
Performance Engineering

Pekka Manninen, Ph.D.

Cray Inc.
manninen@cray.com

Certain parts of the material Cray Inc proprietary -

do not reuse or redistribute without permission, please

PDC Summer School: Introduction to High-Performance Computing

August 19-30, 2013 - KTH, Stockholm, Sweden

Performance engineering

We want to get the most
science and engineering
through a supercomputing
system as possible

The more efficient codes are
the more productive scientists
and engineers can be

/
pi
1 9

e

3
9

Performance analysis

To optimise code we must know what is taking the time

Application Inputs Output

Profile Data

Top time consuming routines

Load balance across processes and

threads

Parallel overhead

Communication patterns

Hardware utilization details

Fortran95

Performance Engineering module overview

Tuesday

11.15-12.00 Introduction to

performance

engineering

12.00-13.15 Lunch

13.15-14.00 Application

performance

analysis

14.00-14.15 Break

14.15-15.00 Lab session

15.00-15.15 Coffee break

15.15-17.00 Lab session

Wednesday

8.30-9.00 Interim summary,

Q&A

11.15-12.00 Improving parallel

scalability

12.00-13.15 Lunch

13.15-15.00 Lab session

• About code optimization in general
• Not going to touch the source code?
• Data locality
• Why does scaling end?
• Application optimization flow chart

Part I: Introduction to performance
engineering

Code optimization

● Obvious benefits

● Better throughput => more science

● Cheaper than new hardware

● Save energy, compute quota etc.

● ..and some non-obvious ones

● Collaboration opportunities

● Potential for cross-disciplinary research

● Deeper understanding of application

● Several trends making code optimization even more
important

● More and more cores

● CPU‟s vector units getting wider

● The gap between CPU and memory speed ever increasing

● Datasets growing rapidly but disk I/O performance lags behind

Code optimization

● Adapting the problem to the underlying hardware

● Combination of many aspects

● Effective algorithms

● Implementation: Processor utilization & efficient memory use

● Parallel scalability

● Important to understand interactions

● Algorithm – code – compiler – libraries – hardware

● Performance is not portable!

Not going to touch the source code?

● Find the compiler and its compiler flags that yield the best
performance

● Employ tuned libraries wherever possible

● Find suitable settings for environment parameters

● Mind the I/O
● Do not checkpoint too often

● Do not ask for the output you do not need

Keep your friends close and data even closer

Registers

L1 Cache

L2 Cache

L3 Cache

Physical memory

Remote memory (over interconnect)

Swap, file system disks

<= 1

~4

~10

~25

~ 300

O(105...6)

 O(100 B)

O(100 kB)

O(1 MB)

O(10 MB)

GB’s

TB’s

100s GB’s O(103)

Why does scaling end?

● Amount of data per process small - computation takes
little time compared to communication

● Amdahl’s law in general

● E.g., single-writer or stderr I/O

● Load imbalance

● Communication that scales badly with Nproc

● E.g., all-to-all collectives

● Congestion on network – too
many messages or lots of data

Application optimization flow chart

Next lecture

Tricks & tips

for this

tomorrow

Validation in every step!

Part II: Application performance analysis

• Tools for performance analysis

• Eight-stage procedure for identifying
performance bottlenecks

• Example: Cray Performance Analysis
Toolkit

Application timing

● Most basic information: total wall clock time

● Built-in timers in the program (e.g. MPI_Wtime)

● System commands (e.g. time) or batch system statistics

● Built-in timers can provide also more fine-grained
information

● Have to be inserted by hand

● Typically, no information about hardware related issues e.g. cache
utilization

● Information about load imbalance and communication statistics of
parallel program is difficult to obtain

Performance analysis tools

● Instrumentation of code

● Adding special measurement code to binary

● Special commands, compiler/linker wrappers

● Automatic or manual

● Normally all routines do not need to be measured

● Measurement: running the instrumented binary

● Profile: sum of events over time

● Trace: sequence of events over time

● Analysis

● Text based analysis reports

● Visualization

Sampling

Advantages

• Only need to instrument

main routine

• Low Overhead – depends

only on sampling frequency

• Smaller volumes of data

produced

Disadvantages

• Only statistical averages

available

• Limited information from

performance counters

Event Tracing

Advantages

• More accurate and more detailed

information

• Data collected from every traced

function call not statistical averages

Disadvantages

• Increased overheads as number of

function calls increases

• Huge volumes of data generated

Guided tracing = trace only program parts that consume a significant

portion of the total time

In Cray Performance Analysis Toolkit this is referred to as

”automatic profiling analysis ”(APA)

