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Why care about turbulence...
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Why care about turbulence...

Suppressing turbulence on the wings
(laminar flow control) to improve fuel
efficiency

Better turbulence models on wing
surfaces helps engineering design

EU NACRE project:
Concept for quiet, light

Airplane: 15% reduction of fuel fuel efficient aircraft
consumption if the flow was laminar

Large experimental interest:
— CICLOPE project (autumn 2013)

— ICET (Int. Collab. Exp. Turb)W|th
KTH, IIT, Melbo :

130m long pipe facility near

ssss Bologna, Italy
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Brief History (2/4): 1960’s

1965: MAC (Mark
er&Cell
staggered grid ) method (Harlow&Welch):

1966:
Journal of Computational Physics founded

1968/1969: Numeri
Of 2507 erical metho :
projection: Chorin and TemamdS for NS with pressure

MATBEEMATICS Or COMPUTATION
Qctober; 1968, Vol. 22, No. 104
Pp. 745-762

Numerical Solution
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Abstract. A nite-difference method for solving the time-dependent Navier- ate Shock Viscosit

Stokes equations for an incompressible fluid 18 introduced. This method uses the
primitive variables, 1.e- the velocities and the pressure, and is equally applicable t0
problems in two and three space dimensions. Test problems are solved, and an ap-
plication 10 a three—dimensional convection problem is presented.
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Brief History (3/4): 1970’s

1970: first channel-flow large-eddy simulation: Deardorff
(6720 grid points), based on Smagorinsky model (1963)

1972: k-¢ turbulence model (RANS): Spalding & Launder
1972: SIMPLE (semi-implicit method for pressure-linked
equations): Patankar & Spalding

1973: The abbrevation CFD (Computational Fluid Dynamics,
not “Colours for Directors”...) is coined
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Brief History (4/4): 1980’s -
1980 - : CFD codes used in engineering (e.g. Fluent, ANSYS, etc.);
first for aircrafts, then also automotive etc.

* 1987: First fully resolved simulation (DNS) of channel flow
(4-10° grid points): Kim, Moin & Moser
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Computational fluid dynamics is integral part of both
engineering and research, calculations up to

50-10° grid points and 1'000°000 cores “easily” possible
e Data post processing! Storage! Visualisation!




The ocean and atmosphere are turbulent

Global circulation very sensitive to turbulence properties

» Supercomputer simulations predict how turbulence properties influences
heat transfer in oceans.

» Climate simulations need to parameterize effects of turbulence, down to

centimetre scale!
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Turbulent flow close to solid walls...
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Turbulent flow close to solid walls...

simulation result
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Governing Equations

Incompressible Navier-Stokes equation — conservation of momemtun

ou 1 o
Osborne Reynolds a + u-vu = —Vp _I_ EV u

1842-1912

e Continuity equation — conservation of mass
V-u = 0

The Reynolds number Re is defined with Re = ==
velocity U, length L and viscosity
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Governing Equations

Meaning of the Reynolds number: of momemtun

ou | Rep < 2500 laminar
Osborne Reynolds Ot RBD = 1000 blood in veins

1842-1912 !
* Contin Re = 3000 soda with a straw
Re, = 100 000 oil pipelines
The Reyn Re,, = 107 gas pipelines
velocity

Here: up to Re;,=40 000...
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Direct Numerical Simulation — DNS
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Discretisation methods
Order of the schemes

Finite element (FEM) Spectral Spectral element (SEM), Patera 1984
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Infrastructure: Codes

« SIMSON

— In-house spectral code for channel & boundary layers

— Continuously improved, now running on up to 16384 cores
 Nek5000

— SEM code by Paul F. Fischer, Argonne National Lab, USA
Open source: nek5000.mcs.anl.gov

— Good scaling up to 1,000,000 cores!
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Main computational resources

e About 100 million core h/year last couple of years
— Ekman: 43 milj core h/year (2008-2012)
— Lindgren (PDC) 24 milj core h/year (2010-2014)
— PRACE > 30 milj core h/year (2011-2012)
— Triolith (NSC) 12 Milj core h/year (2013-2016)

Rdadrunner
g Neolith ~ ¢ = |
10" ¢ Earth Simulatoro l
& "
=2 10°t ] '
(el -
P NEC SX-50 Lindgren
Cray-1 (1976) 10* .
100 MFlops | ] 1Crf:ly)é-'\/'F’ Ekman (2008)
1 core 10’ ray-1- _ _ S 100 TFlops
1970 1980 1990 2000 2‘0 10000 cores
Year iPhone/iPad
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putational resources

/year last couple of years
ir (2008-2012)

e h/year (2010-2014)

ar (2011-2012)

~ Run benchmark h/year (2013-2016)

Roadrunner
Neolith & o= |
Earth Simulatoro ] | o I
Ekman ‘ 7 e
NEC SX-50 N Lindgren
Crfg(_)lM(lglggg) | Cray X-MP - Ekman (2008)
1 core . Cray-1. . . S lié(c))(c))(;l'Flops
1970 1980 1990 2000 2‘0 cores
Year iPhone/iPad
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Scaling of Nek5000 on Cray and clusters

0 — Lindgren (PDC, Cray XE-6)

s \
NG HECToR (Edinburgh, Cray XE-6)
S 4
T
QS’ Triolith (NSC)
S 7
S

1

4096 8192 16384 32768 65536
number of cores

Strong scaling on production case
(turbulent pipe flow, 2 billion grid points)
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What does turbulence look like?

