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Free Electron Picture of Graphene 
Honeycomb lattice: 

1st BZ: 

sp2 hybridization ⇒ 1pz orbital per C atom left 
 

Tight-binding with nearest neighbor hopping only: 
(Wallace, 1946) 

K 

K’ 

Γ	



NATURE PHYSICS DOI: 10.1038/NPHYS2208 ARTICLES

 

En
er

gy

D
O

S

K’

K’

K

kx

∆3

∆3

∆2

∆2 ∆1

∆1

M3

M3

M2 M1

K

e2

e1

e3

Λ

 

∆e2i ∆ei

∆e4i ∆e5i

∆∆e3i

 ¬W  W Energy

Van Hove  singularity
n = 3/8, 5/8

a b cθ

θθ

θ

θ

Saddle point

Dirac point

M1 M2

Figure 1 | Chiral superconductivity arises when graphene is doped to the Van Hove singularity at the saddle point (M points of the Brillouin zone).
a, d+ id pairing exhibiting phase winding around the hexagonal Fermi surface, which breaks TRS and parity (⌃ = 2⇡/3). b, Conduction band for monolayer
graphene1. At 5/8 filling of the ⇡ band, the Fermi surface is hexagonal, and the DOS is logarithmically divergent (c) at three inequivalent saddle points of
the dispersion Mi (i= 1,2,3). Their locations are given by ±ei, where 2ei is a reciprocal lattice vector. The singular DOS strongly enhances the effect of
interactions, driving the system into a chiral superconducting state (a). As the Fermi surface is nested, superconductivity competes with density-wave
instabilities, and a full renormalization group treatment is required to establish the dominance of superconductivity. A hexagonal Fermi surface and log
divergent density of states also arise at 3/8 filling, giving rise to analagous physics.

Competing orders
In systemswith near-nested Fermi surface, superconductivity has to
compete with charge-density-wave (CDW) and spin-density-wave
(SDW) instabilities34. At the first glance, it may seem that a system
with repulsive interactions should develop a density-wave order
rather than become a superconductor. However, to analyse this
properly, one needs to know the susceptibilities to the various
orders at a relatively small energy, E0, at which the order actually
develops. The couplings at E0 generally differ from their bare values
because of renormalizations by fermions with energies between E0
andW . At weak coupling, these renormalizations are well captured
by the renormalization group technique.

Interacting fermionswith a nested Fermi surface and logarithmi-
cally divergent DOS have previously been studied on the square lat-
tice using renormalization group methods29–31,34, where SDW fluc-
tuations were argued to stimulate superconductivity. The analysis
also revealed near degeneracy between superconductivity and SDW
orders. The competition between these orders is decided by a subtle
interplay between deviations from perfect nesting, which favour
superconductivity, and subleading terms in the renormalization
group flow, which favour SDW. In contrast, the renormalization
group procedure on the honeycomb lattice unambiguously selects
superconductivity at leading order, allowing us to safely neglect sub-
leading terms. The difference arises because the honeycomb lattice
contains three saddle points, whereas the square lattice has only two,
and the extra saddle point tips the balance seen on the square lattice
between magnetism and superconductivity decisively in favour of
superconductivity. A similar tipping of a balance between supercon-
ductivity and SDWin favour of superconductivity has been found in
renormalization group studies of Fe-pnictide superconductors35,36.

In previous works on graphene at the M point, various instabil-
ities were analysed using the random-phase approximation (RPA)

and mean-field theory. Ref. 4 considered the instability to d-wave
superconductivity, ref. 5 considered a charge ‘Pomeranchuk’ in-
stability to a metallic phase breaking lattice rotation symmetry, and
refs 6–8 considered a SDW instability to an insulating phase.Within
the framework of mean-field theory, used in the above works, all
of these phases are legitimate potential instabilities of the system.
However, clearly graphene at theM point cannot be simultaneously
superconducting, metallic and insulating. The renormalization
group analysis treats all competing orders on an equal footing,
and predicts that the dominant weak coupling instability is to
superconductivity, for any choice of repulsive interactions, even for
perfect nesting. Further, the Ginzburg–Landau theory constructed
near the renormalization group fixed point favours the d+id state.

The model
We follow the procedure developed for the square lattice34 and
construct a patch renormalization group that considers only
fermions near three saddle points, which dominate the DOS. There
are four distinct interactions in the low-energy theory, involving
two-particle scattering between different patches, as shown in Fig. 2.