Step 1: Choose a test problem

● The dataset used in the analysis should

● Make scientific sense, i.e. resemble the intended use of the code

● Be large enough for getting a good view on scalability

● Be runable in a reasonable time

● For instance, with simulation codes almost a full-blown model but run
only for a few time steps

● Should be run long enough that initialization/finalization
stages are not exaggerated

● Alternatively, we can exclude them during the analysis

1

1,2

1,4

1,6

1,8

2

64 128 256 512 1024 2048

Speedup

0

100

200

300

400

500

600

64 128 256 512 1024 2048

Walltime

Step 2: Measure scalability

● Run the uninstrumented
code with different core
counts and see where the
parallel scaling stops

● Usually we look at strong
scaling
● Also weak scaling is definitely

of interest

What is happening in
here?

Step 3: Instrument the application

● Obtain first a sampling profile to find which user functions
should be traced

● With a large/complex software, one should not trace them all: it
causes excessive overhead

● Make an instrumented exe with tracing time-consuming
user functions plus e.g. MPI, I/O and library (BLAS, FFT,...)
calls

● Execute and record the first analysis with

● The core count where the scalability is still ok

● The core count where the scalability has ended

 and identify the largest differences between these profiles

Example with CrayPAT (1/2)

.

● Load performance tools software

 module load perftools

● Re-build application (keep .o files)

 make clean
 make

● Instrument application for automatic profiling analysis
● You should get an instrumented program a.out+pat

 pat_build –O apa a.out

● Run the instrumented application (...+pat) to get top time
consuming routines
● You should get a performance file (“<sdatafile>.xf”) or

multiple files in a directory <sdatadir>

Example with CrayPAT (2/2)

.

● Generate text report and an .apa instrumentation file

pat_report [<sdatafile>.xf | <sdatadir>]

● Inspect the .apa file and sampling report whether additional
instrumentation is needed

● See especially sites “Libraries to trace” and “HWPC group to collect”

● Instrument application for further analysis (a.out+apa)

pat_build –O <apafile>.apa

● Run application (...+apa)
● Generate text report and visualization file (.ap2)

pat_report –o my_text_report.txt [<datafile>.xf | <datadir>]

● View report in text and/or with Cray Apprentice2

app2 <datafile>.ap2

Some important options to pat_report -O

callers Profile by Function and Callers

callers+hwpc Profile by Function and Callers

callers+src Profile by Function and Callers, with Line Numbers

callers+src+hwpc Profile by Function and Callers, with Line Numbers

calltree Function Calltree View

heap_hiwater Heap Stats during Main Program

hwpc Program HW Performance Counter Data

load_balance_program+hwpc Load Balance across PEs

load_balance_sm Load Balance with MPI Sent Message Stats

loop_times Loop Stats by Function (from -hprofile_generate)

loops Loop Stats by Inclusive Time (from -hprofile_generate)

mpi_callers MPI Message Stats by Caller

profile Profile by Function Group and Function

profile+src+hwpc Profile by Group, Function, and Line

samp_profile Profile by Function

samp_profile+hwpc Profile by Function

samp_profile+src Profile by Group, Function, and Line

For a full list see pat_report –O help

Step 4: Assessing the big picture

● Profile = Where the most of the time is really being spent?

● See also the call-tree view

● Ignore (from the optimization point-of-view) user routines with less
than 5% of the execution time

● Why does the scaling end: the major differences in these
two profiles?

● Has the MPI fraction ‟blown up‟ in the larger run?

● Have the load imbalances increased dramatically?

● Has something else emerged to the profile?

● Has the time spent for user routines decreased as it should (i.e. do
they scale independently)?

Example with CrayPAT

.
23

Load balance overview:

Height Max time

Middle bar Average time

Lower bar Min time

Yellow represents imbalance

time

Height exclusive

time

Width inclusive

time

Step 5: Analyze load imbalance

● What is causing the imbalance?

● Computation

● Tasks call for computational kernels (user functions, BLAS routines,...)
for varying times and/or the execution time varies depending on the
input/caller

● Communication

● Large MPI_Sync times

● I/O

● One or more tasks are performing I/O and the others are just waiting
for them in order to proceed

Example with CrayPAT
Min, Avg, and Max

Values

Step 6: Analyze communication

● What communication pattern is dominating the true time
spent for MPI (excluding the sync times)

● Refer to the call-tree view on Apprentice2 and the “MPI Message
Stats” tables in the text reports produced by pat_report

● Note that the analysis tools may report load imbalances as
”real” communication

● Put an MPI_Barrier before the suspicious routine - load imbalance will
aggregate into it in when then analysis is rerun

● How does the message-size profile look like?

