs/miss      2.068 avg uses 
  D1 cache hit,miss ratios       90.0% hits           10.0% misses 
  D1 cache utilization (misses)   9.98 refs/miss      1.248 avg hits 
  D2 cache hit,miss ratio        17.5% hits           82.5% misses 
  D1+D2 cache hit,miss ratio     91.7% hits            8.3% misses 
  D1+D2 cache utilization        12.10 refs/miss      1.512 avg hits 
  D2 to D1 bandwidth         18350.176MB/sec  1405449334558 bytes 
  Average Time per Call                            0.722875 secs 
 

 

 

Example with CrayPAT 

. 

Flat profile data 

HW counter values 

Derived  

metrics 



Example with CrayPAT 

. 

 

 

Table 2:  Loop Stats from -hprofile_generate 
 
   Loop |Loop Incl |Loop Incl |  Loop |  Loop |    Loop |Function=/.LOOP\. 
   Incl |     Time |   Time / |   Hit | Trips |   Notes | PE='HIDE' 
 Time / |          |      Hit |       |   Avg |         | 
  Total |          |          |       |       |         | 
 
|------------------------------------------------------------------------- 
|  24.6% | 0.057045 | 0.000570 |   100 |  64.1 |   novec |calc2_.LOOP.0.li.614 
|  24.0% | 0.055725 | 0.000009 |  6413 | 512.0 |  vector |calc2_.LOOP.1.li.615 
|  18.9% | 0.043875 | 0.000439 |   100 |  64.1 |   novec |calc1_.LOOP.0.li.442 
|  18.3% | 0.042549 | 0.000007 |  6413 | 512.0 |  vector |calc1_.LOOP.1.li.443 
|  17.1% | 0.039822 | 0.000406 |    98 |  64.1 |   novec |calc3_.LOOP.0.li.787 
|  16.7% | 0.038883 | 0.000006 |  6284 | 512.0 |  vector |calc3_.LOOP.1.li.788 
|   9.7% | 0.022493 | 0.000230 |    98 | 512.0 |  vector |calc3_.LOOP.2.li.805 
|   4.2% | 0.009837 | 0.000098 |   100 | 512.0 |  vector |calc2_.LOOP.2.li.640 
|========================================================================= 
 



Scalability bottlenecks 

● Review the performance measurements (between the two 
runs) 

● Case: user routines scaling but MPI time blowing up 

● Issue: Not enough to compute in a domain 

● Weak scaling could still continue 

● Issue: Expensive (all-to-all) collectives 

● Issue: Communication increasing as a function of tasks 

● Case: MPI_Sync times increasing 

● Issue: Load imbalance 

● Tasks not having a balanced role in communication? 

● Tasks not having a balanced role in computation? 

● Synchronous (single-writer) I/O or stderr I/O? 



Web resources 

● CrayPAT documentation 
http://docs.cray.com 

● Scalasca  
http://www.scalasca.org/ 

● Paraver 
http://www.bsc.es/computer-sciences/performance-tools/paraver 

● Tau performance analysis utility 
http://www.cs.uoregon.edu/Research/tau 

 



Lab session: Performance analysis 

● The Game of Life (GoL) is a cellular automaton devised by 
John Horton Conway, read 
http://en.wikipedia.org/wiki/Conway's_Game_of_Life 

● A parallel (MPI) implementation of the GoL is provided in 
GoL_mpi (.f90 or .c) 
● Compile and run the software 

make mpi 
aprun –n 4 ./gol 100 500 500 

● To do: Find out the reason(s) why the default version of 
the GoL code does not scale 
● Indeed it should scale, it is a simple domain decomposition with thin 

halos 

● You will find other implementations from the makefile as follows: 
● make nonb - replaces MPI_Sendrecv by nonblocking operations 

● make pario - parallelizes the disk I/O 

● make hyb - hybrid MPI+OpenMP 

● Alternatively (even preferably) you can analyse your own 
application! 
 

