Quantum quenches, Entanglement and the transverse field Ising chain from excited states

Leda Bucciantini

mainly based on

LB, Kormos, Calabrese 1401.7250; Kormos, LB, Calabrese, 1406.5070

Outline of the talk

- I. Introduction to non-equilibrium many-body quantum physics
- II. State of the art: Relaxation, Light-Cone effect, Entanglement entropy
- III. Extension to a quench in the transverse field Ising chain with a new ingredient: initial excited states
- IV. Numerical & exact results for the long-time dynamics
- V. Conclusions & Outlooks

3/32

I. Introduction

Crucial to non-equilibrium physics is the concept of thermalization

$$\langle \hat{A}(t \to \infty) \rangle = \text{Tr}(\hat{A}\rho_{\mu-\text{can}})$$

Nowadays, we have many numerical and experimental evidences supporting thermalization in some quantum systems...

[Rigol et al '09, Cassidy et al '11, Eisert et al '11, Trotzky et al. '12, Pozsgay '14...]

...but why should a quantum system thermalize?

Crucial to non-equilibrium physics is the concept of thermalization

$$\langle \hat{A}(t \to \infty) \rangle = \text{Tr}(\hat{A}\rho_{\mu-\text{can}})$$

Nowadays, we have many numerical and experimental evidences supporting thermalization in some quantum systems...

```
[Rigol et al '09, Cassidy et al '11, Eisert et al '11, Trotzky et al. '12, Pozsgay '14... ]
```

...but why should a quantum system thermalize?

Long-Standing Questions

[Von Neumann '29; Birkhoff '30]

- Does an isolated quantum system reach a stationary state starting from an arbitrary initial state?
- ▶ If so, is there a way to economically describe the stationary state?
- ► Can we describe it according to a statistical ensemble, i.e. by maximising an entropy functional under some constraints?
- ► How do correlation functions and observables depend on time?

Out of equilibrium quantum physics: timely subject...

Long-standing
Theoretical questions

Experimentally highly controllable systems

Out of equilibrium quantum physics: timely subject...

Long-standing Theoretical questions

Experimentally highly controllable systems

Criteria for thermalization, quantum integrability, quantum ergodicity, universality out-of-equilibrium

techniques:

Cold atoms, optical lattices, quantum dot, nanowires, Feshbach resonance...

1D models:

Bose-(Fermi) Hubbard, TFIC, Lieb-Liniger...

Out of equilibrium quantum physics: timely subject...

Long-standing Theoretical questions Experimentally highly controllable systems

Criteria for thermalization, quantum integrability, quantum ergodicity, universality out-of-equilibrium techniques:

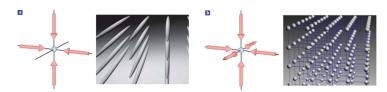
Cold atoms, optical lattices, quantum dot, nanowires, Feshbach resonance 1D models:

Bose-(Fermi) Hubbard, TFIC, Lieb-Liniger...

Fruitful comparison between non equilibrium theories based on simple models and carefully designed experiment with tunable parameters

The benefit of ultracold atoms

Optical lattices allow to tune dimensionality, interactions and also statistics.



Observation of quantum coherent dynamics:

Ultracold atoms allow to avoid dissipation and decoherence on time scales of order milliseconds to seconds (ps for "usual" systems!), long enough to study collective behaviour and (thermal) equilibrium.

How to drive a system out-of-equilibrium?

- ► Pumping energy or particles into the system (open systems)
- ► Acting with a driving field
- ► Using time-dependent Hamiltonians

How to drive a system out-of-equilibrium?

- ► Pumping energy or particles into the system (open systems)
- ► Acting with a driving field
- ► Using time-dependent Hamiltonians

However the simplest choice to bring a system out-of-equilibrium is by means of a sudden quantum quench.

It consists in changing suddenly a parameter of the system and then let it evolve unitarily.

How to drive a system out-of-equilibrium?

- ▶ Pumping energy or particles into the system (open systems)
- ► Acting with a driving field
- ► Using time-dependent Hamiltonians

However the simplest choice to bring a system out-of-equilibrium is by means of a sudden quantum quench.