● Are there a lot of small messages?

Example with CrayPAT

.

Table 4: MPI Message Stats by Caller

 MPI Msg |MPI Msg | MsgSz | 4KB<= |Function
 Bytes | Count | <16B | MsgSz | Caller
 | | Count | <64KB | PE[mmm]
 | | | Count |

 15138076.0 | 4099.4 | 411.6 | 3687.8 |Total
|--
| 15138028.0 | 4093.4 | 405.6 | 3687.8 |MPI_ISEND
||---
|| 8080500.0 | 2062.5 | 93.8 | 1968.8 |calc2_
3| | | | | MAIN_
||||---
4||| 8216000.0 | 3000.0 | 1000.0 | 2000.0 |pe.0
4||| 8208000.0 | 2000.0 | -- | 2000.0 |pe.9
4||| 6160000.0 | 2000.0 | 500.0 | 1500.0 |pe.15
||||===
|| 6285250.0 | 1656.2 | 125.0 | 1531.2 |calc1_
3| | | | | MAIN_
||||---
4||| 8216000.0 | 3000.0 | 1000.0 | 2000.0 |pe.0
4||| 6156000.0 | 1500.0 | -- | 1500.0 |pe.3
4||| 6156000.0 | 1500.0 | -- | 1500.0 |pe.5
||||===
. . .

Step 7: Analyze I/O

● Trace POSIX I/O calls (fwrite, fread, write, read,...)

● How much I/O?

● Do the I/O operations take a significant amount of time?

● Are some of the load imbalances or communication
bottlenecks in fact due to I/O?

● Synchronous single writer

● Insert MPI_Barriers to investigate this

Step 8: Find single-core hotspots

● Remember: pay attention only to user routines that
consume significant portion of the total time

● View the key hardware counters, for example

● L1 and L2 cache metrics

● use of vector (SSE/AVX) instructions

● Computational intensity (= ratio of floating point ops / memory
accesses)

● CrayPAT has mechanisms for finding “the” hotspot in a
routine (e.g. in case the routine contains several and/or
long loops)
● CrayPAT API

● Possibility to give labels to “PAT regions”

● Loop statistics (works only with Cray compiler)

● Compile & link with CCE using -h profile_generate

● pat_report will generate loop statistics if the flag is being enabled

===
USER / conj_grad_.LOOPS

 Time% 59.5%
 Time 73.010370 secs
 Imb. Time 3.563452 secs
 Imb. Time% 4.7%
 Calls 1.383 /sec 101.0 calls
 PERF_COUNT_HW_CACHE_L1D:ACCESS 183909710385
 PERF_COUNT_HW_CACHE_L1D:
 PREFETCH 7706793512
 PERF_COUNT_HW_CACHE_L1D:MISS 21336476999
 ...
 SIMD_FP_256:PACKED_DOUBLE 1961227352
 User time (approx) 73.042 secs 189983282830 cycles 100.0% Time
 CPU_CLK 3.454GHz
 HW FP Ops / User time 969.844M/sec 70839736685 ops 9.3%peak(DP)
 Total DP ops 969.844M/sec 70839736685 ops
 Computational intensity 0.37 ops/cycle 0.33 ops/ref
 MFLOPS (aggregate) 124140.04M/sec
 TLB utilization 1058.97 refs/miss 2.068 avg uses
 D1 cache hit,miss ratios 90.0% hits 10.0% misses
 D1 cache utilization (misses) 9.98 refs/miss 1.248 avg hits
 D2 cache hit,miss ratio 17.5% hits 82.5% misses
 D1+D2 cache hit,miss ratio 91.7% hits 8.3% misses
 D1+D2 cache utilization 12.10 refs/miss 1.512 avg hits
 D2 to D1 bandwidth 18350.176MB/sec 1405449334558 bytes
 Average Time per Call 0.722875 secs

Example with CrayPAT

.

Flat profile data

HW counter values

Derived

metrics

Example with CrayPAT

.