Develop a 500x500 board 

for 100 iterations 

Run through the batch 

job scheduler 



Part III: Improving parallel scalability 

• Load imbalance due to communication 

• Many messages and/or large amount of 
data 

• Expensive collectives 

• I/O bottlenecks 

 



Issue: Load imbalances 

● Identify the cause 

● How to fix I/O related imbalance will be addressed later 

● Unfortunately algorithmic, decomposition and data 
structure revisions are needed to fix load balance issues 

● Dynamic load balancing schemas 

● MPMD style programming 

● There may be still something we can try without code re-design 

● Consider hybridization (mixing OpenMP with MPI) 

● Reduces the number of MPI tasks - less pressure for load balance 

● May be doable with very little effort 

● Just plug omp parallel do‟s/for‟s to the most intensive loops 

● However, in many cases large portions of the code has to be 
hybridized to outperform flat MPI 



Issue: Load imbalances 

● Changing rank placement (on Cray and other MPI libraries 
based on MPICH2) 
export MPICH_RANK_REORDER_METHOD=N 

● These are the different values (N) that you can set it to: 
● 0: Round-robin placement   

● 1: (DEFAULT) SMP-style placement 

● 2: Folded rank placement 

● 3: Custom ordering. The ordering is specified in a file named  
MPICH_RANK_ORDER. 

● So easy to experiment with that it should be tested with every 
application! 

● The grid_order utility is used to generate a rank order list for use by 
an MPI application that uses communication between nearest 
neighbors in a grid 
● This output can then be copied or written into a file named 

MPICH_RANK_ORDER and used with 
MPICH_RANK_REORDER_METHOD=3 

● CrayPAT is also able to make suggestions for optimal rank placement: 
pat_report -O mpi_rank_order datafile.xf 

 



Issue: Point-to-point communication 
consuming time 

● Message transfer time ∝ latency + message size / 
bandwidth 

● Latency: Startup for message handling 

● Bandwidth: Network BW / number of messages using the same link 

● Reduce latency by aggregating multiple small messages if 
possible 

● Do not pack manually but use MPI‟s user-defined datatypes 

● Bandwidth and latency depend on the used protocol 

● Eager or rendezvous 

● Latency and bandwidth higher in rendezvous 

● Rendezvous messages usually do not allow for overlap of computation 
and communication (see the extra slides for explanation), even when 
using non-blocking communication routines 

● The platform will select the protocol basing on the message size, 
these limits can be adjusted 



Rank A 

EAGER potentially allows overlapping 

Compute 

MPI_ISend 

Compute T
im

e
 

MPI_Waitall 

MPI_IRecv 

Compute 

Rank B 

Compute 

MPI_ISend 

Compute 

MPI_Waitall 

MPI_IRecv 

Compute 

Data is pushed into an empty 

buffer(s) on the remote 

processor.  

 

Data is copied from the buffer 

into the real receive destination 

when the wait or waitall is 

called. 

 

Involves an extra memcopy, but 

much greater opportunity for 

overlap of computation and 

communication. 

 

Further info 



Rank A 

RENDEZVOUS does not usually overlap 

Compute 

MPI_ISend 

Compute T
im

e
 

MPI_Waitall 

MPI_IRecv 

Rank B 

Compute 

MPI_ISend 

Compute 

MPI_Waitall 

MPI_IRecv 

With rendezvous data transfer 

is often only occurs during the 

Wait or Waitall statement. 

 

When the message arrives at 

the destination, the host CPU is 

busy doing computation, so is 

unable to do any message 

matching. 

 

Control only returns to the 

library when MPI_Waitall occurs 

and does not return until all 

data is transferred.  

 

There has been no overlap of 

computation and 

communication. 