It consists in changing suddenly a parameter of the system and then let it evolve unitarily.

study of non equilibrium dynamics of closed and isolated interacting quantum systems

The Quench paradigm

- prepare a many-body quantum system in an eigenstate $|\psi_0\rangle$ of a pre-quenched hamiltonian H
- from t = 0 let it evolve unitarily with a different post-quenched time-independent hamiltonian H'

$$|\psi(t)\rangle = e^{-iH't}|\psi_0\rangle, \qquad [H, H'] \neq 0$$

Initial state is NOT an eigenstate nor a finite superposition of eigenstates of H'

Evolution from an out-of-equilibrium state $|\psi_0
angle$

The Quench paradigm

- prepare a many-body quantum system in an eigenstate $|\psi_0\rangle$ of a pre-quenched hamiltonian H
- from t = 0 let it evolve unitarily with a different post-quenched time-independent hamiltonian H'

$$|\psi(t)\rangle = e^{-iH't}|\psi_0\rangle, \qquad [H, H'] \neq 0$$

Initial state is NOT an eigenstate nor a finite superposition of eigenstates of H'

Evolution from an out-of-equilibrium state $|\psi_0
angle$

Example: Interaction Quench

$$H(\lambda) \xrightarrow{t=0} H(\lambda')$$

 $\,t>0,$ evolution under Quantum Mechanics from a pure state of an isolated system

II. State-of-the-art:

n	/33	
σ,	132	

1. Relaxation

Can the whole system attain stationary behaviour?

1. Relaxation

Can the whole system attain stationary behaviour?

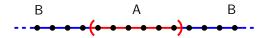
Initial pure state + unitary evolution \rightarrow it will be in a pure state $\forall t$

Global observables (i.e. the whole system) can never relax

As an example, a spin-chain

 $\langle \psi(t) | \sigma_1 \cdots \sigma_N | \psi(t) \rangle$: persistent oscillations, quantum recurrence

What about local observables?



First taking B infinite, then $t \to \infty$ a finite subsystem A can relax!

Only local observables relax!

Physical picture: B acts like a "thermal" bath on A No time averaging involved!

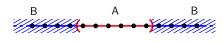
First taking B infinite, then $t \to \infty$ a finite subsystem A can relax!

Only local observables relax!

Physical picture: B acts like a "thermal" bath on A No time averaging involved!

Density matrix:

$$\rho_{\mathsf{A}\cup\mathsf{B}}(t) = e^{-iH't} |\psi_0\rangle\langle\psi_0| e^{iH't}$$



Reduced Density Matrix of A:

$$\rho_{\mathsf{A}}(t) \equiv \mathrm{Tr}_{\mathsf{B}} \big[\rho_{\mathsf{A} \cup \mathsf{B}}(t) \big]$$

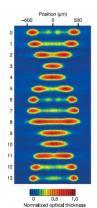
$$\lim_{t\to\infty}\lim_{N\to\infty}\rho_{\mathsf{A}}(t)=\lim_{N\to\infty}\mathrm{Tr}_{\mathsf{B}}\big[\rho_{\mathsf{A}\cup\mathsf{B}}^{\mathrm{mixed}}\big]$$

- $ightharpoonup
 ho_A$ stationary and allows for an ensemble description (mixed state)
- determines all local correlation functions

In the past years, experimental evidence for non-thermalization depending on the integrability of the model. Let me consider just two paradigmatic examples. In the past years, experimental evidence for non-thermalization depending on the integrability of the model. Let me consider just two paradigmatic examples.

"Quantum Newton Cradle" [Kinoshita et al '06

40-250 Rb atoms (hard core bosons) in 1D optical trap, prepared at t=0 in a superposition of states with opposite momentum



- ▶ in D = 2, 3, after few collisions, the system thermalizes
- ▶ in D = 1, after thousands of collisions, it does not thermalize

The experiment shows that dimensionality and integrability play a central role in non equilibrium physics.

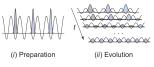
Integrable 1D systems do not seem to thermalize

Probing relaxation in Bose-Hubbard system

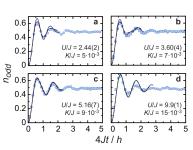
[Trotsky et al '12]

$$H = \sum_{j} \left[-J(a_{j}^{\dagger}a_{j+1} + h.c.) + \frac{U}{2}n_{j}(n_{j} - 1) + Kn_{j}j^{2} \right]$$

Preparation



Results

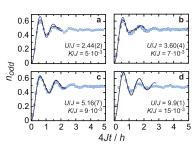


$$H = \sum_{j} \left[-J(a_{j}^{\dagger}a_{j+1} + h.c.) + \frac{U}{2}n_{j}(n_{j} - 1) + Kn_{j}j^{2} \right]$$

Preparation

(i) Preparation (ii) Evolution (iii) Readout

Results



Thermalization: relaxation to a universal value independently of J, U, K

- Initial details of the non integrable system do not matter for the asymptotic behaviour
- ► Values compatible with the system globally being in a maximum entropy state (with constrained energy and # of particles)

Non Integrable systems thermalize!

$$\lim_{t\to\infty}\lim_{N\to\infty}\rho_{\mathsf{A}}(t)=\mathrm{Tr}_{\mathsf{B}}\big[\rho_{\mathsf{A}\cup\mathsf{B}}^{\mathrm{mixed}}\big]$$

Which is the statistical ensemble for $\rho_{A\cup B}^{mixed}$?

$$\lim_{t\to\infty}\lim_{N\to\infty}\rho_{\mathsf{A}}(t)=\mathrm{Tr}_{\mathsf{B}}\big[\rho_{\mathsf{A}\cup\mathsf{B}}^{\mathrm{mixed}}\big]$$

Which is the statistical ensemble for $\rho_{A\cup B}^{mixed}$?

