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Outline of the talk

I. Introduction to non-equilibrium many-body quantum
physics

II. State of the art: Relaxation, Light-Cone effect,
Entanglement entropy

III. Extension to a quench in the transverse field Ising chain
with a new ingredient: initial excited states

IV. Numerical & exact results for the long-time dynamics

V. Conclusions & Outlooks
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I. Introduction
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Crucial to non-equilibrium physics is the concept of thermalization

〈Â(t→∞)〉 = Tr(Âρµ−can)

Nowadays, we have many numerical and experimental evidences supporting
thermalization in some quantum systems...

[Rigol et al ’09, Cassidy et al ’11, Eisert et al ’11, Trotzky et al. ’12, Pozsgay ’14... ]

...but why should a quantum system thermalize?

Long-Standing Questions
[Von Neumann ’29; Birkhoff ’30]

I Does an isolated quantum system reach a stationary state starting from an
arbitrary initial state?

I If so, is there a way to economically describe the stationary state?

I Can we describe it according to a statistical ensemble, i.e. by maximising
an entropy functional under some constraints?

I How do correlation functions and observables depend on time?
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Out of equilibrium quantum physics: timely subject...

Long-standing
Theoretical questions

Experimentally highly
controllable systems

Criteria for thermalization,
quantum integrability,
quantum ergodicity,
universality out-of-equilibrium

techniques:
Cold atoms, optical lattices,
quantum dot, nanowires,
Feshbach resonance...
1D models:
Bose-(Fermi) Hubbard, TFIC,
Lieb-Liniger...

Fruitful comparison between non equilibrium theories based on simple models
and carefully designed experiment with tunable parameters
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The benefit of ultracold atoms

Optical lattices allow to tune dimensionality, interactions and also statistics.

Observation of quantum coherent dynamics:

Ultracold atoms allow to avoid dissipation and decoherence on time scales of
order milliseconds to seconds (ps for “usual” systems!), long enough to study
collective behaviour and (thermal) equilibrium.
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How to drive a system out-of-equilibrium?

I Pumping energy or particles into the system (open systems)

I Acting with a driving field

I Using time-dependent Hamiltonians

However the simplest choice to bring a system out-of-equilibrium
is by means of a sudden quantum quench.

It consists in changing suddenly a parameter of the system
and then let it evolve unitarily.

study of non equilibrium dynamics of closed
and isolated interacting quantum systems
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The Quench paradigm

I prepare a many-body quantum system in an eigenstate |ψ0〉
of a pre-quenched hamiltonian H

I from t = 0 let it evolve unitarily with a different
post-quenched time-independent hamiltonian H ′

|ψ(t)〉 = e−iH
′t|ψ0〉, [H,H ′] 6= 0

Initial state is NOT an eigenstate
nor a finite superposition of eigenstates of H’

Evolution from an out-of-equilibrium state |ψ0〉

Example: Interaction Quench

H(λ)
t = 0

Quench
H(λ′)

t > 0, evolution under Quantum Mechanics from a pure state of an isolated
system
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II. State-of-the-art:
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1. Relaxation

Can the whole system attain stationary behaviour?

Initial pure state + unitary evolution → it will be in a pure state ∀t

Global observables (i.e. the whole system) can never relax

As an example, a spin-chain

σ1 σN

〈ψ(t)|σ1 · · ·σN |ψ(t)〉: persistent oscillations, quantum recurrence

What about local observables?
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BB A

First taking B infinite, then t→∞ a finite subsystem A can relax!

Only local observables relax!

Physical picture: B acts like a “thermal” bath on A
No time averaging involved!

Density matrix:

ρA∪B(t) = e−iH
′t|ψ0〉〈ψ0|eiH

′t

Reduced Density Matrix of A:
ρA(t) ≡ TrB

[
ρA∪B(t)

]
BB A

lim
t→∞

lim
N→∞

ρA(t) = lim
N→∞

TrB

[
ρmixed

A∪B

]
I ρA stationary and allows for an ensemble description (mixed state)

I determines all local correlation functions
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In the past years, experimental evidence for non-thermalization depending on
the integrability of the model. Let me consider just two paradigmatic examples.

