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Today

The hype

What makes a GPU a GPU?
Why are GPUs scaling so well?
What are the problems?
What’s the Future?
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THE HYPE
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How Good are GPUs?
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Real World Software

Press release Nov 2011:

— “NVIDIA today announced that four leading applications...
have added support for multiple GPU acceleration, enabling
them to cut simulation times from days to hours.”

GROMACS

— 2-3x overall
— Implicit solvers 10x, PME simulations 1x
LAMPS / APy

— 2-8x for double precision =
— Up to 15x for mixed
QMCPACK

— 3x

2x is AWESOME! Most research claims 5-10%.
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GPUs for Linear Algebra
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Intel’s Response

Larabee
— Manycore x86-“light” to compete with Nvidia/AMD in graphics and compute
— Didn’t work out so well (despite huge fab advantages — graphics is hard)
Repositioned it as an HPC co-processor
— Xeon Phi

— 1TF double precision in expensive) single chip
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Normalized to Intel Xeon

GPUs by the Numbers

(Peak and TDP)

4000

Intel 22nm vs. 28nm
Nvidia’s chip is 50% larger
- much more expensive

Watts SP GFLOP BW GHz Transistors

¥ Intel Xeon M |ntel Phi ™ AMD FirePro W9000 Nvidia K20
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Show Me the Mone

Q4 2011

Market Share
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WOther
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BTW Intel’s integrated graphics is eating
most of the GPU market.

- <50% of this is

GPU in HPC

Revenuelin Billion USD
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CPUs in HPC
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What about HPC?

(Top500 % of FLOPS)
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GPU Characteristics

* Architecture * Programming/Interface
— Data parallel processing Data parallel kernels
— Hardware thread scheduling Throughput-focused
Limited synchronization
Limited OS interaction

— High memory bandwidth
— Graphics rasterization units

— Limited caches
(with texture filtering hardware)
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GPU Innovations

SMT (for latency hiding)

— Massive numbers of threads

— Programming SMT is far easier than SIMD
SIMT (thread groups)

— Amortize scheduling/control/data access
— Warps, wavefronts, work-groups, gangs
* Memory systems optimized for graphics
— Special storage formats

— Texture filtering in the memory system

— Bank optimizations across threads
Limited synchronization

— Improves hardware scalability

(They didn’t invent any of these, but they made them successful.)
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WHY ARE GPUS SCALING SO WELL?
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Just add more cores...
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Lots of Room to Grow the Hardware

Reducing clock speed
and increasing area
to save power.

Trading off simplicity
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“Nice” Programming Model

[ ] AI I G P U p rog ra m s h ave: void kernel calcSin(global float *data) {

int id = get global_id(0);
data[id] = sin(data[id]);

— Explicit parallelism )

— Hierarchical structure Synchronization OK.

I
H

|
|
Ll

— Restricted synchronization

— Data locality
. . L 1| No Synchronization. |
* Inherent in graphics mi

* Enforced in compute by performance n

— Latency tolerance

* Easy to scale!
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Why are GPUs Scaling So Well?

* Room in the hardware design
* Scalable software

They’re not burdened with 30 years of cruft and
legacy code...

...lucky them.
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WHERE ARE THE PROBLEMS?
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Amdahl’s Law

Always have serial code

— GPU single threaded performance is terrible
Solution: Heterogeneity

— A few “fat” latency-optimized cores (CPUs)

— Many “thin” throughput-optimized cores (GPUs)
— Plus hard-coded accelerators

AMD Fusion

Nvidia Project Denver
* ARM for latency
* GPU for throughput

* x86 for latency
* GPU for throughput

=
5]
S

99% Parallel (91x)

/ 90% Parallel (10x)
%— 75% Parallel (4x)
1

Maximum Speedup
=
S

* Inte' Mlc 1 2 4 8 16 32 64 128 256 5121024
* x86 for latency Number of Cores
*  X86-“light” for throughput Limits of Amdahl’s Law
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It’s an Accelerator...

* Moving data to the GPU is slow...
* Moving data from the GPU is slow...
* Moving data to/from the GPU is really slow.

* Limited data storage
* Limited interaction with OS

SlGB/s

PCle 3.0
10GB/s
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Legacy Code

* Code lives forever
— Amdabhl: Even optimizing the 90% of hot code limits speedup to 10x
— Many won’t invest in proprietary technology

*  Programming models are immature
— CUDA mature low-level Nvidia (PGl bought by Nvidia)
— OpenCL immature low-level | Nvidia, AMD, Intel, ARM, Altera, Apple |
— OpenACC immature high-level CAPS, Nvidia, Cray, PGI

S "g
SANVIDIA. & /‘ OpenACC.