Table 2: Loop Stats from -hprofile_generate

 Loop |Loop Incl |Loop Incl | Loop | Loop | Loop |Function=/.LOOP\.
 Incl | Time | Time / | Hit | Trips | Notes | PE='HIDE'
 Time / | | Hit | | Avg | |
 Total | | | | | |

|---
| 24.6% | 0.057045 | 0.000570 | 100 | 64.1 | novec |calc2_.LOOP.0.li.614
| 24.0% | 0.055725 | 0.000009 | 6413 | 512.0 | vector |calc2_.LOOP.1.li.615
| 18.9% | 0.043875 | 0.000439 | 100 | 64.1 | novec |calc1_.LOOP.0.li.442
| 18.3% | 0.042549 | 0.000007 | 6413 | 512.0 | vector |calc1_.LOOP.1.li.443
| 17.1% | 0.039822 | 0.000406 | 98 | 64.1 | novec |calc3_.LOOP.0.li.787
| 16.7% | 0.038883 | 0.000006 | 6284 | 512.0 | vector |calc3_.LOOP.1.li.788
| 9.7% | 0.022493 | 0.000230 | 98 | 512.0 | vector |calc3_.LOOP.2.li.805
| 4.2% | 0.009837 | 0.000098 | 100 | 512.0 | vector |calc2_.LOOP.2.li.640
|===

Scalability bottlenecks

● Review the performance measurements (between the two
runs)

● Case: user routines scaling but MPI time blowing up

● Issue: Not enough to compute in a domain

● Weak scaling could still continue

● Issue: Expensive (all-to-all) collectives

● Issue: Communication increasing as a function of tasks

● Case: MPI_Sync times increasing

● Issue: Load imbalance

● Tasks not having a balanced role in communication?

● Tasks not having a balanced role in computation?

● Synchronous (single-writer) I/O or stderr I/O?

Web resources

● CrayPAT documentation
http://docs.cray.com

● Scalasca
http://www.scalasca.org/

● Paraver
http://www.bsc.es/computer-sciences/performance-tools/paraver

● Tau performance analysis utility
http://www.cs.uoregon.edu/Research/tau

Lab session: Performance analysis

● The Game of Life (GoL) is a cellular automaton devised by
John Horton Conway, read
http://en.wikipedia.org/wiki/Conway's_Game_of_Life

● A parallel (MPI) implementation of the GoL is provided in
GoL_mpi (.f90 or .c)
● Compile and run the software

make mpi
aprun –n 4 ./gol 100 500 500

● To do: Find out the reason(s) why the default version of
the GoL code does not scale
● Indeed it should scale, it is a simple domain decomposition with thin

halos

● You will find other implementations from the makefile as follows:
● make nonb - replaces MPI_Sendrecv by nonblocking operations

● make pario - parallelizes the disk I/O

● make hyb - hybrid MPI+OpenMP

● Alternatively (even preferably) you can analyse your own
application!

Develop a 500x500 board

for 100 iterations

Run through the batch

job scheduler

Part III: Improving parallel scalability

• Load imbalance due to communication

• Many messages and/or large amount of
data

• Expensive collectives

• I/O bottlenecks

Issue: Load imbalances

● Identify the cause

● How to fix I/O related imbalance will be addressed later

● Unfortunately algorithmic, decomposition and data
structure revisions are needed to fix load balance issues

● Dynamic load balancing schemas

● MPMD style programming

● There may be still something we can try without code re-design

● Consider hybridization (mixing OpenMP with MPI)

● Reduces the number of MPI tasks - less pressure for load balance

● May be doable with very little effort

● Just plug omp parallel do‟s/for‟s to the most intensive loops

● However, in many cases large portions of the code has to be
hybridized to outperform flat MPI

Issue: Load imbalances

● Changing rank placement (on Cray and other MPI libraries
based on MPICH2)
export MPICH_RANK_REORDER_METHOD=N

● These are the different values (N) that you can set it to:
● 0: Round-robin placement

● 1: (DEFAULT) SMP-style placement

● 2: Folded rank placement

● 3: Custom ordering. The ordering is specified in a file named
MPICH_RANK_ORDER.

● So easy to experiment with that it should be tested with every
application!