Non Integrable Systems

$$\rho_{\mathsf{A}\cup\mathsf{B}}^{\mathsf{Gibbs}} = \frac{e^{-H/T_{\mathsf{eff}}}}{Z_{\mathsf{Gibbs}}}$$

Thermal ensemble only one integral of motion E few info on the whole Initial state

[Deutsch '91; Srednicki '95]

$$\lim_{t \to \infty} \lim_{N \to \infty} \rho_{\mathsf{A}}(t) = \mathrm{Tr}_{\mathsf{B}} \left[\rho_{\mathsf{A} \cup \mathsf{B}}^{\mathrm{mixed}} \right]$$

Which is the statistical ensemble for $\rho_{A \cup B}^{mixed}$?

Non Integrable Systems

$$\rho_{\mathsf{A}\cup\mathsf{B}}^{\mathsf{Gibbs}} = \frac{e^{-H/T_{\mathsf{eff}}}}{Z_{\mathsf{Gibbs}}}$$

 $\begin{tabular}{ll} Thermal ensemble \\ only one integral of motion E \\ few info on the whole Initial state \\ \end{tabular}$

[Deutsch '91; Srednicki '95]

Integrable Systems

$$\rho_{\mathsf{A}\cup\mathsf{B}}^{\mathsf{GGE}} = \frac{e^{-\sum_{m}\beta_{m}I_{m}}}{Z_{\mathsf{GGE}}}$$

Non thermal ensemble complete set of local commuting integrals of motions I_m $I_m = \sum_{j=1}^N O_{j,j+1,\cdots,j+m}, \ \mathcal{O}(m)\text{-support, m finite}$ full info on the whole Initial state

[Rigol et al '07; Eisert; Cramer...]

$$\lim_{t\to\infty}\lim_{N\to\infty}\rho_{\mathsf{A}}(t)=\mathrm{Tr}_{\mathsf{B}}\big[\rho_{\mathsf{A}\cup\mathsf{B}}^{\mathrm{mixed}}\big]$$

Which is the statistical ensemble for $\rho_{A\cup B}^{mixed}$?

Non Integrable Systems

$$\rho_{\mathsf{A}\cup\mathsf{B}}^{\text{Gibbs}} = \frac{e^{-H/T_{\text{eff}}}}{Z_{\text{Gibbs}}}$$

Thermal ensemble only one integral of motion E few info on the whole Initial state

[Deutsch '91; Srednicki '95]

Integrable Systems

$$\rho_{\mathsf{A}\cup\mathsf{B}}^{\mathsf{GGE}} = \frac{e^{-\sum_{m}\beta_{m}I_{m}}}{Z_{\mathsf{GGE}}}$$

Non thermal ensemble complete set of local commuting integrals of motions I_m $I_m = \sum_{j=1}^N O_{j,j+1,\cdots,j+m}, \ \mathcal{O}(m)\text{-support, m finite}$ full info on the whole Initial state

[Rigol et al '07; Eisert; Cramer...]

- ► based on many theoretical, experimental and numerical outcomes

 [Rieol. Muramatsu. Olshanii: Cazalilla: Calabrese. Cardv: Fioretto. Mussardo: Caux. Mossel...]
- ▶ not quite the end of the story [De Nardis et al '14, Kormos et al '14, Andrei et al '14]

$$\lim_{t\to\infty}\lim_{N\to\infty}\rho_{\mathsf{A}}(t)=\mathrm{Tr}_{\mathsf{B}}\big[\rho_{\mathsf{A}\cup\mathsf{B}}^{\mathrm{mixed}}\big]$$

Which is the statistical ensemble for $\rho_{A\cup B}^{mixed}$?