CU DA; OpenCL DIRECTIVES FOR ACCELERATORS

“...writing either OpenCL or CUDA falls into the realm of “heroic programming”,
...higher level models...are becoming seen as increasingly desirable.”
—Mark Bull, EPCC
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Making Porting Easier

LINES-OF-CODE AND PERFORMANCE FOR DIFFERENT PROGRAMMING MODELS

(Exemplary ISV “Hess|
High(er)-level Libraries

languages are great are easiest

Gave up 1 CPU core’s
worth of performance
for 74% less code.
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Code that Doesn’t Look Like Graphics

* If it’s not painfully data-parallel you have to redesign your algorithm
— Example: scan-based techniques for zero counting in JPEG

— Why? It’s only 64 entries!
* Single-threaded performance is terrible. Need to parallelize.
e Overhead of transferring data to CPU is too high.

* Ifit’s not accessing memory well you have to re-order your algorithm

— Example: DCT in JPEG

* Need to make sure your access to local memory has no bank conflicts across
threads.

* Libraries starting to help

— Lack of composability

— Example: Combining linear algebra operations to keep data on the device
* Most code is not purely data-parallel

— Very expensive to synchronize with the CPU (data transfer)

— No effective support for task-based parallelism

— No ability to launch kernels from within kernels
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Corollary: What are GPUs Good For?

* Data parallel code
— Lots of threads
— Easy to express parallelism (no SIMD nastiness)
* High arithmetic intensity and simple control flow
— Lots of FPUs
— No branch predictors
* High reuse of limited data sets
— Very high bandwidth to memory (1-6GB)
— Extremely high bandwidth to local memory (16-64kB)
* Code with predictable access patterns
— Small (or no) caches
— User-controlled local memories
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WHAT’S THE FUTURE OF GPUS?
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Heterogeneity for Efficienc

* No way around it in sight o

Power benefit from CPrtex-A7 ~Cortex-A15
Atthe same desired erforma; “B-Cortox-AT

Lot

Performance

—~ V/is\O

* Specialize to get better efficiency

— This is why GPUs are more efficient today

Power

* Heterogeneous mixes
— Throughput-oriented “thin” cores

— Latency-focused “fat” cores

* Fixed-function accelerators
— Video, audio, network, etc.
— Already in OpenCL 1.2

* Dark silicon

— 0S/runtime/app will have to adapt
— Energy will be a shared resource

4 fast cores + 1 slow core

© 2013 David Black-Schaffer 15
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The Future is Not in Accelerators

* Memory
— Unified memory address space
— Low performance coherency
— High performance scratchpads

* OS interaction between all cores

* Nvidia Project Denver

* ARM for latency

* GPU for throughput
* AMD Fusion

* x86 for latency

* GPU for throughput

+ Intel Phi+Xeon AMD Fusion
* x86 for latency
*  X86-“light” for throughput
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Focus on Data Locality

1,600 = 1,600
= Single-precision performance
— 1,400 .. ¢, 1,400
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¥ oo
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600 and storage i
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S. Keckler, et. al. “GPUs and the Future of Parallel Computing.” IEEE Micro, Sept/Oct 2011.
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Focus on Data Locality

Not just on-chip/off-chip but within a chip
Software controllable memories
— Configure for cache/scratch pad

— Enable/disable coherency

— Programmable DMA/prefetch engines

* Program must expose data movement/locality

— Explicit information to the runtime/compiler

— Auto-tuning, data-flow, optimization

But we will have global coherency to get code correct

(See the Micro paper “GPUs and the Future of Parallel Computing” from Nvidia about their
Echelon project and design.)
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Graphics will (still) be a Priority
* |It’s where the money is

* Fixed-function graphics units

* Memory-system hardware for texture interpolation will
live forever...

* Half-precision floating point will live forever...
(And others else might actually use it. Hint hint.)
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CONCLUSIONS
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Breaking Through The Hype

* Real efficiency advantage

— Intel is pushing hard to minimize it

— Much larger for single precision
* Real performance advantage

— About 2-5x

— But you have to re-write your code (this is the killer)
* The market for GPU compute is small

— And Intel is trying to kill it with Phi

* Everyone believes that specialization is necessary to
tackle energy efficiency
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The Good, The Bad, and The Future

* The Good:
— Limited domain allows more efficient implementation
— Good choice of domain allows good scaling

* The Bad:
— Limited domain focus makes some algorithms hard
— They are not x86/linux (legacy code)

* The Future:
— Throughput-cores + latency-cores + fixed accelerators
— Code that runs well on GPUs today will port well

— We may share hardware with the graphics subsystem,
but we won’t “program GPUs"

Uppsala Programming for
Multicore Architectures

Research Center
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