“Quantum Newton Cradle” [Kinoshita et al ’06]

40-250 Rb atoms (hard core bosons) in 1D optical trap, prepared at t = 0 in a
superposition of states with opposite momentum

I in D = 2, 3, after few collisions,
the system thermalizes

I in D = 1, after thousands of collisions,
it does not thermalize

The experiment shows that dimensionality and
integrability play a central role in non equilibrium
physics.

Integrable 1D systems do not seem to thermalize
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Probing relaxation in Bose-Hubbard system [Trotsky et al ’12]

H =
∑
j

[
− J(a†jaj+1 + h.c.) + U

2
nj(nj − 1) +Knjj

2
]

Preparation Results

Thermalization: relaxation to a universal value independently of J , U , K

I Initial details of the non integrable system do not matter for the
asymptotic behaviour

I Values compatible with the system globally being in a maximum entropy
state (with constrained energy and # of particles)

Non Integrable systems thermalize!
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lim
t→∞

lim
N→∞

ρA(t) = TrB

[
ρmixed

A∪B

]
Which is the statistical ensemble for ρmixed

A∪B ?

Non Integrable Systems

ρGibbs
A∪B =

e−H/Teff

ZGibbs

Thermal ensemble
only one integral of motion E

few info on the whole Initial state
[Deutsch ’91; Srednicki ’95]

Integrable Systems

ρGGE
A∪B =

e−
∑
m βmIm

ZGGE

Non thermal ensemble
complete set of local commuting

integrals of motions Im
Im =

∑N
j=1Oj,j+1,··· ,j+m,

O(m)-support, m finite
full info on the whole Initial state

[Rigol et al ’07; Eisert; Cramer...]

I based on many theoretical, experimental and numerical outcomes
[Rigol, Muramatsu, Olshanii; Cazalilla; Calabrese, Cardy; Fioretto, Mussardo; Caux, Mossel...]

I not quite the end of the story [De Nardis et al ’14, Kormos et al ’14, Andrei et al ’14]

Main test: exact solution of the full dynamics (free theories, TFIC, XY...)
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2. Light-cone spread

Do we really need L→∞, t→∞ to have relaxation?

BB A

σi σj

Not really, as an example, the thermalization of 〈σiσj〉 occurs after t ∼ |i−j|
2vmax

.

In non relativistic quantum systems
with finite-range interactions

and a finite local Hilbert space:
∃ finite group velocity vmax, with
exponentially small effects outside

an effective light cone

[Cheneau et al ’12]

Is this a general feature? YES → Lieb-Robinson Bound!
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Causality at equilibrium:

Lieb-Robinson bound [Lieb, Robinson ’72]

In local Hamiltonians with a finite local Hilbert space:

||[OA(0, x1),OB(t, x2)]|| ≤ CAB e(vmax|t|−|x1−x2|)/ξ

I ξ is connected to the finite range of interactions

I vmax: maximal group velocity

I independent of the state of the system

Correlations are exponentially suppressed outside the light cone.

Causality out of equilibrium:

In a global quench, at equal time, it implies that

〈ψ(t)|OA(x1)OB(x2)|ψ(t)〉 ≤ CABe(2vmax|t|−|x1−x2|)/ξ

[Hastings et al ’06]
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ln〈O(t, r)O(t, 0)〉

t

〈O〉 6= 0

r/2

“Horizon”

Equal time two point function for fixed
separation r

I exponential decay in time for t . r/2

I saturation to t-independent values for
t & r/2

Physical Interpretation
[Calabrese, Cardy ’07]

Eψ0 � EGS, |ψ0〉 acts as a source of excitations

I quasi-particle emitted on scales E−1
ψ0

are entangled

I they move classically with light-cone trajectories and spread

I for t . r/2 causally disconnected regions

I after a transient t & r/2 observables freeze-out

Horizon effect predicts freeze-out of n (>2)-point functions
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3. Entanglement entropy

A pure quantum state of a bipartite system
is not necessarily a pure state of each subsystem separately.