 

 

 

DATA DATA 

DATA DATA 
Further info 



Issue: Point-to-point communication 
consuming time 

● One way to improve performance is to send more 
messages using the eager protocol 

● This can be done by raising the value of the eager threshold, by 
setting environment variable: 
export MPICH_GNI_MAX_EAGER_MSG_SIZE=X 

● Values are in bytes, the default is 8192 bytes. Maximum size is 
131072 bytes (128KB) 

● Try to post MPI_Irecv calls before the MPI_Isend calls to 
avoid unnecessary buffer copies 

● On Cray XE & XC: Asynchronous Progress Engine 

● Progresses also rendezvous messages on the background by 
launching an extra helper thread to each MPI task 

● Consult „man mpi‟ and there the variable 
MPICH_NEMESIS_ASYNC_PROGRESS 



Issue: Point-to-point communication 
consuming time 

● Minimize the data to be communicated by carefully 
designing the partitioning of data and computation 

● Example: domain decomposition of a 3D grid (n x n x n) 
with halos to be communicated, cyclic boundaries 

1D decomposition (”slabs”):  

communication ∝ n2 * w * 2  

2D decomposition (”tubes”):  

communication ∝ n2 * p-1/2 * w * 4  

3D decomposition (”cubes”):  

communication ∝ n2 * p-2/3 * w * 6  

w = halo width 

p = number of MPI tasks  



Issue: Expensive collectives 

● Reducing MPI tasks by mixing OpenMP is likely to help 

● See if every all-to-all collective operation needs to be all-
to-all rather than one-to-all or all-to-one 

● Often encountered case: convergence checking 

● See if you can live with the basic version of a routine 
instead of a vector version (MPI_Alltoallv etc) 

● May be faster even if some tasks would be receiving dummy data 

● The MPI 3.0 introduces non-blocking collectives 
(MPI_Ialltoall,...) 

● Allow for overlapping collectives with other operations, e.g. 
computation, I/O or other communication 

● Are faster (at least on Cray) than the blocking corresponds even 
without the overlap, and replacement is trivial 



Issue: Expensive collectives 

● Hand-written RDMA collectives may outperform those of 
the MPI library 

● Fortran coarrays, Unified Parallel C, MPI one-sided communication 

● On Cray XE and XC systems, the sc. DMAPP collectives 
will (usually significantly) improve the performance of the 
expensive collectives 

● Enabled by the variable: 
export  MPICH_USE_DMAPP_COLL=1 

● Can be used selectively, e.g. 
export  MPICH_USE_DMAPP_COLL=mpi_allreduce 

● Features some restrictions and requires explicit linking with the 
corresponding library and using sc. huge pages; consult ‟man mpi‟ 



Issue: Performance bottlenecks due to I/O 

● Parallelize your I/O ! 
● MPI I/O, I/O libraries (HDF5, NetCDF), hand-written schmas,... 

● Without parallelization, I/O will be a scalability bottleneck in every 
application 

● Try to hide I/O (asynchronous I/O) 
 

 

 

 

 

 

● Available on MPI I/O (MPI_File_iwrite/read(_at)) 

● One can also add dedicated ”I/O servers” into code: separate MPI 
tasks or dedicating one I/O core per node on a hybrid MPI+OpenMP 
application 

 

Compute I/O Compute I/O Compute I/O Compute I/O 

Compute 

I/O 

Compute 

I/O 

Compute 

I/O 

Compute 

I/O 



Issue: Performance bottlenecks due to I/O 

● Tune filesystem (Lustre) parameters 
● Lustre stripe counts & sizes, see ”man lfs” 

● Rule of thumb:  

● # files > # OSTs => Set stripe_count=1 

You will reduce the lustre contention and OST file locking this way and 

gain performance 

● #files==1 => Set stripe_count=#OSTs Assuming you have more than 1 I/O 

client 

● #files<#OSTs => Select stripe_count  so that you use all OSTs 

● Use I/O buffering for all sequential I/O 
● IOBUF is a library that intercepts standard I/O (stdio) and enables 

asynchronous caching and prefetching of sequential file access 

● No need to modify the source code but just 

● Load the module iobuf 

● Rebuild your application 

 