Non Integrable Systems

$$\rho_{\mathsf{A}\cup\mathsf{B}}^{\mathsf{Gibbs}} = \frac{e^{-H/T_{\mathsf{eff}}}}{Z_{\mathsf{Gibbs}}}$$

 $\begin{array}{c} {\rm Thermal\ ensemble} \\ {\rm only\ one\ integral\ of\ motion\ } E \\ {\rm few\ info\ on\ the\ whole\ Initial\ state} \end{array}$

[Deutsch '91; Srednicki '95]

Integrable Systems

$$\rho_{\mathsf{A}\cup\mathsf{B}}^{\mathsf{GGE}} = \frac{e^{-\sum_{m}\beta_{m}I_{m}}}{Z_{\mathsf{GGE}}}$$

Non thermal ensemble complete set of local commuting integrals of motions I_m $I_m = \sum_{j=1}^N O_{j,j+1,\cdots,j+m}, \\ \mathcal{O}(m)\text{-support, m finite}$ full info on the whole Initial state

[Rigol et al '07; Eisert; Cramer...]

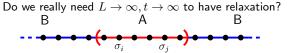
- based on many theoretical, experimental and numerical outcomes
 Rieol. Muramatsu. Olshanii: Cazalilla: Calabrese. Cardv: Fioretto. Mussardo: Caux. Mossel...]
- ▶ not quite the end of the story [De Nardis et al '14, Kormos et al '14, Andrei et al '14]

Main test: exact solution of the full dynamics (free theories, TFIC, XY...)

2. Light-cone spread

Do we really need $L \to \infty, t \to \infty$ to have relaxation?

2. Light-cone spread



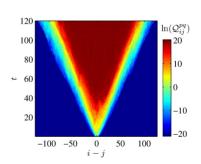
Not really, as an example, the thermalization of $\langle \sigma_i \sigma_j \rangle$ occurs after $t \sim \frac{|i-j|}{2v_{max}}$.

2. Light-cone spread

Do we really need $L \to \infty, t \to \infty$ to have relaxation? B A B

Not really, as an example, the thermalization of $\langle \sigma_i \sigma_j \rangle$ occurs after $t \sim \frac{|i-j|}{2v_{max}}$.

In non relativistic quantum systems with finite-range interactions and a finite local Hilbert space: \exists finite group velocity v_{max} , with exponentially small effects outside an effective light cone



[Cheneau et al '12]

Is this a general feature? YES \rightarrow Lieb-Robinson Bound!

Causality at equilibrium:

Lieb-Robinson bound [Lieb, Robinson '72]

In local Hamiltonians with a finite local Hilbert space:

$$||[\mathcal{O}_A(0,x_1),\mathcal{O}_B(t,x_2)]|| \le \mathcal{C}_{AB} e^{(v_{max}|t|-|x_1-x_2|)/\xi}$$

- \blacktriangleright ξ is connected to the finite range of interactions
- $ightharpoonup v_{max}$: maximal group velocity
- ▶ independent of the state of the system

Correlations are exponentially suppressed outside the light cone.

Causality at equilibrium:

Lieb-Robinson bound [Lieb, Robinson '72]

In local Hamiltonians with a finite local Hilbert space:

$$||[\mathcal{O}_A(0,x_1),\mathcal{O}_B(t,x_2)]|| \le \mathcal{C}_{AB} e^{(v_{max}|t|-|x_1-x_2|)/\xi}$$

- ightharpoonup is connected to the finite range of interactions
- $ightharpoonup v_{max}$: maximal group velocity
- ▶ independent of the state of the system

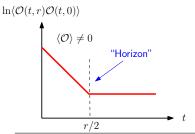
Correlations are exponentially suppressed outside the light cone.

Causality out of equilibrium:

In a global quench, at equal time, it implies that

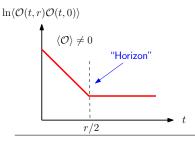
$$\langle \psi(t)|\mathcal{O}_A(x_1)\mathcal{O}_B(x_2)|\psi(t)\rangle \leq \mathcal{C}_{AB}e^{(2v_{max}|t|-|x_1-x_2|)/\xi}$$

[Hastings et al '06]



Equal time two point function for fixed separation \boldsymbol{r}

- lacktriangle exponential decay in time for $t \lesssim r/2$
- \blacktriangleright saturation to t-independent values for $t\gtrsim r/2$



Equal time two point function for fixed separation ${\bf r}$

- ightharpoonup exponential decay in time for $t \lesssim r/2$
- \blacktriangleright saturation to t-independent values for $t\gtrsim r/2$

Physical Interpretation

[Calabrese, Cardy '07]

 $E_{\psi_0}\gg E_{\mathrm{GS}}$, $|\psi_0
angle$ acts as a source of excitations

- lacktriangled quasi-particle emitted on scales $E_{\psi_0}^{-1}$ are entangled
- ▶ they move classically with light-cone trajectories and spread
- for $t \lesssim r/2$ causally disconnected regions
- ▶ after a transient $t \gtrsim r/2$ observables freeze-out

$$\ln \langle \mathcal{O}(t,r)\mathcal{O}(t,0)\rangle$$

$$\langle \mathcal{O}\rangle \neq 0$$
"Horizon"
$$r/2$$

Equal time two point function for fixed separation \boldsymbol{r}

- ▶ exponential decay in time for $t \lesssim r/2$
- \blacktriangleright saturation to t-independent values for $t \gtrsim r/2$