● The grid_order utility is used to generate a rank order list for use by
an MPI application that uses communication between nearest
neighbors in a grid
● This output can then be copied or written into a file named

MPICH_RANK_ORDER and used with
MPICH_RANK_REORDER_METHOD=3

● CrayPAT is also able to make suggestions for optimal rank placement:
pat_report -O mpi_rank_order datafile.xf

Issue: Point-to-point communication
consuming time

● Message transfer time ∝ latency + message size /
bandwidth

● Latency: Startup for message handling

● Bandwidth: Network BW / number of messages using the same link

● Reduce latency by aggregating multiple small messages if
possible

● Do not pack manually but use MPI‟s user-defined datatypes

● Bandwidth and latency depend on the used protocol

● Eager or rendezvous

● Latency and bandwidth higher in rendezvous

● Rendezvous messages usually do not allow for overlap of computation
and communication (see the extra slides for explanation), even when
using non-blocking communication routines

● The platform will select the protocol basing on the message size,
these limits can be adjusted

Rank A

EAGER potentially allows overlapping

Compute

MPI_ISend

Compute T
im

e

MPI_Waitall

MPI_IRecv

Compute

Rank B

Compute

MPI_ISend

Compute

MPI_Waitall

MPI_IRecv

Compute

Data is pushed into an empty

buffer(s) on the remote

processor.

Data is copied from the buffer

into the real receive destination

when the wait or waitall is

called.

Involves an extra memcopy, but

much greater opportunity for

overlap of computation and

communication.

Further info

Rank A

RENDEZVOUS does not usually overlap

Compute

MPI_ISend

Compute T
im

e

MPI_Waitall

MPI_IRecv

Rank B

Compute

MPI_ISend

Compute

MPI_Waitall

MPI_IRecv

With rendezvous data transfer

is often only occurs during the

Wait or Waitall statement.

When the message arrives at

the destination, the host CPU is

busy doing computation, so is

unable to do any message

matching.

Control only returns to the

library when MPI_Waitall occurs

and does not return until all

data is transferred.

There has been no overlap of

computation and

communication.

DATA DATA

DATA DATA
Further info

Issue: Point-to-point communication
consuming time

● One way to improve performance is to send more
messages using the eager protocol

● This can be done by raising the value of the eager threshold, by
setting environment variable:
export MPICH_GNI_MAX_EAGER_MSG_SIZE=X

● Values are in bytes, the default is 8192 bytes. Maximum size is
131072 bytes (128KB)

● Try to post MPI_Irecv calls before the MPI_Isend calls to
avoid unnecessary buffer copies

● On Cray XE & XC: Asynchronous Progress Engine

● Progresses also rendezvous messages on the background by
launching an extra helper thread to each MPI task

● Consult „man mpi‟ and there the variable
MPICH_NEMESIS_ASYNC_PROGRESS

Issue: Point-to-point communication
consuming time

● Minimize the data to be communicated by carefully
designing the partitioning of data and computation

● Example: domain decomposition of a 3D grid (n x n x n)
with halos to be communicated, cyclic boundaries

1D decomposition (”slabs”):

communication ∝ n2 * w * 2

2D decomposition (”tubes”):

communication ∝ n2 * p-1/2 * w * 4

3D decomposition (”cubes”):

communication ∝ n2 * p-2/3 * w * 6

w = halo width

p = number of MPI tasks

Issue: Expensive collectives

● Reducing MPI tasks by mixing OpenMP is likely to help

● See if every all-to-all collective operation needs to be all-
to-all rather than one-to-all or all-to-one

● Often encountered case: convergence checking

● See if you can live with the basic version of a routine
instead of a vector version (MPI_Alltoallv etc)

● May be faster even if some tasks would be receiving dummy data

● The MPI 3.0 introduces non-blocking collectives
(MPI_Ialltoall,...)

● Allow for overlapping collectives with other operations, e.g.
computation, I/O or other communication

● Are faster (at least on Cray) than the blocking corresponds even
without the overlap, and replacement is trivial

Issue: Expensive collectives

● Hand-written RDMA collectives may outperform those of
the MPI library

● Fortran coarrays, Unified Parallel C, MPI one-sided communication

● On Cray XE and XC systems, the sc. DMAPP collectives
will (usually significantly) improve the performance of the
expensive collectives

● Enabled by the variable:
export MPICH_USE_DMAPP_COLL=1

● Can be used selectively, e.g.
export MPICH_USE_DMAPP_COLL=mpi_allreduce

● Features some restrictions and requires explicit linking with the
corresponding library and using sc. huge pages; consult ‟man mpi‟

Issue: Performance bottlenecks due to I/O

● Parallelize your I/O !
● MPI I/O, I/O libraries (HDF5, NetCDF), hand-written schmas,...