The system is described by the low-energy theory
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where summation is over patch labels�,⇥=M1,M2,M3.A spin sum
is implicit in the above expression, with the spin structure for each
of the four terms being ⇤ ,⌅,⌅,⇤ , where ⇤ and ⌅ label the spin up
and down states. Here ⇧k is the tight binding dispersion, expanded
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Logarithmically 
diverging DOS 

M 

Massless Dirac Fermions  
(c → vF ~ c/300)  



Superconductivity in Graphene? 

Intrinsic superconductivity in 
graphite-sulfur composites: 

[1] 

Tc [2] 

•  Tc ~ 10-60 K 
•   SC located to the graphite planes 
•  0.05% superconducting volume 
•  SC and FM co-exists 

[1]: da Silva et al., PRL 87, 147001 (2001), [2]: Scheike et al., Adv. Mater. 34, 5826 (2012) 
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Electronic Correlations in Graphene 

Nearest neighbor hopping t ~ 2.5 eV 
On-site repulsion U ~ 6 - 10 eV [1] 

Intermediate 
coupling regime 

Electronic correlations should be important in graphite and graphene: 

Pauling’s Resonance 
Valence Bond (RVB) idea 

pπ-bonded planar organic molecules: 
Nearest neighbor spin-singlet bonds (SB) 
encouraged compared to polar configurations  
 
 

Give good estimates for:  
Cohesive energy, C-C bond distance, singlet-
triplet exciton energy differences etc. 

SB  =  

[1]: T. Wehling et al,. PRL 106, 236805 (2011) 



Modeling Correlation Effects 

[1]: Baskaran, PRB 65, 212505 (2002) 

Tight-binding 
band structure 

Favoring singlet 
bonds (SB) 

Effective model with SB pairing: [1] 

a1

a2

a3



Mean-Field Approach 

[1]: Baskaran, PRB 65, 212505 (2002), ABS and Donaich, PRB 75, 134512 (2007)  
 

Tight-binding 
band structure 

Favoring singlet 
bonds (SB) 

Effective model with SB pairing: [1] 

a1

a2

a3

Mean-field order parameters in the 
Cooper pairing channel: 

Expectation value of 
SB pair creation 



Mean-Field Superconductivity 

ABS and Donaich, PRB 75, 134512 (2007)  

Interband pairing, negligible 
contribution at low temperatures 

Intraband pairing (regular BCS form) BCS-type self-consistency equation: 

3×3 eigenvalue problem for                             : 

A = RHS for a = b 
b  = RHS for a ≠ b 



Gap Symmetries 
s-wave: 
•    	



	



	


	



•  Δ ∈ A1g of  D6h 

 

Δα = (1,1,1) 

extended s-wave 

1 

1 
1 + 

d-waves: 
•    

 
 

•   	



	


•  Δ ∈ E2g of  D6h 

-  Below Tc: d(x2-y2)+id(xy)  

Δα  = (2,-1,-1) 

Δα = (0,1,-1) 

0 
1 

-1 

2 
-1 

-1 

1 
ei2π/3 

ei4π/3 

+ 

+ 

- - 

+ 

+     - 

- 

d(x2-y2)-wave 

d(xy)-wave 

Chiral, time-reversal 
symmetry breaking state ABS and Donaich, PRB 75, 134512 (2007)  



Mean-Field Results 

Zero doping: 
•  QCP at J/t = 1.91 
•  s- and d-wave solutions degenerate 

 

Finite doping: 
•   Tc(d) >> Tc(s) 

 

Transition temperature as a function of  doping 
(δ) for coupling parameters 

J/t = 0.8, 1.0, 1.2: 

Increasing 
J/t 

ABS and Donaich, PRB 75, 134512 (2007)  



Realization of d-wave Superconductivity 
Need δ ~ 0.01 for mean-field Tc(d-wave) ~ 10 K: 

•  Doping of a graphene sheet: 

–  3D graphite: δ ~ 10-4 
–  Extended defects in graphene might induce self-doping [1] 

–  Sulfur forms no chemical bonds but provides δ = 0.015 holes/C-atom [2] 

 
 

K 

K’ 

Γ	



•    Heavily doping of  graphene: 
-    Ad-atom deposition [3] 

-    Electrolyte gating [4]  
 

 

 can approach van Hove singularity (δ = 0.25, µ = t ) 