AB B

` spins
SA = −Tr[ρA ln ρA]

Entanglement entropy is a measure of how much a configuration of the
subsystem A depends on one of B.

I product state: |ψ〉 = |φ〉A ⊗ |φ〉B : SA = 0

I maximally entangled state: |ψ〉 = 1√
D

∑
l |φl〉A ⊗ |φl〉B ,

S = log(D), D: dimension of Hilbert space for substyems A and B

In an entangled state the state of A is not a vector but a density matrix.

Example: take a qubit in a singlet state

|ψ〉 =
1√
2

(| ↑〉A ⊗ | ↓〉B − | ↓〉A ⊗ | ↑〉B), ρA =

(
1
2

0
0 1

2

)
Entanglement in a quantum coherent system is responsible for appearance of

entropy, hence for thermalization process!
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III. What we did
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So far, the focus has been put on initial states that are ground states
of local hamiltonians

Objective

Study the time evolution of local observables after a quench
[1 & 2-point functions, entanglement entropy ...]

Starting from an initial excited state

Let’s discuss first this point

In the Transverse field Ising chain
[solvable but non-trivial as free theories]
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Why should we focus on excited states?

I Radically different behaviour of entanglement entropy for excited states:

ground states:

I massive non degenerate GS: SGS ' ∂l [Bombelli ’88;Srendicki ’93]

I critical conformal theories: SGS ' c
3
log(l) + c′1 [Calabrese Cardy]

higly-excited states (# excitations ' N)

Sexc ' l +O(log l) [Alba, Fagotti, Calabrese, ’09; Sierra, ...]

insensitive to the criticality of the ground states

I Look for universal behaviour

I Room for new effects
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Quenched Transverse field Ising chain

hc = 1

h〈0|σxj |0〉 6= 0 〈0|σxj |0〉 = 0
H(h) = −1

2

N∑

j=1

[σxj σ
x
j+1 + hσzj ] + PBC

|0〉: ground state of H(h)

From interacting spins σi to free spinless fermions bk

H(h) =
∑
k

εh(k)
(
b†kbk −

1

2

)
ε2h(k) = 1 + h2 − 2h cos

2πk

N

Interaction quench h → h′

Initial state: |ψ0〉 = |mk〉 ≡
∏
k(b†k)mk |0〉

I excited state of pre-quenched hamiltonian H(h)

I Z2-invariant: 〈ψ0|σxj |ψ0〉 = 0

I mk: fermionic initial occupation number of k-mode
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IV. Our results
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Local relaxation in the TFIC from excited states

AB B

` spins
“A” is a block of ` contiguous spins

ρA(t) = TrB
(
|ψ0(t)〉〈ψ0(t)|

)
|ψ0(t)〉 = e−iH(h′)t|ψ0〉

Result: GGE works even for excited states!

ρGGE,A = ρA(∞)

Idea:

Free systems → Wick’s thm → just need to prove it for propagators!

I exactly solvable dynamics

I ensemble averages ρGGE,A = e−
∑
k λknk

Z

nk: post-quench conserved fermionic occupation number operators
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Local conserved charges from excited states

〈I+n 〉 =

∫ +π

−π

dk

4π
cos(nk)εk

[
1 +mS

k cos ∆k

]
mS
k ≡ m−k +mk − 1

〈I−n 〉 = −
∫ +π

−π

dk

4π
sin[(n+ 1)k]mA

k mA
k ≡ m−k −mk

Two classes of IS

I mA
k = 0: Only 〈I+n 〉 6= 0 (GS belongs to this class!)