Physical Interpretation

[Calabrese, Cardy '07]

 $E_{\psi_0}\gg E_{\mathrm{GS}}$, $|\psi_0
angle$ acts as a source of excitations

- lacktriangled quasi-particle emitted on scales $E_{\psi_0}^{-1}$ are entangled
- ▶ they move classically with light-cone trajectories and spread
- for $t \lesssim r/2$ causally disconnected regions
- lacktriangleright after a transient $t \gtrsim r/2$ observables freeze-out

Horizon effect predicts freeze-out of n (>2)-point functions

A pure quantum state of a bipartite system is not necessarily a pure state of each subsystem separately.

A pure quantum state of a bipartite system is not necessarily a pure state of each subsystem separately.

$$S_{A} = -\text{Tr}[\rho_{A} \ln \rho_{A}]$$
 B A B

Entanglement entropy is a measure of how much a configuration of the subsystem A depends on one of B.

- product state: $|\psi\rangle = |\phi\rangle_A \otimes |\phi\rangle_B$: $S_A = 0$
- $\begin{tabular}{l} \hline & {\sf maximally entangled state:} & |\psi\rangle = \frac{1}{\sqrt{D}} \sum_l |\phi_l\rangle_A \otimes |\phi_l\rangle_B, \\ & S = \log(D), \ D: \ {\sf dimension of Hilbert space for substyems A and B} \\ \hline \end{tabular}$

In an entangled state the state of A is not a vector but a density matrix.

A pure quantum state of a bipartite system is not necessarily a pure state of each subsystem separately.

Entanglement entropy is a measure of how much a configuration of the subsystem A depends on one of B.

- product state: $|\psi\rangle = |\phi\rangle_A \otimes |\phi\rangle_B$: $S_A = 0$
- ▶ maximally entangled state: $|\psi\rangle = \frac{1}{\sqrt{D}} \sum_l |\phi_l\rangle_A \otimes |\phi_l\rangle_B$, $S = \log(D)$, D: dimension of Hilbert space for substyems A and B In an entangled state the state of A is not a vector but a density matrix.

Example: take a qubit in a singlet state

$$|\psi\rangle = \frac{1}{\sqrt{2}}(|\uparrow\rangle_A \otimes |\downarrow\rangle_B - |\downarrow\rangle_A \otimes |\uparrow\rangle_B), \qquad \rho_A = \begin{pmatrix} \frac{1}{2} & 0\\ 0 & \frac{1}{2} \end{pmatrix}$$

Entanglement in a quantum coherent system is responsible for appearance of entropy, hence for thermalization process!

III. What we did

Objective

Study the time evolution of local observables after a quench $[1\ \&\ 2\text{-point functions},\ \text{entanglement entropy}\ ...]$

Objective

Study the time evolution of local observables after a quench $[1\ \&\ 2\text{-point functions},\ \text{entanglement entropy}\ ...]$

Starting from an initial excited state

Objective

Study the time evolution of local observables after a quench $[1\ \&\ 2\text{-point functions},\ \text{entanglement entropy}\ ...]$

Starting from an initial excited state

In the Transverse field Ising chain [solvable but non-trivial as free theories]

Objective

Study the time evolution of local observables after a quench $[1\ \&\ 2\text{-point functions},\ \text{entanglement entropy}\ ...]$

Starting from an initial excited state Let's discuss first this point

In the Transverse field Ising chain [solvable but non-trivial as free theories]

Why should we focus on excited states?

► Radically different behaviour of entanglement entropy for excited states:

ground states:

▶ massive non degenerate GS:

$$S_{GS} \simeq \partial l$$
 [Bombelli '88; Srendicki '93]

 ▶ critical conformal theories:
 $S_{GS} \simeq \frac{c}{3} \log(l) + c_1'$
 [Calabrese Cardy]

highly-excited states (# excitations \simeq N)

$$S_{
m exc} \simeq l + \mathcal{O}(\log l)$$
 [Alba, Fagotti, Calabrese, '09; Sierra, ...]