[1]: Peres et al., PRB 73, 125411 (2006), [2]: ABS and Doniach, PRB 75, 134512 (2007),  
[3]: McChesney et al., PRL 104, 136803 (2010),  [4]: Efetov et al., PRL 105, 256805 (2010)   
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Figure 1 | Chiral superconductivity arises when graphene is doped to the Van Hove singularity at the saddle point (M points of the Brillouin zone).
a, d+ id pairing exhibiting phase winding around the hexagonal Fermi surface, which breaks TRS and parity (⌃ = 2⇡/3). b, Conduction band for monolayer
graphene1. At 5/8 filling of the ⇡ band, the Fermi surface is hexagonal, and the DOS is logarithmically divergent (c) at three inequivalent saddle points of
the dispersion Mi (i= 1,2,3). Their locations are given by ±ei, where 2ei is a reciprocal lattice vector. The singular DOS strongly enhances the effect of
interactions, driving the system into a chiral superconducting state (a). As the Fermi surface is nested, superconductivity competes with density-wave
instabilities, and a full renormalization group treatment is required to establish the dominance of superconductivity. A hexagonal Fermi surface and log
divergent density of states also arise at 3/8 filling, giving rise to analagous physics.

Competing orders
In systemswith near-nested Fermi surface, superconductivity has to
compete with charge-density-wave (CDW) and spin-density-wave
(SDW) instabilities34. At the first glance, it may seem that a system
with repulsive interactions should develop a density-wave order
rather than become a superconductor. However, to analyse this
properly, one needs to know the susceptibilities to the various
orders at a relatively small energy, E0, at which the order actually
develops. The couplings at E0 generally differ from their bare values
because of renormalizations by fermions with energies between E0
andW . At weak coupling, these renormalizations are well captured
by the renormalization group technique.

Interacting fermionswith a nested Fermi surface and logarithmi-
cally divergent DOS have previously been studied on the square lat-
tice using renormalization group methods29–31,34, where SDW fluc-
tuations were argued to stimulate superconductivity. The analysis
also revealed near degeneracy between superconductivity and SDW
orders. The competition between these orders is decided by a subtle
interplay between deviations from perfect nesting, which favour
superconductivity, and subleading terms in the renormalization
group flow, which favour SDW. In contrast, the renormalization
group procedure on the honeycomb lattice unambiguously selects
superconductivity at leading order, allowing us to safely neglect sub-
leading terms. The difference arises because the honeycomb lattice
contains three saddle points, whereas the square lattice has only two,
and the extra saddle point tips the balance seen on the square lattice
between magnetism and superconductivity decisively in favour of
superconductivity. A similar tipping of a balance between supercon-
ductivity and SDWin favour of superconductivity has been found in
renormalization group studies of Fe-pnictide superconductors35,36.

In previous works on graphene at the M point, various instabil-
ities were analysed using the random-phase approximation (RPA)

and mean-field theory. Ref. 4 considered the instability to d-wave
superconductivity, ref. 5 considered a charge ‘Pomeranchuk’ in-
stability to a metallic phase breaking lattice rotation symmetry, and
refs 6–8 considered a SDW instability to an insulating phase.Within
the framework of mean-field theory, used in the above works, all
of these phases are legitimate potential instabilities of the system.
However, clearly graphene at theM point cannot be simultaneously
superconducting, metallic and insulating. The renormalization
group analysis treats all competing orders on an equal footing,
and predicts that the dominant weak coupling instability is to
superconductivity, for any choice of repulsive interactions, even for
perfect nesting. Further, the Ginzburg–Landau theory constructed
near the renormalization group fixed point favours the d+id state.

The model
We follow the procedure developed for the square lattice34 and
construct a patch renormalization group that considers only
fermions near three saddle points, which dominate the DOS. There
are four distinct interactions in the low-energy theory, involving
two-particle scattering between different patches, as shown in Fig. 2.

The system is described by the low-energy theory
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where summation is over patch labels�,⇥=M1,M2,M3.A spin sum
is implicit in the above expression, with the spin structure for each
of the four terms being ⇤ ,⌅,⌅,⇤ , where ⇤ and ⌅ label the spin up
and down states. Here ⇧k is the tight binding dispersion, expanded
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Chiral superconductivity from repulsive
interactions in doped graphene
Rahul Nandkishore1, L. S. Levitov1 and A. V. Chubukov2*
Chiral superconductivity, which breaks time-reversal symmetry, can exhibit a wealth of fascinating properties that are highly
sought after for nanoscience applications. We identify doped graphene monolayer as a system where chiral superconductivity
can be realized. In this material, a unique situation arises at a doping where the Fermi surface is nested and the density of
states is singular. In this regime, d-wave superconductivity can emerge from repulsive electron–electron interactions. Using
a renormalization group method, we argue that superconductivity dominates over all competing orders for generic weak
repulsive interactions. Superconductivity develops simultaneously in two degenerate d-wave pairing channels. We argue that
the resulting superconducting state is of chiral type, with the phase of the superconducting order parameter winding by 4⇡
around the Fermi surface. Realization of this state in doped graphene will prove that superconductivity can emerge from
electron–electron repulsion, and will open the door to applications of chiral superconductivity.