 



Case study: Single-writer I/O 

● 32 MB per OST (32 MB – 5 GB) and 32 MB Transfer Size 
● Unable to take advantage of file system parallelism 

● Access to multiple disks adds overhead which hurts performance 
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Further info 



Case study: Parallel I/O into a single file 

● A particular code both reads and writes a 377 GB file,  
runs on 6000 cores 
● Total I/O volume (reads and writes) is 850 GB 

● Utilizes parallel HDF5 I/O library 

● Default stripe settings:  count =4, size=1M 
● 1800 s run time (~ 30 minutes) 

● New stripe settings:  count=-1, size=1M 
● 625 s run time (~ 10 minutes) 

Further info 



Issue: Performance bottlenecks due to I/O 

● When using MPI and making non-contiguous writes/reads 
(e.g. multi-dimensional arrays), always define file views 
with suitable user-defined types and use collective I/O 

● Performance can be 100x compared to individual I/O 

Decomposition for a 2D array 

File 



Concluding remarks 

● Apply the scientific method to performance engineering: 
make hypotheses and measurements! 

● Scaling up is the most important consideration in HPC 

● Possible approaches for alleviating typical scalability 
bottlenecks 

● Find the optimal decomposition & rank placement 

● Overlap computation & communication - use non-blocking 
communication operations for p2p and collective communication both! 

● Make more messages ‟eager‟ and/or employ the Asynchronous 
Progress Engine (on Cray) 

● Hybridize (=mix MPI+OpenMP) the code to improve load balance and 
alleviate bottleneck collectives 

● Mind your I/O! 

● Use parallel I/O 

● Tune filesystem parameters 



Lab session: Optimizing point-to-point 
communication 

● The file halo-exchange(.c|.f90) contains a simple 
benchmark that simulates the (2D) halo exchange 
procedure encountered in several domain-decomposition 
parallel algorithms 
● There are many ways to implement it with MPI - see the following 

slides 

● To do: 
● Read the provided implementations such that you understand the 

difference between them 

● Measure the obtained bandwidth on Lindgren (and on other platforms 
you may have an access to), run with e.g. 16x16=256 cores 

● There are also other possibilities - see if you can identify and 
implement them and measure their performance 

● See if you can improve the performance with any of the suggested 
Cray MPI environment parameters 

● Bonus exercise (no solution provided): Implement (and benchmark) or 
just sketch an equivalent scheme for a hybrid MPI+OpenMP 
application  



Lab session: Optimizing point-to-point 
communication 

● Halo exchange in 2D decomposition 

Blocking 1 
Send(to left) 
Recv(from left) 
Send(to right) 
Recv(from right) 
Send(to up) 
Recv(from up) 
Send(to down) 
Recv(from down) 

Blocking 2 
Send(to left) 
Recv(from right) 
Send(to right) 
Recv(from left) 
Send(to up) 
Recv(from down) 
Send(to down) 
Recv(from up) 



Lab session: Optimizing point-to-point 
communication 

● Halo exchange in 2D decomposition 

Blocking 3 
Sendrecv(to left, from right) 
Sendrecv(to right, from left) 
Sendrecv(to up, from down) 
Sendrecv(to down, from up) 



Lab session: Optimizing point-to-point 
communication 

● Halo exchange in 2D decomposition 

Non-Blocking 1 
Irecv(from left) 
Irecv(from right) 
Irecv(from up) 
Irecv(from down) 
Isend(to left) 
Isend(to right) 
Isend(to up) 
Isend(to down) 

Non-Blocking 2 
Isend(to left) 
Isend(to right) 
Isend(to up) 
Isend(to down) 
Irecv(from left) 
Irecv(from right) 
Irecv(from up) 
Irecv(from down) 