insensitive to the criticality of the ground states

- ► Look for universal behaviour
- Room for new effects

Quenched Transverse field Ising chain

$$H(h) = -\frac{1}{2} \sum_{j=1}^{N} \left[\sigma_j^x \sigma_{j+1}^x + h \sigma_j^z \right] + \text{PBC} \xrightarrow{\left\langle 0 \middle| \sigma_j^x \middle| 0 \right\rangle} \begin{array}{c} \left\langle 0 \middle| \sigma_j^x \middle| 0 \right\rangle \neq 0 & \left\langle 0 \middle| \sigma_j^x \middle| 0 \right\rangle = 0 \\ h_e = 1 & h_e = 1 &$$

 $|0\rangle$: ground state of H(h)

Quenched Transverse field Ising chain

$$H(h) = -\frac{1}{2} \sum_{j=1}^{N} \left[\sigma_j^x \sigma_{j+1}^x + h \sigma_j^z \right] + \text{PBC} \xrightarrow{\left\langle 0 \middle| \sigma_j^x \middle| 0 \right\rangle \neq 0} \frac{\left\langle 0 \middle| \sigma_j^x \middle| 0 \right\rangle = 0}{h_c = 1} h$$

 $|0\rangle$: ground state of H(h)

From interacting spins σ_i to free spinless fermions b_k

$$H(h) = \sum_{k} \epsilon_h(k) \left(b_k^{\dagger} b_k - \frac{1}{2} \right) \qquad \epsilon_h^2(k) = 1 + h^2 - 2h \cos \frac{2\pi k}{N}$$

Quenched Transverse field Ising chain

$$H(h) = -\frac{1}{2} \sum_{j=1}^{N} \left[\sigma_j^x \sigma_{j+1}^x + h \sigma_j^z \right] + \text{PBC} \xrightarrow{\left\langle 0 \middle| \sigma_j^x \middle| 0 \right\rangle} \xrightarrow{\left\langle 0 \middle| \sigma_j^x \middle| 0 \right\rangle} h$$

 $|0\rangle$: ground state of H(h)

From interacting spins σ_i to free spinless fermions b_k

$$H(h) = \sum_{k} \epsilon_h(k) \left(b_k^{\dagger} b_k - \frac{1}{2} \right) \qquad \epsilon_h^2(k) = 1 + h^2 - 2h \cos \frac{2\pi k}{N}$$

Interaction quench h o h'

Initial state:
$$|\psi_0\rangle = |m_k\rangle \equiv \prod_k (b_k^{\dagger})^{m_k} |0\rangle$$

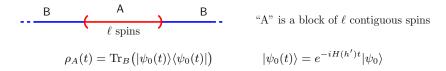
- lacktriangle excited state of pre-quenched hamiltonian H(h)
- ► Z_2 -invariant: $\langle \psi_0 | \sigma_i^x | \psi_0 \rangle = 0$
- lacktriangledown m_k : fermionic initial occupation number of k-mode

IV. Our results

Local relaxation in the TFIC from excited states

B A B "A" is a block of
$$\ell$$
 contiguous spins
$$\rho_A(t) = \operatorname{Tr}_B(|\psi_0(t)\rangle\langle\psi_0(t)|) \qquad |\psi_0(t)\rangle = e^{-iH(h')t}|\psi_0\rangle$$

Local relaxation in the TFIC from excited states



Result: GGE works even for excited states!

$$\rho_{\mathrm{GGE},A} = \rho_A(\infty)$$

Idea:

Free systems \rightarrow Wick's thm \rightarrow just need to prove it for propagators!

- ► exactly solvable dynamics
- ensemble averages $ho_{\text{GGE,A}} = \frac{e^{-\sum_k \lambda_k n_k}}{Z}$

 n_k : post-quench conserved fermionic occupation number operators

Local conserved charges from excited states

$$\langle I_n^+ \rangle = \int_{-\pi}^{+\pi} \frac{dk}{4\pi} \cos(nk) \epsilon_k \left[1 + m_k^S \cos \Delta_k \right] \qquad m_k^S \equiv m_{-k} + m_k - 1$$

$$\langle I_n^- \rangle = -\int_{-\pi}^{+\pi} \frac{dk}{4\pi} \sin[(n+1)k] m_k^A \qquad m_k^A \equiv m_{-k} - m_k$$

Two classes of IS

- ▶ $m_k^A = 0$: Only $\langle I_n^+ \rangle \neq 0$ (GS belongs to this class!)
- ▶ $m_k^A \neq 0$: Both $\langle I_n^+ \rangle$ and $\langle I_n^- \rangle \neq 0$

Result: Doubling of non zero VEVs local conserved charges wrt ground state

Local conserved charges from excited states

$$\langle I_n^+ \rangle = \int_{-\pi}^{+\pi} \frac{dk}{4\pi} \cos(nk) \epsilon_k \left[1 + m_k^S \cos \Delta_k \right] \qquad m_k^S \equiv m_{-k} + m_k - 1$$

$$\langle I_n^- \rangle = -\int_{-\pi}^{+\pi} \frac{dk}{4\pi} \sin[(n+1)k] m_k^A \qquad m_k^A \equiv m_{-k} - m_k$$

Two classes of IS

- ▶ $m_k^A = 0$: Only $\langle I_n^+ \rangle \neq 0$ (GS belongs to this class!)
- ▶ $m_k^A \neq 0$: Both $\langle I_n^+ \rangle$ and $\langle I_n^- \rangle \neq 0$

Result: Doubling of non zero VEVs local conserved charges wrt ground state

Does the increased number of conserved charges in m_k^A alter the asymptotic time dependence of correlations?