The simplicity of the electronic properties of graphene1 is
both a blessing and a curse. On one hand, it singles
out graphene as a material of choice for applications.

On the other hand, the difficulty of modifying the electronic
spectrum severely limits the available functionality2. However, the
effects of electron–electron interactions gain more prominence
when the electron concentration is adjusted so that the carrier
dispersion at the Fermi level becomes quadratic rather than
linear. This is the case in graphene bilayer at the Dirac point,
where a variety of new correlated states have been predicted3.
This is also the case in graphene monolayer doped to the
saddle point, where the density of states (DOS) has a Van Hove
singularity. Although a number of interesting states have been
considered in this system4–8, the competition between these states
is at present poorly understood. In this Article, we argue that
generic repulsive interactions favour a superconducting d + id
state with the d(x±iy)2 gap structure and broken time-reversal
symmetry (TRS). Our renormalization group analysis indicates that
superconductivity dominates over competing density-wave orders,
and also indicates that interactions select the chiral d+ id state over
TRS-preserving d-wave states.

Chiral superconductors are interesting because they feature
pairing gaps that wind in phase around the Fermi surface
in multiples of 2⇡, breaking the TRS and exhibiting many
other fascinating properties9–11. The non-trivial topology of the
d+ id state is analogous to that studied in other systems with
chiral pairing, such as the two-dimensional 3He (ref. 9) and
the fractional quantum Hall state at 5/2 filling12,13. Interest
in chiral superconductivity has intensified greatly in the past
few years with the advent of topological superconductivity14–16.
The non-trivial topological properties manifest themselves in
exceptionally rich phenomenology, in particular the Majorana
states in vortex defects17 and the gapless modes bound to the edge
by Andreev scattering that can carry quantized particle current and
spin current18. Similar phenomena have been predicted for the
hypothetical d+ id state in cuprate superconductors19–22 and other
chiral superconducting states23,24.

1Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA, 2Department of Physics, University of
Wisconsin-Madison, Madison, Wisconsin 53706, USA. *e-mail: chubukov@physics.wisc.edu.

The search for solid-state realization of chiral superconductivity
has a long history. Spin-triplet p-wave chiral superconductivity
(px ± ipy state) has probably been found in Sr2RuO4 (ref. 25), which
represents an analogue of superfluid 3He (ref. 9), but the spin-
singlet d+ id state has not yet been observed experimentally. Such
a state was once proposed as a candidate state for high-Tc cuprate
superconductors19, but later gave way to a more conventional
TRS-preserving d-wave state. The key difficulty in realizing a d+ id
state is that the interactions that favour a d-wave state usually
have strongmomentumdependence and hence distinguish between
dx2�y2 and dxy pairing. However, in graphene the dx2�y2 and dxy
pairing channels are degenerate by symmetry4,26, opening the door
to formation of a d+id superconducting state.

How can superconductivity be induced in graphene? Existing
proposals for superconductivity in undoped graphene rely on the
conventional phonon-mediated BCS mechanism27, which leads
to an s-wave superconductivity with low Tc values for realistic
carrier densities owing to the vanishing density of states of
relativistic particles. However, there is an alternative route to
superconductivity, wherein repulsive microscopic interactions give
rise to attraction in a d-wave channel28. This alternative route
becomes viable when graphene is doped to the M point of the
Brillouin zone corresponding to 3/8 or 5/8 filling of the ⇡
band (pristine graphene corresponds to 1/2 filling). At this filling
factor, a logarithmic Van Hove singularity originates from three
inequivalent saddle points, and the Fermi surface also exhibits a
high degree of nesting, forming a perfect hexagon when third-
neighbour (and higher) hopping effects are neglected1,4 (Fig. 1).
The combination of a singular DOS and a near-nested Fermi
surface strongly enhances the effect of interactions29–31, allowing
non-trivial phases to emerge at relatively high temperatures,
even if interactions are weak compared with the fermionic
bandwidth W . Relevant doping levels were recently achieved
experimentally using calcium and potassium dopants32. Also, a
new technique33 that employs ionic liquids as gate dielectrics
allows high levels of doping to be reached without introducing
chemical disorder.
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Perturbative 3-patch RG: 
-  Low energy theory around M saddle points 
-  Short range interactions g1, g2, g3, g4  

•  Marginal at tree level 

•  Logarithmic corrections in perturbation theory 
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Figure 3 | Flow of couplings with renormalization group scale y, starting
from repulsive interactions. Note that the coupling g4 changes sign and
becomes attractive, leading to a (superconducting) instability at the energy
scale yc (equation (3)). Inset: Critical couplings Gi (equation (4)) near yc as
a function of the nesting parameter at the ordering energy scale, d1(yc). The
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�
1+y. The

qualitative features of the flow are insensitive to the initial conditions and
to how we model d1. The critical couplings (inset) are universal and
independent of the initial conditions.