Re,=30,000
[last 10% of
the domain]

; . : /"8 42 near-wall streaks in streamwise velocity
Jim Wallace and larger structures further away
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Turbulence intensity profiles (u

Reg = 670, 1410, 2500, 4000

rms)

--- DNS with matched spatial
resolution to hot-wire length
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“Forest of hairpin vortices”

Journal of Fluid Mechanics ocus
Unravelling turbulence near
walls

IVAN MARUSIC!

IDepartment of Mechanical Engineering,
University of Melbourne, Victoria, 3010, Australia

Wu & Moin (JFM 2009)

Turbulent flows near walls have been the focus of intense study since their first
description by Ludwig Prandtl over 100 years ago. They are critical in determining
the drag and lift of an aircraft wing for example. Key challenges are to understand the
physical mechanisms causing the transition from smooth, laminar flow to turbulent
flow and how the turbulence is then maintained. Recent direct numerical simulations
have contributed significantly towards this understanding,

Keywords. Turbulent boundary layers, Transition

Ficgure 1. Instantaneous view of the coherent
structures observed in the simulation of Wu
& Moin in the fully turbulent region. The
vivid appearance of hairpin-shaped structures

: 44600
is noted. 0
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Hairpin Vortices
* What is a hairpin vortex...?

head

legs

Adrian (Phys. Fluids 2007)
Zhou et al., JFM 1999

Theodorsen (1952)
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Hairpins et al.

e Theodorsen (1952):
— Concept of "horseshoe vortex”:

—  The horseshoe represents the universal
element of the structure of turbulent flow.”

 Head & Bandyopadhyay (1981):
— Experimental evidence:

— “hairpin vortices [...] are a major constituent of
the turbulent boundary layer at all Reynolds

numbers . 4 A

Adrian & Marusic (2012): ‘the strongest experimental support for
the existence of hairpin vortices’

Wu & Moin (2009): ‘relatively large trips used in their tunnel may
lead one to speculate that hai
and did not evolve naturally’

Swedish e-Science Research Centre



Structures...

SCRC
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Structures...

Rep=2000 Isocontours of X,
colour code ~ wall distance
-
SCRC
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Isocontours of 2.,
colour code ~ wall distance

SCRC

Swedish e-Science Research Centre




HVS — Hairpin Vortex Signatures

Adrian (2007): Experiments Our simulation

Sideview with velocity vectors
= U_=0.3and 0.9
W= regions of high swirl

SCRC

Swedish e-Science Research Centre




— Hairpin
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Complex flow with Nek5000: square cylinder
(“sky scraper”) in boundary layer

-5 0 vd 5 10 15
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Flow Configuration & Simulation Set-Up
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Instantaneous Flow

Large-scale separation
with von Karman street

Flow acceleration and attenuation : "9
of the streaks '

Stagnation and thickening of TBL
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Some Nek5000 projects at FLOW

transition to turbulence
on airplane wings

stability tools for
jetin crossflow

”skyscraper”
(with U Ottaway

SCRC

rotating disk
(Kdrman flow)
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Numerical wind tunnel

EU-project.REGERIIKIEH. Mechanics * DNS of typical wind tunnel
experiment

~ 100 billion grid points

~ 10 billion core hours

~ 1 peta byte of data

~ 10 months on 1 million cores
(peta-scale sufficient)

Laminar Flow Control Experiment: e DNS of Saab 2000 commuter
Re = 1*15/1.5*%10 = 1x10° aircraft wing section
Turbulent boundary layer: ~ 1000 times larger computation
Re = 5*%30/1.5*%10> = 10x10° (exa-scale needed)

(Re, = 200 000)
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Performance

1 exa-flop 2018/2019

Projected Performance Development

10EFlops -
Top 500 list
1 EFlops - PDC
100PFlops S =
10 PFlops H ~=- #500
-= Sum
1 PFlop= 4 — #1 Trend
Line
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Line
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Line

1 TFlopz
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Can we go to exa-scale with Nek50007?

Number of grid points N per processor P important, local work has
to outweigh cost for communication

For Nek5000 on BG/P: (N /P )~ 1000—10,000 sufficient

= ~1012 = minimum number of points to scaleto P = 108

We must increase problem size for efficient usage of exa-scale,
no problem for higher Reynolds numbers

More work per grid point advantage
— HOM (Higher Order Methods) such as SEM
— Multi-physics (magneto-hydrodynamics, combustion, heat transfer)
— Accelerators (GPU) require more points per processor

EU-project CRESTA

SCRC
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Conclusions

e-Science: research carried out by systematically using advanced
computer based tools

— example “numerical wind tunnel”

— e-Science tools such at visualization and parallelization very important

Turbulence simulations at “the edge of computing”
— Turbulence at high Reynolds number multi-scale phenomena

— Numerical experiments can replace physical experiments for typical
university wind tunnel use with sustained peta-scale computations

— Nek5000 will scale to exa-scale for sufficiently large problem size
— Complex geometries requires handling of huge amounts of data

Large scale simulations can give new insight into turbulence

— ordered “hairpin” vortices lost for high Reynolds numbers, settled 60-year
old controversy
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“Jet noise simulation break million-
core supercomputer barrier” (2013)

Center for Turbulence Research, Stanford, CA _’
Sequoia IBM Bluegene/Q at Lawrence Livermore

Swedish e-Science Research Centre
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