
Future Programming Languages
Stefano Markidis, HPCViz Department, KTH

(markidis@pdc.kth.se)

mailto:markidis@pdc.kth.se
mailto:markidis@pdc.kth.se


Prediction is very difficult, 
especially about the future
N. Bohr



Motivation for this Lecture
• Provide reasons for improving existing programming models, and for 

developing new programming models.

• Give an overview of the new features in MPI and OpenMP, and of 
what is likely to be next in MPI and OpenMP.

• Introduce new programming languages/libraries for distributed 
memory systems, called PGAS, that in some sense try combine the 
best features of OpenMP and MPI.

• Introduce new programming approaches to make programming 
GPUs easier.  I will briefly describe OpenACC, and using MPI to 
access GPU memory.



Software Losing Ground to Hardware Parallelism

High performance computing 
codes, in general, are remarkable 
underachievers.

A very minority (1%) of the 
applications scales on current 
Petascale machines.  Very few codes 
use accelerators because to 
program them in real-world 
application is often difficult.



Example: Top500 #1Tianhe-2
• 3,120,000 cores.

• Theoretical peak performance: 54.9 
PetaFlops.

• Maximal performance achieved with highly 
optimized LINPACK: 33 PetaFlops

• With highly optimized code (LINPACK), 
the efficiency is 60%.  Any idea of the 
actual performance of the average code 
running on HPC?



We are living the 3rd software crisis
60’-70’

Need for abstraction
and portability

retaining Assembler 
performance.

Fortran & C

80’-90’

Building and 
maintaining 
code with 

million lines 
produced by 
hundreds of 

programmers.

C++, Java, 
Python

 Exploit efficiently parallelism 
(in the processor/in the 

cluster/ in the 
accelerator).

2005 Time

? 
(MPI,OpenMP, PGAS,X)

1st 2nd 3d

Some programming 
languages emerged as 
winner after the 
software crisis



Why did we spend so much time on MPI ?
• Almost all the codes running on supercomputer use MPI. OpenMP is used 

in combination with MPI. MPI and OpenMP.

From a survey of 57 
applications running 
on PRACE machines



MPI and OpenMP are changing

• MPI and OpenMP are in continuous evolution to keep the pace with the 
new challenges.

OpenMP-1 (1997),  OpenMP-2 (2000), OpenMP-3 (2008), OpenMP 4 (July 2013)

MPI-1 (1994),  MPI-2 (1998), MPI-3 (2012)



MPI 3.0 released November 2012



New Developments in MPI-3
• MPI 3.0 standard posted on:

http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf

• Non-blocking collective operations. Increase of performance by overlapping 
communication and computation in collective operations.

• Neighborhood (aka sparse) collective operations  are extending the process 
topologies with additional communication power.

• Improved support for one-sided communication, that was already present from 
MPI-2 but not adopted by users (mostly for the difficulty). 

• MPI tool interface for the development of MPI performance monitoring tools and 
debuggers/correctness checker.

http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf


Non-blocking Collective Example

200 CHAPTER 5. COLLECTIVE COMMUNICATION

Example using MPI_IBCAST

The example in this section uses an intracommunicator.

Example 5.24
Start a broadcast of 100 ints from process 0 to every process in the group, perform some

computation on independent data, and then complete the outstanding broadcast operation.

MPI_Comm comm;

int array1[100], array2[100];

int root=0;

MPI_Request req;

...

MPI_Ibcast(array1, 100, MPI_INT, root, comm, &req);

compute(array2, 100);

MPI_Wait(&req, MPI_STATUS_IGNORE);

5.12.3 Nonblocking Gather

MPI_IGATHER(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, root, comm,
request)

IN sendbuf starting address of send bu↵er (choice)

IN sendcount number of elements in send bu↵er (non-negative inte-

ger)

IN sendtype data type of send bu↵er elements (handle)

OUT recvbuf address of receive bu↵er (choice, significant only at

root)

IN recvcount number of elements for any single receive (non-negative

integer, significant only at root)

IN recvtype data type of recv bu↵er elements (significant only at

root) (handle)

IN root rank of receiving process (integer)

IN comm communicator (handle)

OUT request communication request (handle)

int MPI_Igather(const void* sendbuf, int sendcount, MPI_Datatype sendtype,

void* recvbuf, int recvcount, MPI_Datatype recvtype, int root,

MPI_Comm comm, MPI_Request *request)

MPI_Igather(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype,

root, comm, request, ierror) BIND(C)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf

INTEGER, INTENT(IN) :: sendcount, recvcount, root

TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Start a broadcast of 100 
ints from process 0 to 
every process in the 
group, perform some 
computation on 
independent data, and 
then complete the 
outstanding broadcast 
operation.