Here A is a non-universal number that depends on how we
model d1(y). For d1 = 1 (perfect nesting, corresponding to zero
third-neighbour hopping t3), we obtain A = 1.5. An RPA-type
estimate of g0 is outlined in the Supplementary Information.
Although Tc and E0 are exponentially sensitive to g0, thus
introducing a considerable uncertainty to our estimate, a strong
enhancement of characteristic energy scales relative to the BCS
result is evident from equation (3).

A similar �
g0 dependence arises in the treatment of colour

superconductivity38 and in the analysis of the pairing near
quantum-critical points in 3D (ref. 39). It results in a Tc that
is strongly enhanced compared with the standard BCS result,
Tc ⌅ exp(�A /g0⇤0). It should be noted that the enhancement
of Tc in equation (3) arises from weak-coupling physics. It is
distinct from the high-Tc superconductivity that could arise if the
microscopic interactions were strong26,40–42.

Returning to our renormalization group analysis, we note that
near the instability threshold, g1,g2,g3 ⌃ ⌦ and g4 ⌃ �⌦, with
�g4 >g3 >g2 >g1. This observationmay bemade precise by noting
that close to yc, the interactions scale as

gi(y)⇧ Gi

yc �y
(4)

Substituting into equation (2), we obtain a set of polynomial
equations, which may be solved for the coefficients Gi as a
function of d1(yc). The solution is plotted in the inset of
Fig. 3. Note that �G4 > G3 > G2 > G1 for all values of d1(yc)
satisfying 0 ⇤ d1(yc) ⇤ 1. We have verified that any choice of
repulsive bare couplings leads to the same limiting trajectory (see
Supplementary Information).
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Susceptibilities
We now investigate the instabilities of the system by evaluating
the susceptibilities ⌅ for various types of order. To analyse the
superconducting instability, we introduce infinitesimal test vertices
corresponding to particle–particle pairing into the action, L = L0+
⇥L, where L0 is given by equation (1) and
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one test vertex for each patch. The renormalization of the test
vertices is governed by the equation31
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which can be diagonalized by transforming to the eigenvector basis
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Here �̃ c is an s-wave order, whereas �̃ a and �̃ b correspond to
order parameters that vary around the Fermi surface as �̃ cos(2⌃)
and �̃ sin(2⌃), where ⌃ is the angle to the x axis (Fig. 4). Such a
dependence describes d-wave superconducting orders (SCd), as the
gap changes sign four times along the Fermi surface. In 2Dnotation,
the two order parameters �̃ a and �̃ b correspond to dxy and dx2�y2

superconducting orders respectively.
Notably, we find that the s-wave vertex �̃ c, equation (7), has

a negative eigenvalue and is suppressed under renormalization
group flow (equation (5)). This is to be expected, given that we
started out with repulsive microscopic interactions. At the same
time, the d-wave orders �̃ a and �̃ b have the (identical) eigenvalue
g3�g4, whichmay be negative at the bare level but becomes positive
under the renormalization group, indicating an instability in the
d-wave channel. We solve equation (5) for the d-wave orders, by
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d-wave superconductivity = g3-g4 
dominates over CDW, SDW 

SC instability 



Functional Renormalization Group 
Intermediate coupling regime è functional RG 
-  Integrating out high-energy modes in the 4-point vertex function on the full Fermi surface 

[1]: Wang et al., PRB 85, 035414 (2012), [2]: Kiesel et al., PRB 86, 020507 (2012)  
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FIG. 1. (Color online). Schematic phase diagram displaying
the critical instability scale �c � Tc as a function of dop-
ing. At the van Hove singularity (VHS, light shaded (orange)
area), d + id competes with spin density wave (SDW) (left
flow picture: dominant d + id instability for U0 = 10eV and
the band structure in [5]). Away from the VHS (dark shaded
(blue) area), �c drops and whether the d+id or f -wave SC in-
stability is preferred depends on the long-rangedness of inter-
action (right flow picture: U1/U0 = 0.45 and U2/U0 = 0.15).

