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Outline of the talk

. Introduction to non-equilibrium many-body quantum

physics

. State of the art: Relaxation, Light-Cone effect,

Entanglement entropy

Extension to a quench in the transverse field Ising chain
with a new ingredient: initial excited states

. Numerical & exact results for the long-time dynamics

. Conclusions & Outlooks
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Crucial to non-equilibrium physics is the concept of thermalization
(At — 00)) = Tr(Apu—can)

Nowadays, we have many numerical and experimental evidences supporting
thermalization in some quantum systems...

[Rigol et al '09, Cassidy et al '11, Eisert et al '11, Trotzky et al. '12, Pozsgay '14... |

...but why should a quantum system thermalize?
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Crucial to non-equilibrium physics is the concept of thermalization
(A(t = 00)) = Tr(Apyu—can)

Nowadays, we have many numerical and experimental evidences supporting
thermalization in some quantum systems...

[Rigol et al '09, Cassidy et al '11, Eisert et al '11, Trotzky et al. '12, Pozsgay '14... |

...but why should a quantum system thermalize?

Long-Standing Questions

[Von Neumann '29; Birkhoff "30]

» Does an isolated quantum system reach a stationary state starting from an
arbitrary initial state?

» If so, is there a way to economically describe the stationary state?

» Can we describe it according to a statistical ensemble, i.e. by maximising
an entropy functional under some constraints?

» How do correlation functions and observables depend on time?



Out of equilibrium quantum physics: timely subject...

Long-standing Experimentally highly
Theoretical questions controllable systems
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Out of equilibrium quantum physics: timely subject...

Long-standing Experimentally highly
Theoretical questions * * controllable systems
techniques:

Cold atoms, optical lattices,
quantum dot, nanowires,
Feshbach resonance...

1D models:

Bose-(Fermi) Hubbard, TFIC,
Lieb-Liniger...

Criteria for thermalization,
quantum integrability,
quantum ergodicity,
universality out-of-equilibrium

Fruitful comparison between non equilibrium theories based on simple models
and carefully designed experiment with tunable parameters
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The benefit of ultracold atoms

Optical lattices allow to tune dimensionality, interactions and also statistics.

Observation of quantum coherent dynamics:

Ultracold atoms allow to avoid dissipation and decoherence on time scales of
order milliseconds to seconds (ps for “usual” systems!), long enough to study
collective behaviour and (thermal) equilibrium.



How to drive a system out-of-equilibrium?
» Pumping energy or particles into the system (open systems)

» Acting with a driving field

» Using time-dependent Hamiltonians
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How to drive a system out-of-equilibrium?

» Pumping energy or particles into the system (open systems)
» Acting with a driving field

» Using time-dependent Hamiltonians

However the simplest choice to bring a system out-of-equilibrium
is by means of a sudden quantum quench.

It consists in changing suddenly a parameter of the system
and then let it evolve unitarily.

study of non equilibrium dynamics of closed
and isolated interacting quantum systems
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The Quench paradigm

» prepare a many-body quantum system in an eigenstate |t¢)
of a pre-quenched hamiltonian H

» from ¢ = 0 let it evolve unitarily with a different
post-quenched time-independent hamiltonian H’

(1) =e o),  [H,H'|#0

Initial state is NOT an eigenstate
nor a finite superposition of eigenstates of H’

Evolution from an out-of-equilibrium state |¢o) ‘
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The Quench paradigm

» prepare a many-body quantum system in an eigenstate |t¢)
of a pre-quenched hamiltonian H

» from ¢ = 0 let it evolve unitarily with a different
post-quenched time-independent hamiltonian H’

(1) =e o),  [H,H'|#0

Initial state is NOT an eigenstate
nor a finite superposition of eigenstates of H’

Evolution from an out-of-equilibrium state |¢o) ‘

Example: Interaction Quench
t=0

H(N
Quench )

H(M)

t > 0, evolution under Quantum Mechanics from a pure state of an isolated

system
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[l. State-of-the-art:
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1. Relaxation

Can the whole system attain stationary behaviour?
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1. Relaxation

Can the whole system attain stationary behaviour?
Initial pure state + unitary evolution — it will be in a pure state Vi
Global observables (i.e. the whole system) can never relax
As an example, a spin-chain

= = =—0—0—0—0—0—0—0—0—0—0—0—0—0— -
g1 ON

(Y(t)|o1---on|(t)): persistent oscillations, quantum recurrence

What about local observables?
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First taking B infinite, then ¢ — oo a finite subsystem A can relax!