Asynchronous Barrier
• Crazy idea? The whole point of a 

barrier is to synchronize — how does 
it make sense not to block while 
waiting ?

• Better question: why would you block 
while waiting? Think of non-blocking 
barriers as a notification mechanism 
that every process has reached (or 
passed) a common milestone.

A barrier is like the start of a meeting.  
You can’t start the meeting until all the 
participants of the meeting arrive.  You 
can do some other work while waiting 
for everybody to arrive.



Why do we care about collectives?

Systems are getting very large. Top systems have tens of 
thousands of nodes and order 1 million cores:
− Tianhe-2 (China) 16,000 nodes
− Sequoia (LLNL) 98,304 nodes, >1M cores
Just getting all of these nodes to agree takes time 
O(10usecs) or about 20,000 cycles of time.



Why do we care about collectives ?  2

• What if one core (out of a million) is delayed ?

• Everyone has to wait at the synchronization point

24 

So What Does Go Wrong? 

• What if one core (out of a million) is delayed? 
 
 
 
 
 
 
 
 
 

• Everyone has to wait at the next synchronizing 
communication 

Apparent Time for Communication 

Time 

Actual time for 
communication 



Neighbor Collective Operations

• Many domain decompositions results in nearest neighbor communication 
patterns (sparse communication pattern).

• Most supercomputers (Blue-gene, Cray XT) support only sparse communication 
efficiently.

• 2 different neighbor collectives:

• Gather (both blocking and non blocking)
(MPI_NEIGHBOR_ALLGATHER,MPI_NEIGHBOR_ALLGATHERV)

• All-to-all (MPI_NEIGHBOR_ALLTOALL) 10 

Example:  
Computation on a Mesh 

• Each circle is a mesh point 
• Difference equation 

evaluated at each point 
involves the four neighbors 

• The red “plus” is called the 
method’s stencil 

• Good numerical algorithms 
form a matrix equation 
Au=f; solving this requires 
computing Bv, where B is a 
matrix derived from A. 
These evaluations involve 
computations with the 
neighbors on the mesh. 

• Decompose mesh into 
equal sized (work) pieces 

 

Collective operations that are defined on process neighborhoods. Process 
neighborhoods are attached to the communicator on which the collectives 
are called.



Example of Neighbor Collective

332 CHAPTER 7. PROCESS TOPOLOGIES

SUBROUTINE exchange (u, comm_cart, neigh_rank, num_neigh)

REAL u(0:101,0:101)

INTEGER comm_cart, num_neigh, neigh_rank(num_neigh)

REAL sndbuf(100,num_neigh), rcvbuf(100,num_neigh)

INTEGER ierr

sndbuf(1:100,1) = u( 1,1:100)

sndbuf(1:100,2) = u(100,1:100)

sndbuf(1:100,3) = u(1:100, 1)

sndbuf(1:100,4) = u(1:100,100)

CALL MPI_NEIGHBOR_ALLTOALL (sndbuf, 100, MPI_REAL, rcvbuf, 100, MPI_REAL, &

comm_cart, ierr)

! instead of

! DO i=1,num_neigh

! CALL MPI_IRECV(rcvbuf(1,i),100,MPI_REAL,neigh_rank(i),...,rq(2*i-1),&

! ierr)

! CALL MPI_ISEND(sndbuf(1,i),100,MPI_REAL,neigh_rank(i),...,rq(2*i ),&

! ierr)

! END DO

! CALL MPI_WAITALL (2*num_neigh, rq, statuses, ierr)

u( 0,1:100) = rcvbuf(1:100,1)

u(101,1:100) = rcvbuf(1:100,2)

u(1:100, 0) = rcvbuf(1:100,3)

u(1:100,101) = rcvbuf(1:100,4)

END

Figure 7.2: Communication routine with local data copying and sparse neighborhood all-
to-all.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

communication 
routine
for halo 
exchange 



Improvements in One-Sided Communication
• MPI_Win_create_dynamic

– Window without memory attached
– MPI_Win_attach to attach memory to a 
window

• MPI_Win_allocate_shared 
– Windows with shared memory
– Allows direct loads/store accesses by remote 
processes