investigate in detail how di�erent band structure param-
eters a�ect the phase diagram. We find that rather small
variations of the longer range hopping parameters such as
next nearest (t2) and next-next-nearest (t3) hopping can
shift the position of perfect Fermi surface nesting against
the VHS [Fig. 2], which significantly influences the com-
petition between magnetism and SC. Moreover, in par-
ticular away from the exact VHS, the reduced screening
of the Coulomb interaction does not justify the assump-
tion of a local Hubbard model description. For this case,
we find that only a small fraction of longer-ranged Hub-
bard interaction [21] can significantly change the phase
diagram, as CDW fluctuations become more competitive
to SDW fluctuations, and a triplet SC phase can appear.
In particular, we study how the Cooper pairing in the
di�erent SC phases responds to di�erently long-ranged
Hubbard interactions. Our results suggest that in ex-
periment, modifications of the band structure as well as
changing the dielectric environment of the graphene sam-
ple would enable the realization of di�erent many-body
states and possible phase transitions between them.

Model. We consider the ⇥ band structure of graphene
approximated by a tight binding model including up to
3rd nearest neighbors on the hexagonal lattice:

H0 =
⇤
t1

⇥

⇤i,j⌅

⇥

�

c†i,�cj,� + t2
⇥

⇤⇤i,j⌅⌅

⇥

�

c†i,�cj,�

+t3
⇥

⇤⇤⇤i,j⌅⌅⌅

⇥

�

c†i,�cj,� + h.c.
⌅
� µn, (1)

where n =
�

i,� ni,� =
�

i,� c
†
i,�ci,�, and c†i,� denotes the

electron annihilation operator of spin ⇤ =⇥, ⇤ at site i.

FIG. 2. (Color online). (a) Band structure of graphene once
for t1 = 2.8eV (red) and t1 = 2.8, t2 = 0.7, t3 = 0.02eV
(black). (b) Brillouin zone displaying the Fermi surface near
the van Hove point (dashed blue level in (a), 96 patches used
in the FRG and the nesting vector, and the partial nesting
vectors. (c) Density of states for both band structures in (a).
The inset show the position shift of Fermi surface nesting
(dashed vertical lines) versus the VHS peak.

The resulting band structure is a two band model due
to two atoms per unit cell [Fig. 2]. There are certain
uncertainties about the most appropriate tight binding fit
for graphene, in particular as it concerns the longer range
hybridization integrals [1, 22]. For dominant t1, the band
structure features a van Hove singularity (VHS) at x =
3/8, 5/8. Constraining ourselves to the electron-doped
case, the x = 5/8 electron-like Fermi surface is shown
in Fig. 2b. As depicted, this is the regime of largely
enhanced density of states which we investigate in the
following. For t2 = t3 = 0 [red curve in Fig. 2], the VHS
coincides with the partial nesting of di�erent sections of
the Fermi surface for Q = (0, 2⇥/

⌅
3), (⇥,⇥/

⌅
3), and

(⇥,�⇥/
⌅
3). For a realistic band structure estimate with

finite t2 and t3 [5] [black curve in Fig. 2], this gives a
relevant shift of the perfect nesting position versus the
VHS as well as density of states at the VHS, and a�ects
the many-body phase found there.
We assume Coulomb interactions represented by a long

range Hubbard Hamiltonian [21]

Hint = U0

⇥

i

ni,�ni,⇥ +
1

2
U1

⇥

⇤i,j⌅,�,�0

ni,�nj,�0

+
1

2
U2

⇥

⇤⇤i,j⌅⌅,�,�0

ni,�nj,�0 , (2)

where U0...2 parametrizes the Coulomb repulsion scale
from onsite to the second nearest neighbor interaction.
It depends on the density of states how strongly the
Coulomb interaction is screened. At the VHS, we as-
sume perfect screening and consider U0 only, while away
from the VHS, we investigate the phenomenology of tak-
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FIG. 3: Variational Monte Carlo results for δ = 1/4. (a) The
energy gain per site due to d+id′ SC order on 12×12 (circles)
and 18 × 18 (triangles) lattices, showing negligible finite-size
effect.(b) The energy gain per site due to d+ id′ SC (circles)
and chiral SDW (triangles) order parameters on an 18 × 18
lattice.