Only local observables relax!

Physical picture: B acts like a “thermal” bath on A
No time averaging involved!
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First taking B infinite, then ¢ — oo a finite subsystem A can relax!

Only local observables relax!

Physical picture: B acts like a “thermal” bath on A
No time averaging involved!

Density matrix:
paus(t) = e o) (vole " B A B

T e

Reduced Density Matrix of A:
pa(t) = Tre [pace(t)]

. . . mixed
fam, Jim palt) = Jim, Tre (A5

> pa stationary and allows for an ensemble description (mixed state)

» determines all local correlation functions
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In the past years, experimental evidence for non-thermalization depending on
the integrability of the model. Let me consider just two paradigmatic examples.
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In the past years, experimental evidence for non-thermalization depending on
the integrability of the model. Let me consider just two paradigmatic examples.

“Quantum Newton Cradle” ikinoshita ct ai 6]

40-250 Rb atoms (hard core bosons) in 1D optical trap, prepared at ¢t =0 in a
superposition of states with opposite momentum

Position (um)
0

» in D = 2,3, after few collisions,
the system thermalizes
» in D = 1, after thousands of collisions,
it does not thermalize
The experiment shows that dimensionality and

integrability play a central role in non equilibrium
physics.

Integrable 1D systems do not seem to thermalize

0 0.5 1.0
Normalized optical thickness
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Probing relaxation in Bose-Hubbard system

[Trotsky et al "12]

H= Z [ (an+1+hc)+ F1n;(n; )+KnJJ]
Preparation Results
0.6} ERREY b
04l i 7 1
Xv&ml 0.2 Ul =2.44(2) ] Ul =3.60(4) ]
30000000004 : KIJ =510 KIJ=7103
AR atVaatiaatratrs N N L s s
etose o006 M&M g ° : —
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(/) Preparation (i) Evolution (iii) Readout 0.4k s ~~m‘w®_ rf«x-/,m‘hmw_
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Probing relaxation in Bose-Hubbard system

MM\mMﬁM

(/) Preparation

H=3, [— J(a;ajﬂ + h.c.) + Yn;(n; — 1) + Kn;j°]

Preparation

(i) Evolution

(iii) Readout

2
o
<

0.6
0.4}
0.2y

0

0.6}

0.4
0.2
0

[Trotsky et al "12]

Results

] =
560"2000% Az P00 .

U =2.44(2) ] UlJ =3.60(4) |

KIJ =5103 KIJ =710

— ]

LWL S P99\ 0£5000029%0000004]

[ Ul =5.16(7) ] u=9.91) ]
KIJ =9:103 KlJ=15-103
01 23 4501 2 3 45

4Jt/ h

Thermalization: relaxation to a universal value independently of J, U, K

» Initial details of the non integrable system do not matter for the

asymptotic behaviour

» Values compatible with the system globally being in a maximum entropy
state (with constrained energy and # of particles)

’ Non Integrable systems thermalize! ‘




lim lim pa(t) = Trs [pKlui)Eed]

t—o00 N—oo

Which is the statistical ensemble for piixed?
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Jim, Jim, a(9) = Tra pRE"]

Which is the statistical ensemble for pm"‘ed?

Non Integrable Systems

—H/T
Gibbs € 1/ Teft

AUB = —F
ZGibbs

Thermal ensemble
only one integral of motion E
few info on the whole Initial state

[Deutsch '91; Srednicki '95]
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ZGibbs
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Integrable Systems

pGGE e~ Xm BmIm
AUB = ——F
ZGGE

Non thermal ensemble
complete set of local commuting
integrals of motions I,,,

I = 00, Oj g1, jtm,
O(m)-support, m finite
full info on the whole Initial state

[Rigol et al '07; Eisert; Cramer...]



lim lim pa(t) =
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ZGibbs

Integrable Systems

pGGE e~ Xm BmIm
AUB = ——F
ZGGE

Non thermal ensemble
complete set of local commuting
integrals of motions I,,,

I = 00, Oj g1, jtm,
O(m)-support, m finite
full info on the whole Initial state

[Rigol et al '07; Eisert; Cramer...]