• MPI_Rput, MPI_Rget, MPI_Raccumulate
– Local completion by using MPI_Wait on 
request objects

• MPI_Get_accumulate, MPI_Fetch_and_op
– Accumulate into target memory, return old 
data to origin

• MPI_Compare_and_swap
– Atomic compare and swap

• MPI_Win_lock_all
– Faster way to lock all members of win

• MPI_Win_flush / MPI_Win_flush_all
– Flush all RMA ops to target / window

• MPI_Win_flush_local / 
MPI_Win_flush_local_all

– Locally complete RMA ops to target / 
window

• MPI_Win_sync
– Synchronize public and private copies of 
window

• Overlapping accesses were “erroneous” in 
MPI-2

– They are “undefined” in MPI-3



One-sided Communication Main Issue: Memory Model

MPI-2 handled the cache coherency (consistency 
of data stored in local caches of a shared resource) 
issue but was in many places hard to use 
and even harder to understand.

MPI-3 differentiate between two memory models 
(essentially “cache-coherent” and “not cache-
coherent” in MPI lingo “unified” and “separate” 
public and private window).



MPI Tools Interface

The new MPI tool interface allows 
the MPI implementation to expose 
certain internal variables, counters, 
and other states to the user 
(performance tools, debuggers). 
It is very useful for tools and 
advanced MPI users to investigate 
performance issues.



MPI future- Fault Tolerance
• The trend to extend performance of supercomputers 

is to increase the number of computing units.  As a 
consequence, the number of faults is expected to 
increase, as one can expect that one of the 
millions components will always be broken. 

• The current state of the art automatic and transparent 
fault tolerant techniques based on checkpoint/
restart do not scale and will no longer 
work, and hardware methods based on 
replications are quite expensive.

• Fault-tolerance in MPI is an active area of research and 
some MPI implementation already include mechanism 
for fault-tolerance



Future of MPI - Fault Tolerance
• Non-collective communicator 

creation: proposal to allow a group of 
processes to create a communicator “on 
their own”, i.e., without involving the full 
parent communicator.  This would be very 
useful for MPI fault tolerance, where it 
could be used to “fix” a broken 
communicator (create a communicator 
with less processes).



Future of MPI - Allocating a Shared Memory Window

This would allow to share data-
structures across all MPI 
processes in a multicore 
node similarly to OpenMP. 



OpenMP 4.0 released:
http://www.openmp.org/mp-documents/
OpenMP4.0.0.pdf

http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf


New Developments in OpenMP 4

• OpenMP specifications posted on: http://www.openmp.org/mp-
documents/OpenMP4.0.0.pdf

• Thread Affinity (clauses and environment variables)

• New SIMD directives.

• Increased support for task synchronization, and 
added the concept of task dependence 

http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf


Thread Affinity
Thread affinity enables the binding and un-
binding of a thread to a physical core 
or a range of cores, so that the thread will 
execute only on the designated core or cores 
rather than being able to execute on any core. 
This can be viewed as a modification of the 
native central queue scheduling algorithm. Each 
item in the queue has a tag indicating its 
preferred core. 

The advantages of the use of thread affinity for 
the user are better locality, less false 
sharing and more memory bandwidth.

Increase of OpenMP 
performance

Lawrence Livermore National Laboratory LLNL-PRES-599952 
11 

!  Objective: Maximize memory bandwidth of outer parallel 
region and exploit shared data of inner parallel region 

!  Solution: Use spread on outer region, close on inner 
•  Can use list (spread, close) for OMP_PROC_BIND 
•  Can use proc_bind clause on each region 

An example show how to use for  
nested parallelism of depth two 

p0 
 

p1 
 

p2 
 

p3 
 

p4 
 

p5 
 

p6 
 

p7 
 

p0 
 

p1 
 

p2 
 

p3 
 

p4 
 

p5 
 

p6 
 

p7 
 

p0 
 

p1 
 

p2 
 

p3 
 

p4 
 

p5 
 

p6 
 

p7 
 

Initial 

spread 

close 

Initial

spread   

close   



Increased support for Thread Affinity

• New policies determine relative bindings: 

• Assign threads to same place as master 

• Assign threads close in place list to parent thread 

• Assign threads to maximize spread across places 

Added a new clause to the parallel construct:
proc_bind(master | close | spread)  