channel can cause attraction in the SC channel via the
crossing channel (terms with the projection operator).
At even lower energy scales the pairing channel attrac-
tion (with q = 0) continues to grow due to the Cooper
instability, while the enhancement of the SDW scatter-
ing is absent due to the lack of Fermi surface nesting.
As the result the pairing instability surpasses the SDW
instability at the lowest energy scale. This is shown
by the flow of the singular values in Fig. 4(b). It is
worth to mention that precisely the same phenomenon
was observed in the FRG studies of the pnictides and
the cuprates[12]. A close inspection of the eigenvectors
associated with the most diverging superconducting pair-
ing form factors again find the degenerate dx2−y2 and
dxy doublets. The gap function of one of the pairing
modes is shown in Fig. 4(a). Fig. 4(c) shows the renor-
malized Vsc(q)

AσBτ,BτAσ
d,d , which is sharply peaked (neg-

atively) at q = 0. Fig. 4(d) shows the renormalized
Vsdw(q)AσAτ,AτAσ

s,s , which peaks negatively at six inde-
pendent incommensurate momenta.
As any renormalization group approaches the FRG can

only addresses linear instabilities. In the presence of
degenerate instabilities, such as dx2−y2 and dxy, terms
beyond quadratic in the Ginzburg-Landau theory is re-
quires to predict which linear combination is most favor-
able. However since both dx2−y2 and dxy form factors
have nodes on the Fermi surface, a natural way to gain
energy is to form a time-reversal breaking dx2−y2 ± idxy-
wave pairing, which gaps out the entire Fermi surface and
thus gain further energy. Therefore we believe that such
a pairing should occur in graphenes near 1/4 doping.
We have systematically checked nearby doping levels

and analyze the competition between the incommensu-
rate SDW and the SC state. In Fig. 5(a) we plot the
higher diverging scale among these two competing orders
as a function of doping. In reality when the doping level
slightly drops below 1/4, the extra holes can be localized

FIG. 4: (Color online) The same plots as in Fig. 1 but for
δ = 0.194. Note the splitting of the SDW peaks in panel (d)
signifies the incommensurate SDW instability.
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FIG. 5: (Color online) (a) The FRG diverging energy scale Λc

plotted as a function of doping level near δ = 1/4. Red and
blue symbols represent Λc associated with the SDW and SC
channel, respectively. (b) A schematic temperature-doping
phase diagram near δ = 1/4 in linear scales. The grey region
denotes the transition between SC and SDW.

by the presence of disorder. Hence the system can stay
in the Chern insulator state for a finite doping interval.
When the doped hole delocalize, an incommensurate spin
density wave can emerge. The precise fashion by which
the chiral SDW at 1/4 doping is connected to the SC
phase is unclear to us at present time. Fig. 5(b) is a pos-
sible schematic phase diagram in the temperature-doping
space.

Interestingly we do not find SC above 1/4 doping. On
the other hand, we found that a similar phase diagram
exists near -1/4 (hole) doping (not shown), mirroring the
case of electron doping. (The particle-hole symmetry is
not exact in the presence of hopping integrals t2,3).

In Summary we have performed functional renormal-
ization group and variational Monte-Carlo calculations.
According to our results, graphene near 1/4 electron or
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We study the electronic instabilities of near 1/4 electron doped graphene using the singular-mode functional
renormalization group, with a self-adaptive k mesh to improve the treatment of the van Hove singularities, and
variational Monte Carlo method. At 1/4 doping the system is a chiral spin-density wave state exhibiting the
anomalous quantized Hall effect. When the doping deviates from 1/4, the dx2−y2 + idxy Cooper pairing becomes
the leading instability. Our results suggest that near 1/4 electron or hole doping (away from the neutral point)
the graphene is either a Chern insulator or a topoligical superconductor.
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I. INTRODUCTION

Graphene, a single atomic layer of graphite, has been a
focus of interest since the pioneering work of Novoselov and
Geim.1 At the fundamental level the past research activities
on graphene mostly focused on exploring the consequences
of the unique Dirac-like band structure.2 On the experi-
mental side, few exceptions include the observation of the
fractional quantum Hall effect,3,4 the detection of the Fermi
velocity renormalization,5 and the possible observation of
“plasmaron” in angle-resovled photosemission.6 In general
the effects of electron-electron interaction on the properties
of graphene remain a frontier of this field. Previously based
on the resonating-valence-bond7 concept Pathak et al.8 and
Black-Schaffer and Doniach9 proposed that doped graphene
should be a high-temperature superconductor with d + id ′

pairing symmetry. (Henceforth d and d ′ are used to denote
interchangeably dx2−y2 and dxy symmetries, respectively.) In
particular, the possibility of unusual superconductivity and
other orders in doped graphene with van Hove singularities
at (or near) the Fermi level becomes a hot issue.10,11 Most
recently by a perturbative renormalization group calculation
Nandkishore et al. concluded that the van Hove singularities
on the Fermi surface drive chiral d + id ′ superconductivity in
the limit of vanishing interaction strength.12