» based on many theoretical, experimental and numerical outcomes

[Rigol, Muramatsu, Olshanii; Cazalilla; Calabrese, Cardy; Fioretto, Mussardo; Caux, Mossel...]

» not quite the end of the story [pe Nardis et al '14, Kormos et al 14, Andrei et al *14]
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lim lim pa(t) =

t—o00 N—oo

Tre [/’Klui)éed]

Which is the statistical ensemble for pm"‘ed?

Non Integrable Systems

—H/T
Gibbs __ € /Tett
AUB

Thermal ensemble

only one integral of motion E
few info on the whole Initial state

[Deutsch '91; Srednicki '95]

ZGibbs

Integrable Systems

pGGE e~ Xm BmIm
AUB = ——F
ZGGE

Non thermal ensemble
complete set of local commuting
integrals of motions I,,,

I = 00, Oj g1, jtm,
O(m)-support, m finite
full info on the whole Initial state

[Rigol et al '07; Eisert; Cramer...]

» based on many theoretical, experimental and numerical outcomes

[Rigol, Muramatsu, Olshanii; Cazalilla; Calabrese, Cardy; Fioretto, Mussardo; Caux, Mossel...]

» not quite the end of the story [pe Nardis et al '14, Kormos et al 14, Andrei et al *14]

Main test: exact solution of the full dynamics (free theories, TFIC, XY...) ‘
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2. Light-cone spread

Do we really need L — co,t — oo to have relaxation?
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2. Light-cone spread

Do we really need L — co,t — oo to have relaxation?

B A B
a; gj
Not really, as an example, the thermalization of (o;0;) occurs after t ~ ;Z;J‘
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2. Light-cone spread

Do we really need L — co,t — oo to have relaxation?

Not really, as an example, the thermalization of (o;0;) occurs after t ~ ;’;ﬂ

VUmaz

In(QYY)
20
In non relativistic quantum systems
with finite-range interactions 10
and a finite local Hilbert space: # 0
3 finite group velocity vVsmqa, With
exponentially small effects outside -10
an effective light cone ,
-20

-100 =50 0 50 100
i—j

[Cheneau et al '12]

Is this a general feature? YES — Lieb-Robinson Bound!



Causality at equilibrium:

Lieb-Robinson bound  [Lieb, Robinson '72]
In local Hamiltonians with a finite local Hilbert space:

H[OA(O7-T1)7OB(757132)]H < Cuap e(vmazltl=lz1—w2[)/€

» ¢ is connected to the finite range of interactions
> Umaz: Maximal group velocity

» independent of the state of the system

Correlations are exponentially suppressed outside the light cone.
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Causality at equilibrium:

Lieb-Robinson bound  [Lieb, Robinson '72]
In local Hamiltonians with a finite local Hilbert space:

H[OA(O7-T1)7OB(757132)]H < Cuap e(vmazltl=lz1—w2[)/€

» ¢ is connected to the finite range of interactions
> Umaz: Maximal group velocity

» independent of the state of the system

Correlations are exponentially suppressed outside the light cone.

’ Causality out of equilibrium:

In a global quench, at equal time, it implies that
(P(1)|0a(21)Op (w2)|(t)) < CapeZmesltizlzr=eal/e

[Hastings et al '06]
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() #0 Equal time two point function for fixed

“Horizon" separation r

» exponential decay in time for t < r/2

» saturation to t-independent values for
t2r/2
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() #0 Equal time two point function for fixed

“Horizon" separation r

» exponential decay in time for t < r/2

» saturation to t-independent values for
t2r/2

Physical Interpretation

[Calabrese, Cardy '07]
Ey, > Egs, |to) acts as a source of excitations

quasi-particle emitted on scales E;OI are entangled

they move classically with light-cone trajectories and spread
for t < r/2 causally disconnected regions

after a transient ¢ > r/2 observables freeze-out
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() #0 Equal time two point function for fixed