High-level Affinity Support in OpenMP 4

Request binding of threads to places (already in OpenMP 3.1):
- New extensions specify thread locations 

• Increased choices for OMP_PROC_BIND
— Can still specify true or false 
— Can now provide a list (possible item values: master, close or 

spread) to specify how to bind implicit tasks of parallel regions. 
• Added OMP_PLACES environment variable 

— Can specify abstract names including threads, cores and sockets 
— Can specify an explicit ordered list of places 



Task Based Approaches (beyond threads)
Threads created with threading packages are logical 
threads that are mapped by the operating system onto 
the physical threads of the hardware. 

Creating too few logical threads will undersubscribe the 
system, wasting some of the available hardware resources. 
Creating too many logical threads will oversubscribe the 
system, causing the operating system to incur 
considerable overhead as it must time-slice access to the 
hardware resources.

One common way to perform this difficult balancing 
act is to create a pool of threads that are used across 
the lifetime of an application. Typically, one logical thread is 
created per physical thread. The application then 
dynamically schedules computations (tasks) on to 
threads in the thread pool. 



Tasks in OpenMP

OpenMP compilers have implemented a task queue construct 
partly inspired by the Cilk programming language and its 
implementation.  Two new pragmas were added to OpenMP 3.0 
(2009):
- task to specify the single-threaded tasks, or pieces of work, to 
be executed by a thread. (This is somewhat analogous to the 
section pragma, we saw in the OpenMP lectures last week).
- task queue to create an empty queue of tasks
 



Tasks in OpenMP 4

• Support simpler task synchronization

• Will add concept of task dependence 

New features in OpenMP 4:



Single Instruction Multiple Data
• SIMD are a class of parallel computers with multiple processing elements that perform the 

same operation on multiple data points simultaneously.

• Vector instructions were used in vector supercomputers (most famous Cray’) in 70s-80s 
(64,000 instructions at the same time) .

• Now days, all the new CPU designs include SIMD instructions to improve 
performance for graphics.



Introduction of SIMD directive in OpenMP

• In order to use SIMD instructions, the simd directive is 
introduced in OpenMP to indicate a loop should be SIMDized.

• Execute iterations of loops in SIMD chunks: 

• SIMD chunk is set of iterations executed concurrently by a SIMD 
lanes 



SIMD and Intel Many Integrated Core (MIC)

• Intel processors have extensions that support SIMD. These 
instructions operate on a vector of data in parallel. The vector 
width, and therefore the number of elements that can be 
accessed in parallel. The Intel MIC can execute 16 single-
precision or 8 double-precision (DP) operations 
per cycle.

• Intel stand-alone/accelerator with more than 50 cores. 
Prototype products, named Knights Ferry (2010), Knights 
Corner commercial release is in production with the name of 
Xeon PHI since 2012.

• Xeon Phi provides up to 61 cores, and 1.2 TeraFlops.  It used 
in Thiane-2 and Stampede.



Future of OpenMP

• Support for memory affinity 

• Support for accelerator  programming

• Incorporating tool support 



Can Parallel Computing be more Productive?

• PGAS (Partitioned Global Address Space) languages are born from High 
Productivity Computing Systems initiative (a DARPA program, 
2002-2010). They are an approach for programming distributed memory 
systems.             

• MPI functions are too low level: it’s tricky to match send/receive avoiding 
deadlock; non-blocking communication can be tricky also.

• PGAS  languages address this problem of MPI complexity. Communication 
is not explicit like in MPI but it just an access to a remote memory.

• PGAS languages include UPC (C extension), CoArray Fortran (Fortran 
extension). 



Before this lecture we saw ...
Message Passing Model

(this week)
Shared Memory Model

(last week)



PGAS model 



Partitioned Global Address Space
Global 
located on one 
thread but 
accessible by all 
the other 
threads

Local located 
on one thread 
but not 
accessible by all 
the other 
threads. Very 
fast.