Transverse magnetization

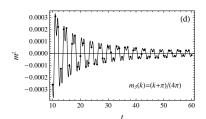
$$m^{z}(t) = \underbrace{\int_{-\pi}^{\pi} \frac{dk}{4\pi} e^{i\theta_{k}} \mathbf{m}_{k}^{S} \cos \Delta_{k}}_{\text{stationary part}} - i \underbrace{\int_{-\pi}^{\pi} \frac{dk}{4\pi} e^{i\theta_{k}} \mathbf{m}_{k}^{S} \sin \Delta_{k} \cos(2\epsilon_{k}t)}_{\text{time-dependent}}$$

Asymptotic behaviour: stationary phase approximation

$$m(k)$$
 analytic

$$m^{z}(t) \simeq t^{-\frac{3}{2}} + \mathcal{O}(t^{-\frac{2n+1}{2}})$$

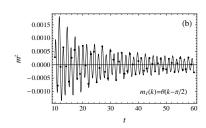
AS GROUND STATE



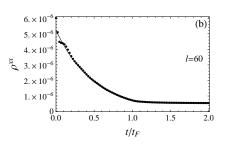
m(k) non-analytic

$$m^{z}(t) \simeq t^{-1} + \mathcal{O}(t^{-\frac{2n+1}{2}})$$

NOVELTY!

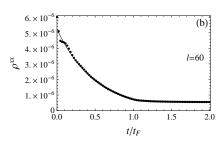


$$\rho^{xx}(\underline{\ell},t) \equiv \langle \Psi_0(t) | \sigma_n^x \sigma_{\underline{\ell}+n}^x | \Psi_0(t) \rangle$$



$$m(k) = \frac{k^2}{(2\pi)^2}$$
 $\ell = 60$
 $h = 1/3, \quad h' = 2/3$
 $t_F = \ell/(2v_{\text{max}})$
 $v_{\text{max}} = \min[h, 1]$

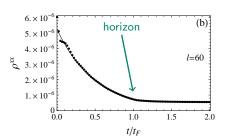
$$\rho^{xx}(\underline{\ell},t) \equiv \langle \Psi_0(t) | \sigma_n^x \sigma_{\underline{\ell}+n}^x | \Psi_0(t) \rangle$$



$$m(k) = \frac{k^2}{(2\pi)^2}$$
 $\ell = 60$
 $h = 1/3, \quad h' = 2/3$
 $t_F = \ell/(2v_{\text{max}})$
 $v_{\text{max}} = \min[h, 1]$

Results

$$\rho^{xx}(\underline{\ell},t) \equiv \langle \Psi_0(t) | \sigma_n^x \sigma_{\underline{\ell}+n}^x | \Psi_0(t) \rangle$$



$$m(k) = \frac{k^2}{(2\pi)^2}$$

$$\ell = 60$$

$$h = 1/3, \quad h' = 2/3$$

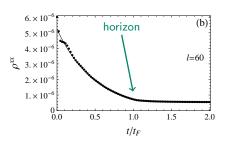
$$t_F = \ell/(2v_{\text{max}})$$

$$v_{\text{max}} = \min[h, 1]$$

Results

► Emergent light-cone spreading of correlations (as for GS)

$$\rho^{xx}(\underline{\ell},t) \equiv \langle \Psi_0(t) | \sigma_n^x \sigma_{\underline{\ell}+n}^x | \Psi_0(t) \rangle$$



$$m(k) = \frac{k^2}{(2\pi)^2}$$
 $\ell = 60$
 $h = 1/3, \quad h' = 2/3$
 $t_F = \ell/(2v_{\text{max}})$
 $v_{\text{max}} = \min[h, 1]$

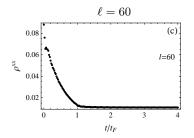
Results

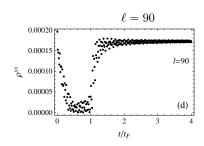
- ► Emergent light-cone spreading of correlations (as for GS)
- ▶ Common behaviour $\forall m_k$ analyzed (double-stepfunction, linear, quadratic)...