“Horizon" separation r

» exponential decay in time for t < r/2

» saturation to t-independent values for
t2r/2

Physical Interpretation

[Calabrese, Cardy '07]
Ey, > Egs, |to) acts as a source of excitations

quasi-particle emitted on scales E;OI are entangled

they move classically with light-cone trajectories and spread
for t < r/2 causally disconnected regions

after a transient ¢ > r/2 observables freeze-out

‘ Horizon effect predicts freeze-out of n (>2)-point functions

17/32



3. Entanglement entropy
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3. Entanglement entropy

A pure quantum state of a bipartite system
is not necessarily a pure state of each subsystem separately.
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3. Entanglement entropy

A pure quantum state of a bipartite system
is not necessarily a pure state of each subsystem separately.
B A B
Sa = —Tr[paln pal -- ‘ -
{ spins

=
Lo

Entanglement entropy is a measure of how much a configuration of the
subsystem A depends on one of B.

» product state: 1)) = |[¢)a @ |¢p)p: Sa =0

1

» maximally entangled state: [¢)) = —= 37, [¢1)a ® [¢1) B,

S =log(D), D: dimension of Hilbert space for substyems A and B

In an entangled state the state of A is not a vector but a density matrix.
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3. Entanglement entropy

A pure quantum state of a bipartite system
is not necessarily a pure state of each subsystem separately.
B A B
Sa = —Tr[paln pal -- 4 ) -
{ spins

Entanglement entropy is a measure of how much a configuration of the
subsystem A depends on one of B.

» product state: 1)) = |[¢)a @ |¢p)p: Sa =0

» maximally entangled state: [1)) = % Yol a® o) s,

S =log(D), D: dimension of Hilbert space for substyems A and B

In an entangled state the state of A is not a vector but a density matrix.
Example: take a qubit in a singlet state
1

7 )

Entanglement in a quantum coherent system is responsible for appearance of
entropy, hence for thermalization process!

|¥)

Ol
= O

(Da® e —]Na®|s), ,,A:(
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[ll. What we did



So far, the focus has been put on initial states that are ground states
of local hamiltonians

20/32



So far, the focus has been put on initial states that are ground states
of local hamiltonians

Objective

Study the time evolution of local observables after a quench
[1 & 2-point functions, entanglement entropy ...]

20/32



20/32

So far, the focus has been put on initial states that are ground states
of local hamiltonians

Objective

Study the time evolution of local observables after a quench
[1 & 2-point functions, entanglement entropy ...]

Starting from an initial excited state



20/32

So far, the focus has been put on initial states that are ground states
of local hamiltonians

Objective

Study the time evolution of local observables after a quench
[1 & 2-point functions, entanglement entropy ...]

Starting from an initial excited state

In the Transverse field Ising chain
[solvable but non-trivial as free theories]



20/32

So far, the focus has been put on initial states that are ground states
of local hamiltonians

Objective

Study the time evolution of local observables after a quench
[1 & 2-point functions, entanglement entropy ...]

Starting from an initial excited state
Let's discuss first this point

In the Transverse field Ising chain
[solvable but non-trivial as free theories]



Why should we focus on excited states?

» Radically different behaviour of entanglement entropy for excited states:

ground states:

> massive non degenerate GS: Sas = Ol |  [Bombelli '88;Srendicki '93]

» critical conformal theories: ’ Sas =~ §log(l) + ¢}

[Calabrese Cardy]

higly-excited states (# excitations ~ N)

’ Sexc ~] + (’)(logl)

[Alba, Fagotti, Calabrese, '09; Sierra, ...]

insensitive to the criticality of the ground states

» Look for universal behaviour

» Room for new effects
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Quenched Transverse field Ising chain

(0loj10) #0 (0]710) =0

N
Y- [ojojq +hoi] + PBC ' ]
j=1 h(- =1

H( =

|0): ground state of H(h)
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Quenched Transverse field Ising chain

(0loj10) #0 (0]710) =0

N
H(h) = —5 > [ojoj +hoj] + PBC }

1
2j= he=1
|0): ground state of H(h)