MEMORY LAYOUT

thread 1 thread 2 thread 3 thread 4 thread 5 



Implicit communication is an access to global memory 
that is located on a different thread

a[1] a[2] a[3] a[4] a[5] a[6] ... ... ... ... ... ... ... ... ... ... ... ... ... ...

i.e. communication (handled by the language) occurs when we want to 
calculate:
a[1] = a[4] + a[5];
the value a[5] is transferred to thread 1 by implicit communication 
and summed to a[4] and set in thread 1 as a[1]

thread 1 thread 2 thread 3 thread 4 thread 5



UPC (Unified Parallel C)
UPC is a PGAS model and programs operate in Single Program, Multiple Data (like 
MPI) fashion: multiple processes execute the same program, but the execution paths can differ. 
UPC uses the term thread.  

To allow threads to access both local and remote memory, UPC provides at the program level 
the concept of two memory spaces: private and shared. Objects declared in private memory 
space use regular C declarations, e.g. 
int x; // private variable

and are only accessible by a single thread. Objects declared in shared memory space 
using the “shared” identifier, e.g.
shared int y; // shared variable

are accessible by all threads. 



Hello world in UPC
• Any legal C program is also a legal 

UPC program.

• If you compile and run it as UPC 
with P threads, it will run P copies 
of the program.

• Number of threads specified at 
compile-time or run-time; available 
as program variable THREADS

• MYTHREAD specifies thread index 
(0..THREADS-1)



Calculate PI in UPC



Co-Array Fortran (CAF)
Fortran Co-Arrays are an example of a PGAS model and a relatively new 
mechanism for performing communications in parallel Fortran applications. 

Like UPC, Co-array Fortran programs follow a SPMD model. Each 
replication is referred to as an “image”, and images are executed 
asynchronously. 

The execution path may differ from image to image: each image has a unique 
identifier that can be used in control statements.  A new, co-dimension syntax 
is used in addition to the standard array dimension syntax. For example,
real :: x(10)[*]

declares a co-array which has a dimension of size 10 on each image. 



Advantages of PGAS

• Easy and therefore more productive 
programming approach for distributed emory 
systems (MPI)

• PGAS are based on one-sided model: 

• Modern networking infrastructure (e.g., 
InfiniBand, Quadrics, BlueGene) provide native 
one-sided RDMA and one-sided atomic 
primitives that allow efficient one-sided 
communication.



How to use UPC/CAF on Lindgren
Information on how to compile and 
run UPC/CAF codes on Lindgren 
can be found at pages:

- UPC (http://www.pdc.kth.se/
resources/software/installed-
software/compilers-and-languages/
upc) 
- CAF (http://www.pdc.kth.se/
resources/software/installed-
software/compilers-and-languages/
coarray-fortran)

Example codes are available too.

http://www.pdc.kth.se/resources/software/installed-software/compilers-and-languages/upc
http://www.pdc.kth.se/resources/software/installed-software/compilers-and-languages/upc
http://www.pdc.kth.se/resources/software/installed-software/compilers-and-languages/upc
http://www.pdc.kth.se/resources/software/installed-software/compilers-and-languages/upc
http://www.pdc.kth.se/resources/software/installed-software/compilers-and-languages/upc
http://www.pdc.kth.se/resources/software/installed-software/compilers-and-languages/upc
http://www.pdc.kth.se/resources/software/installed-software/compilers-and-languages/upc
http://www.pdc.kth.se/resources/software/installed-software/compilers-and-languages/upc
http://www.pdc.kth.se/resources/software/installed-software/compilers-and-languages/coarray-fortran
http://www.pdc.kth.se/resources/software/installed-software/compilers-and-languages/coarray-fortran
http://www.pdc.kth.se/resources/software/installed-software/compilers-and-languages/coarray-fortran
http://www.pdc.kth.se/resources/software/installed-software/compilers-and-languages/coarray-fortran
http://www.pdc.kth.se/resources/software/installed-software/compilers-and-languages/coarray-fortran
http://www.pdc.kth.se/resources/software/installed-software/compilers-and-languages/coarray-fortran
http://www.pdc.kth.se/resources/software/installed-software/compilers-and-languages/coarray-fortran
http://www.pdc.kth.se/resources/software/installed-software/compilers-and-languages/coarray-fortran


Accelerators and Supercomputing

• Majority of the supercomputers 
(89%) doesn’t have accelerators.

• NVIDIA GPUs dominate the 
accelerator business in HPC.

• 1% Cell accelerator in 2012 not 
present anymore.

• 1 machine with Intel MIC in 2012, 
now much more common

From top500.org (list of 500 fastest supercomputers) June 2012

From top500.org (list of 500 fastest supercomputers) June 2013



Why only 12% of top500 has 
accelerators ?