I mA
k 6= 0: Both 〈I+n 〉 and 〈I−n 〉 6= 0

Result: Doubling of non zero VEVs local conserved charges wrt ground state

Does the increased number of conserved charges in mA
k

alter the asymptotic time dependence of correlations?
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Transverse magnetization

mz(t) =

∫ π

−π

dk

4π
eiθkmS

k cos ∆k︸ ︷︷ ︸
stationary part

−i
∫ π

−π

dk

4π
eiθkmS

k sin ∆k cos(2εkt)︸ ︷︷ ︸
time−dependent

Asymptotic behaviour: stationary phase approximation

m(k) analytic

mz(t) ' t−
3
2 +O(t−

2n+1
2 )

AS GROUND STATE

HdL

m3HkL=Hk+ΠL�H4ΠL

10 20 30 40 50 60

-0.0003

-0.0002

-0.0001

0.0000

0.0001

0.0002

0.0003

t

m
z

m(k) non-analytic

mz(t) ' t−1 +O(t−
2n+1

2 )

NOVELTY!

HbL

m1HkL=ΘHk-Π�2L

10 20 30 40 50 60

-0.0010

-0.0005

0.0000

0.0005

0.0010

0.0015

t

m
z
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Longitudinal spin-spin function

ρxx(`, t) ≡ 〈Ψ0(t)|σxnσx`+n|Ψ0(t)〉

HbL

l=60

0.0 0.5 1.0 1.5 2.0
0

1. ´ 10-6

2. ´ 10-6

3. ´ 10-6

4. ´ 10-6

5. ´ 10-6

6. ´ 10-6

t�tF

Ρxx

horizon

m(k) =
k2

(2π)2

` = 60

h = 1/3, h′ = 2/3

tF = `/(2vmax)

vmax = min[h, 1]

Results

I Emergent light-cone spreading of correlations (as for GS)

I Common behaviour ∀mk analyzed (double-stepfunction, linear,
quadratic)...

...EXCEPT ONE!
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The anomalous state: mk = θ(k − π
2
)

Different behaviour for different `!

HcL

l=60

0 1 2 3 4

0.02

0.04

0.06

0.08

t�tF

Ρ
xx

l=90

HdL
0 1 2 3 4

0.00000

0.00005

0.00010

0.00015

0.00020

t�tF

Ρ
xx

` = 60 ` = 90

decay

GGE-limit

??

Still open problems

I Is it related to 〈I−n 〉 6= 0 ?

I But other mA
k 6= 0 display usual light-cone effect...
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Analytical full time evolution of ρxx(`, t)

I Focus on quenches within the ferromagnetic phase h, h0 < 1

I Method: multi-dimensional stationary phase [Fagotti, Essler, Calabrese ’08]

I Extension only to mA
k = 0

ρxxmk (`, t) ' Cmk

typical of excited states︷ ︸︸ ︷
exp

[
`

∫ π

−π

dk

2π

(
1− 2|ε′k|

t

`

)
ln(|mS

k |)θ(`− 2|ε′k|t)
]

× exp

[
2t

∫ π

−π

dk

2π
|ε′k| ln[| cos ∆km

S
k |]θ(`− 2|ε′k|t)

]
× exp

[
`

∫ π

−π

dk

2π
ln[| cos ∆km

S
k |]θ(2|ε′k|t− `)

]
Universal properties:

I t� tF , evolution in t does not depend on mS
k (first two lines)

I t� tF , constant in time (third line)

I At fixed time, exponential decreasing with `
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Entanglement Entropy

AB B

` spins
SA = −Tr[ρA ln ρA]

HcL

mHkL=k2�H2ΠL2

0.0 0.5 1.0 1.5 2.0
0.24

0.26

0.28

0.30

0.32

0.34

t�tF

S�
l

I Light-cone behaviour

I Dependence on mS
k

I S`/` 6= 0 at t = 0 due to excitations
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V. Conclusions and Outlook
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We have considered quenches from excited states

Validity of GGE

Horizon effect for S` and ρxx`

Still open problems

Non-trivial dependence for mA
k ?

Excitations in truly interacting models?

Thank you for your attention
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