● Without parallelization, I/O will be a scalability bottleneck in every
application

● Try to hide I/O (asynchronous I/O)

● Available on MPI I/O (MPI_File_iwrite/read(_at))

● One can also add dedicated ”I/O servers” into code: separate MPI
tasks or dedicating one I/O core per node on a hybrid MPI+OpenMP
application

Compute I/O Compute I/O Compute I/O Compute I/O

Compute

I/O

Compute

I/O

Compute

I/O

Compute

I/O

Issue: Performance bottlenecks due to I/O

● Tune filesystem (Lustre) parameters
● Lustre stripe counts & sizes, see ”man lfs”

● Rule of thumb:

● # files > # OSTs => Set stripe_count=1

You will reduce the lustre contention and OST file locking this way and

gain performance

● #files==1 => Set stripe_count=#OSTs Assuming you have more than 1 I/O

client

● #files<#OSTs => Select stripe_count so that you use all OSTs

● Use I/O buffering for all sequential I/O
● IOBUF is a library that intercepts standard I/O (stdio) and enables

asynchronous caching and prefetching of sequential file access

● No need to modify the source code but just

● Load the module iobuf

● Rebuild your application

Case study: Single-writer I/O

● 32 MB per OST (32 MB – 5 GB) and 32 MB Transfer Size
● Unable to take advantage of file system parallelism

● Access to multiple disks adds overhead which hurts performance

0

20

40

60

80

100

120

1 2 4 16 32 64 128 160

W
ri

te
 (

M
B

/s
)

Stripe Count

1 MB Stripe

32 MB
Stripe

Further info

Case study: Parallel I/O into a single file

● A particular code both reads and writes a 377 GB file,
runs on 6000 cores
● Total I/O volume (reads and writes) is 850 GB

● Utilizes parallel HDF5 I/O library

● Default stripe settings: count =4, size=1M
● 1800 s run time (~ 30 minutes)

● New stripe settings: count=-1, size=1M
● 625 s run time (~ 10 minutes)

Further info

Issue: Performance bottlenecks due to I/O

● When using MPI and making non-contiguous writes/reads
(e.g. multi-dimensional arrays), always define file views
with suitable user-defined types and use collective I/O

● Performance can be 100x compared to individual I/O

Decomposition for a 2D array

File

Concluding remarks

● Apply the scientific method to performance engineering:
make hypotheses and measurements!

● Scaling up is the most important consideration in HPC

● Possible approaches for alleviating typical scalability
bottlenecks

● Find the optimal decomposition & rank placement

● Overlap computation & communication - use non-blocking
communication operations for p2p and collective communication both!

● Make more messages ‟eager‟ and/or employ the Asynchronous
Progress Engine (on Cray)

● Hybridize (=mix MPI+OpenMP) the code to improve load balance and
alleviate bottleneck collectives

● Mind your I/O!

● Use parallel I/O

● Tune filesystem parameters

Lab session: Optimizing point-to-point
communication

● The file halo-exchange(.c|.f90) contains a simple
benchmark that simulates the (2D) halo exchange
procedure encountered in several domain-decomposition
parallel algorithms
● There are many ways to implement it with MPI - see the following

slides

● To do:
● Read the provided implementations such that you understand the

difference between them

● Measure the obtained bandwidth on Lindgren (and on other platforms
you may have an access to), run with e.g. 16x16=256 cores

● There are also other possibilities - see if you can identify and
implement them and measure their performance

● See if you can improve the performance with any of the suggested
Cray MPI environment parameters

● Bonus exercise (no solution provided): Implement (and benchmark) or
just sketch an equivalent scheme for a hybrid MPI+OpenMP
application

Lab session: Optimizing point-to-point
communication

● Halo exchange in 2D decomposition

Blocking 1
Send(to left)
Recv(from left)
Send(to right)
Recv(from right)
Send(to up)
Recv(from up)
Send(to down)
Recv(from down)

Blocking 2
Send(to left)
Recv(from right)
Send(to right)
Recv(from left)
Send(to up)
Recv(from down)
Send(to down)
Recv(from up)

Lab session: Optimizing point-to-point
communication

● Halo exchange in 2D decomposition

Blocking 3
Sendrecv(to left, from right)
Sendrecv(to right, from left)
Sendrecv(to up, from down)
Sendrecv(to down, from up)

Lab session: Optimizing point-to-point
communication

● Halo exchange in 2D decomposition

Non-Blocking 1
Irecv(from left)
Irecv(from right)
Irecv(from up)
Irecv(from down)
Isend(to left)
Isend(to right)
Isend(to up)
Isend(to down)

Non-Blocking 2
Isend(to left)
Isend(to right)
Isend(to up)
Isend(to down)
Irecv(from left)
Irecv(from right)
Irecv(from up)
Irecv(from down)