• The main problem is port code (originally written for CPU) to accelerator 
architecture.  A particular challenge is caused by accelerators having 
their own memory space, so the programmer must manage the 
memory transfers to and from the accelerator.

• Can accelerator programming be made easier, without 
requiring to write new code or rewrite  old ones?

• Rather than rewriting, a better approach is to provide a mechanism for 
compilers to generate executables that can run on the GPU from the 
original source code. 



Compiler Directives for GPU Programming

• The most promising approach is to instruct the 
compiler where to run part of the code (CPU/GPU) 
and let the compiler handle the memory transfer and 
code translation for GPU.

• OpenACC, the future openMPI, provide a collection of 
compiler directives to use GPU.

• The basic idea of compiler directives is that the 
applications developer does not have to be 
concerned with the details of the 
underlying hardware of accelerators. 



Standard for Accelerator Compiler Directives

There are currently two standardization efforts ongoing:

- The first is via the established OpenMP Architecture Review Board (ARB) 
standards committee. A subcommittee was established to develop an 
extension to the existing OpenMP 3.0 standard that would target a 
wide class of possible accelerators. This would include GPUs, but also 
address other accelerators e.g. digital signal processors (DSPs). OpenMP will include 
support for accelerators.

- However, there was a need for a minimal, interim standard to serve early 
adopters of the directive programming model. To this end, the 
OpenACC standard launched in November 2011, with support from NVIDIA  
and compiler developers Cray, PGI and CAPS.



OpenACC
•A set of compiler directives (#pragma) 
•Offload specific loops or parallelizable sections in code 
onto accelerators 
#pragma acc parallel { 
      for(i = 0; i < size; i++) { 
          A[i] = B[i] + C[i]; 
       } 
} 
• Routines to allocate/free memory on accelerators 
buffer = acc_malloc(MYBUFSIZE); 
acc_free(buffer); 
• Supported for C, C++ and Fortran 
• Huge list of modifiers – copy, copyout, private, 
independent, etc.. 



Looks like OpenMP! 
(http://www.openacc.org/sites/default/files/OpenACC_API_QuickRefGuide.pdf)

Memory Transfer

http://www.openacc.org/sites/default/files/OpenACC_API_QuickRefGuide.pdf
http://www.openacc.org/sites/default/files/OpenACC_API_QuickRefGuide.pdf
http://www.openacc.org/sites/default/files/OpenACC_API_QuickRefGuide.pdf


Example of
 OpenACC

matrix-matrix 
multiplication

a x b = c

double precision a(n1, n2, m), b(n2, n3, m), c(n1, n3, m) 
double precision tmp
!$acc data copyin(a,b) copyout(c)
!$acc kernels loop independent 
do imat = 1, m
!$acc loop independent
do j = 1, n3
!$acc loop independent
do i = 1, n1
tmp = 0.0
!$acc loop
do k = 1, n2
tmp = tmp + a(i,k,imat)*b(k,j,imat)
end do
c(i, j, imat) = tmp
end do
end do
!$acc end kernels
end do
!$acc end data

The outermost ‘data’ region ensures that the input matrices A and B 
are copied to the GPU, and that the result C is copied back to the 
host. The outermost loop over ‘imat’ is marked as being the place to start 
parallelisation using the ‘kernels’ directive.  All of the four loops are marked as 
parallelizable. 



MPI for GPU-GPU communication

• An implementation of MPI, MVApich2 supports 
GPU to GPU communication (in parallel GPU 
systems), enabling MPI_Send, MPI_Recv from/to 
GPU emory

At	
  Sender:	
  	
  	
  MPI_Send(s_device,	
  size,	
  …);
At	
  Receiver:	
  MPI_Recv(r_device,	
  size,	
  …);	
  



Conclusions
• Traditional programming models are evolving fast (MPI 3.0, OpenMP 4.0):

• Non-blocking collectives, neighbor collectives, increased support for one sided 
communication (MPI)

• thread affinity, SIMD pragmas (particularly important for Intel MIC), more support 
task-based approach,

• PGAS languages/libraries are an alternative to MPI. One-sided communication occurs 
implicitly as remote access to a shared global memory. 

• Compiler directives, such OpenACC, will make programming GPUs and accelerators 
easier. 

• First MPI implementation (mvapich) to communicate to GPU memory directly, and 
support GPU-GPU communication.