From interacting spins o; to free spinless fermions by,

:ZGh(k)(bLbk—%) en(k)=1+hn —2hc05%
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Quenched Transverse field Ising chain
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(0loj10) #0 (0]710) =0

N
H(h) = —5 > [ojoj +hoj] + PBC }

1
2j= he=1

|0): ground state of H(h)

From interacting spins o; to free spinless fermions by,

:Zeh(k)(bzbk—l) en(k)=1+hn —2hc05@
2 N
’ Interaction quench h — A’

Initial state: o) = [mi) = [T, (bL)™*|0)

» excited state of pre-quenched hamiltonian H(h)
> Zs-invariant: (0|07 |1ho) =0

» my: fermionic initial occupation number of k-mode



V. Our results
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Local relaxation in the TFIC from excited states

B A B , : .
-- - “A” is a block of £ contiguous spins
¢ spins

pa(t) = Trp (|tbo(t)) (o (t)]) [o()) = e~ [y)

N
L
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Local relaxation in the TFIC from excited states

B A B , , ,
-- { ) - “A” is a block of ¢ contiguous spins
¢ spins
—iH(h'
pa(t) = Trp (|vo(t)) (Yo (t)]) [()) = e~ ! [y

‘ Result: GGE works even for excited states! ‘

pGGE,A = pa(00)
Idea:

Free systems — Wick’'s thm — just need to prove it for propagators!

» exactly solvable dynamics

e~ Tk ARk

» ensemble averages PGGE,A = Z

ny: post-quench conserved fermionic occupation number operators
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Local conserved charges from excited states

—+m
(Lf) = / % cos(nk)ey [1 + mf cos Ak} mf =m_p+mr —1
Tk N B
(I,) = f/ - sin[(n + 1)k]my, mp = m_g —my

’ Two classes of IS ‘

> mj =0 Only (I}) #20  (GS belongs to this class!)

> mi #0: Both (I7) and (I;) # 0

‘ Result: Doubling of non zero VEVs local conserved charges wrt ground state
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Local conserved charges from excited states

—+m
(Lf) = / % cos(nk)ey [1 + mf cos Ak} mf =m_p+mr —1
Tk N B
(I,) = f/ - sin[(n + 1)k]my, mp = m_g —my

’ Two classes of IS ‘

> mj =0 Only (I}) #20  (GS belongs to this class!)

> mi #0: Both (I7) and (I;) # 0

‘ Result: Doubling of non zero VEVs local conserved charges wrt ground state

Does the increased number of conserved charges in mi
alter the asymptotic time dependence of correlations?
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Transverse magnetization

T dk ; 5 T dk .
4—616’“ my cos Ay —i / ek my sin Ay cos(2¢xt)
T

-7 -7

m*(t) =

stationary part time—dependent

Asymptotic behaviour: stationary phase approximation

m(k) analytic ‘ m(k) non—analytic‘
M)~ O ) mAt) =t O )
AS GROUND STATE NOVELTY!

0.0008¢ (@ 0.0015 (b)

Y |
S oo w w ww 0 WMWMWMW CEEERR T ooom f)v h vﬂw UﬂUnUﬂUﬂUﬂ HnuﬁUﬂUIIUH\}WmﬂﬁﬂUﬂVﬂUn“ﬂHAVAVﬁUn\‘AVnVA\

-0.0002F E —0.0005
~00003] me=(k+my/Am | ~00010

my(K)=0(k—7/2)

10 20 30 40 50 60 10 20 30 40 50 60
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Longitudinal spin-spin function

P (4 1) = (Wo(t)|onoiia|Po(t))

(b)i

0.0 0‘.5 110 115
t/te

2.

k2
m(k) = E§;;55
¢ =60
h=1/3, h =2/3
tp = Z/(2'Umanx)
Umax = min[h, 1]



Longitudinal spin-spin function

P (4 1) = (Wo(t)|onoiia|Po(t))

-6 T T T 3
6.x 10 )

k2
m(k) = E§;;5§
¢ =60
h=1/3, h =2/3
tp = Z/(2")max)
Umax = min[h, 1]

0.0 0.5 1.0 15 2.C
t/te
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Longitudinal spin-spin function

P (U, ) = (Wo()|0Z ot [Wo(t))