...EXCEPT ONE!

Different behaviour for different $\ell!$

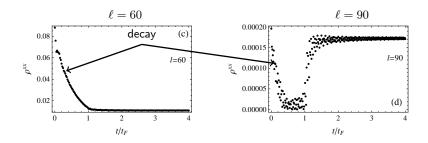
Different behaviour for different $\ell!$





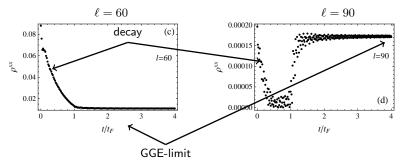
- ▶ Is it related to $\langle I_n^- \rangle \neq 0$?
- ▶ But other $m_k^A \neq 0$ display usual light-cone effect...

Different behaviour for different $\ell!$



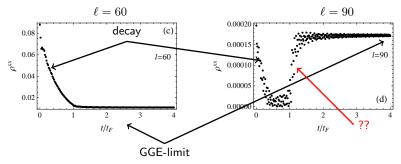
- ▶ Is it related to $\langle I_n^- \rangle \neq 0$?
- ▶ But other $m_k^A \neq 0$ display usual light-cone effect...

Different behaviour for different $\ell!$



- ▶ Is it related to $\langle I_n^- \rangle \neq 0$?
- ▶ But other $m_k^A \neq 0$ display usual light-cone effect...

Different behaviour for different $\ell!$



Still open problems

- ▶ Is it related to $\langle I_n^- \rangle \neq 0$?
- ▶ But other $m_k^A \neq 0$ display usual light-cone effect...

Analytical full time evolution of $\rho^{xx}(\ell,t)$

- lacktriangle Focus on quenches within the ferromagnetic phase $h,h_0<1$
- ► Method: multi-dimensional stationary phase [Fagotti, Essler, Calabrese '08]
- ightharpoonup Extension only to $m_k^A=0$

Analytical full time evolution of $\rho^{xx}(\ell,t)$

- lacktriangle Focus on quenches within the ferromagnetic phase $h,h_0<1$
- ► Method: multi-dimensional stationary phase [Fagotti, Essler, Calabrese '08]
- ▶ Extension only to $m_k^A = 0$

$$\rho_{m_k}^{xx}(\ell,t) \simeq C_{m_k} \exp\left[\ell \int_{-\pi}^{\pi} \frac{dk}{2\pi} \left(1 - 2|\epsilon_k'| \frac{t}{\ell}\right) \ln(|m_k^S|) \theta(\ell - 2|\epsilon_k'|t)\right] \times \exp\left[2t \int_{-\pi}^{\pi} \frac{dk}{2\pi} |\epsilon_k'| \ln[|\cos \Delta_k m_k^S|] \theta(\ell - 2|\epsilon_k'|t)\right]$$

$$\times \exp \left[\ell \int_{-\pi}^{\pi} \frac{dk}{2\pi} \ln[|\cos \Delta_k m_k^S|] \theta(2|\epsilon_k'|t-\ell) \right]$$

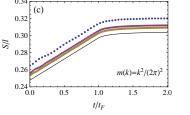
typical of excited states

Universal properties:

- $t \ll t_F$, evolution in t does not depend on m_k^S (first two lines)
- $t \gg t_F$, constant in time (third line)
- \blacktriangleright At fixed time, exponential decreasing with ℓ

$$S_{\mathsf{A}} = -\mathrm{Tr}[\rho_{\mathsf{A}} \ln \rho_{\mathsf{A}}]$$
 - B A B $\ell \text{ spins}$

$$S_{\mathsf{A}} = -\mathrm{Tr}[\rho_{\mathsf{A}} \ln \rho_{\mathsf{A}}]$$
 - B A B - $\ell \text{ spins}$



- ► Light-cone behaviour
- ▶ Dependence on m_k^S
- $ightharpoonup S_\ell/\ell
 eq 0$ at t=0 due to excitations

V. Conclusions and Outlook

Validity of GGE

Horizon effect for S_ℓ and ρ_ℓ^{xx}

Validity of GGE

Horizon effect for S_ℓ and ρ_ℓ^{xx}

Validity of GGE

Horizon effect for S_ℓ and ρ_ℓ^{xx}

Still open problems

Non-trivial dependence for m_k^A ?

Validity of GGE

Horizon effect for S_ℓ and ρ_ℓ^{xx}

Still open problems

Non-trivial dependence for m_k^A ?

Excitations in truly interacting models?

Validity of GGE

Horizon effect for S_ℓ and ρ_ℓ^{xx}

Still open problems

Non-trivial dependence for m_k^A ?

Excitations in truly interacting models?

Thank you for your attention