70 )]
5 %10 horizon ] .
-6 F ] m(k) = ———
5 Z'Xiz,e 1=60 &) (2m)?
Q 3% F ] _
2.x10°° t=60
1.x10° h=1/3, W =2/3
. X ]
0 . . . ] tF = Z/(27~1111E:Lx)
0.0 05 1.0 15 20

Umax = min[h, 1]
tte

» Emergent light-cone spreading of correlations (as for GS)
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Longitudinal spin-spin function

P (U, ) = (Wo()|0Z ot [Wo(t))

70 )]
5 %10 horizon ] .
-6 F ] m(k) = ———
5 Z'Xiz,e 1=60 &) (2m)?
Q 3% F ] _
2.x10°° t=60
1.x10° h=1/3, W =2/3
. X ]
0 . . . ] tF = Z/(27~1111E:Lx)
0.0 05 1.0 15 20

Umax = min[h, 1]
tte

» Emergent light-cone spreading of correlations (as for GS)

» Common behaviour Vmy analyzed (double-stepfunction, linear,
quadratic)...

...EXCEPT ONE!
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The anomalous state: my, = 0(k —

NE

)

Different behaviour for different ¢!
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0.8},

0.06

0.04

0.02

The anomalous state: my = 0(k — §

Different behaviour for different ¢!

£ =60

©

1=60

Still open problems

> Is it related to | (I, ) # 07

%
Q

0.00020f
000015},

. 1=90
000010} &

~
000005} *y

RE

0.00000,_ ey @

0 1 2 4

» But other mj # 0 display usual light-cone effect...




0.8},

0.06

0.04

0.02

Still open problems

Different behaviour for different ¢!

£ =60

decay

> Is it related to | (I, ) # 07

%
Q

0.00020

0.00015

0.00010

0.00005

0.00000

The anomalous state: my = 0(k — §

+

S

S 1=90
i

=

T
A @
0 1 2 3 4
tte

» But other mj # 0 display usual light-cone effect...
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The anomalous state: my = 0(k — %)

Different behaviour for different ¢!

£ =60

. 0.00020
0.08], decay (©
oos %

5 3

004 ¥
0.02 \

0 1 2

GGE-limit

Still open problems

> Is it related to | (I, ) # 07

» But other mj # 0 display usual light-cone effect...



The anomalous state: my, = 6(k — 7)

Different behaviour for different ¢!

£ =60

. 0.00020
0.08], decay (0
oos %

5 3

004 ¥
0.02 \

0 1 2

GGE-limit

Still open problems
> Is it related to | (I, ) # 07

» But other mj # 0 display usual light-cone effect...
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Analytical full time evolution of p™({,t)

» Focus on quenches within the ferromagnetic phase h, ho < 1
» Method: multi-dimensional stationary phase [ragotti, Essler, Calabrese '08]

» Extension only to m;? =0
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Analytical full time evolution of p™({,t)

» Focus on quenches within the ferromagnetic phase h, ho < 1
» Method: multi-dimensional stationary phase [ragotti, Essler, Calabrese '08]

» Extension only to m;? =0

typical of excited states

- ™ dk t
priv, (£,t) =2 Cnyexp {4/ o (1 - 2\e;;|?) In(|mg )0(¢ — 2|e;\t)}

-

X exp {Qt/ %kﬂ In[| cos Apmy |J0(¢ — 2|e§€|t)}

X exp {e/ ;i—klnﬂcos Apmi|0(2] €|t ,4)}
Y

—

Universal properties:
» t < tp, evolution in ¢ does not depend on my (first two lines)
> t>> tp, constant in time (third line)

» At fixed time, exponential decreasing with /¢
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Sp = =Tr[pan pa]

Entanglement Entropy
B A

T~

{ spins

N



Entanglement Entropy

B
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Sa=—Tr[palnpa]  --
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gl

0.28

0.26 mk)=k?/(2n)?

0.24
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~
b
]

{ spins

» Light-cone behaviour
» Dependence on my
> S¢/€ # 0 at t =0 due to excitations



V. Conclusions and Outlook
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We have considered quenches from excited states

Validity of GGE

Horizon effect for S, and pj*
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Thank you for your attention