On a different front, Li recently proposed that due to the
existence of Fermi-surface nesting the 1/4 electron doped
Hubbard model on honeycomb lattice favors the formation of
a magnetic insulating state, which possesses nonzero spin chi-
rality and exhibits the anomalous quantized Hall effect, hence
is a Chern insulator.13 Thus near quarter doping graphene
suddenly becomes a playing ground where either a Chern
insulator or a topological superconductor can potentially be
realized. Because the realization of either phase in heavily
doped graphene will be truly exciting, we feel it is meaningful
to examine this problem using the more realistic band structure
and interaction parameters.

In view of the heavy doping we use the Hubbard interaction
to model the screened Coulomb interaction. We perform
singular-mode functional renormalization group (SM-FRG)14

and variational Monte Carlo (VMC) calculations to address the
possible electronic instabilities. Since the interaction strength
is estimated to be a fraction of the bandwidth, we believe
SM-FRG should yield the qualitatively correct answer. The
VMC is used to further confirm such a belief. The main results
are summarized as follows. At 1/4 electron doping and for
interaction strength appropriate for graphene we found that
the chiral spin density wave (SDW) state is the dominating
instability. When the doping level slightly deviates from 1/4
we find that the d + id ′ pairing instability surpasses that of
the chiral SDW. We propose a schematic phase diagram in
Fig. 6(b). As in pnictides and overdoped cuprates,15 the pairing
mechanism is due to a strong scattering channel shared by the
SDW and pairing.

II. MODEL

The real-space Hamiltonian we used is given by

H = −
∑

(ij )σ

(c†iσ tij cjσ + H.c.) − µNe + U
∑

i

ni↑ni↓

+ 1
2
V

∑

iδ

nini+δ, (1)

where (ij ) denotes bonds connecting sites i and j , σ is the spin
polarity, µ is the chemical potential, Ne is the total electron
number operator, the U term is the on-site Hubbard interaction,
and V is the Coulomb interaction on nearest-neighbor bonds
δ. The honeycomb lattice has two sublattices, which we denote
as A and B henceforth. As suggested in Ref. 2 we take t1 =
2.8 eV, t2 = 0.1 eV, and t3 = 0.07 eV for hoppings between
the first, second, and third neighbors, respectively, and set
U = 3.6t1. As for V , we expect V < U in doped graphene, and
take V = t1 as a typical upper bound. Theoretically, enriched
phases may appear for even larger values of V/U .11,16

III. METHOD

The SM-FRG method14 we used is a modification of
the FRG method17 applied to the cuprates18 and pnictides.19
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the legends. Lines are guides to the eye.

the pairing channel attraction (with q = 0) continues to grow
due to the Cooper instability, while the enhancement of the
SDW scattering is saturated due to the lack of Fermi-surface
nesting. As a result the pairing instability surpasses the SDW
instability at the lowest energy scale. This is shown by the
flow of the singular values in Fig. 5(b). It is worthwhile to
mention that precisely the same phenomenon was observed
in the FRG studies of the cuprates and pnictides.15,18 A close
inspection of the eigenvectors φsc(m) associated with the most
diverging superconducting pairing channel again finds the
degenerate dx2−y2 and dxy doublets, with dominant amplitudes
for m = (d1,1′ ,A/B). The momentum space gap function of

FIG. 5. (Color online) The same plots as in Fig. 2 but for δ =
0.211. Note the splitting of the SDW peaks in panel (c) signifies the
incommensurate SDW instability.
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FIG. 6. (Color online) (a) The FRG diverging energy scale $c

plotted as a function of doping level near δ = 1/4. Crosses and
open circles represent $c associated with the SC and SDW channel,
respectively. V = 0,t1 for solid and dashed lines, respectively. (b) A
schematic temperature-doping phase diagram near δ = 1/4 in linear
scales. The gray region denotes the transition between SC and SDW.

one of the pairing modes is shown in Fig. 5(a). Figure 5(c)
shows the renormalized V mm

sdw(q) for m = (s0,A), which shows
weak peaks at six independent and incommensurate momenta.
Figure 5(d) shows the renormalized V mm

sc (q) for m = (d1,A),
which shows a strong negative peak at q = 0.

We have also checked nearby doping and analyzed the
competition between the incommensurate SDW and the SC
state. In Fig. 6(a) we plot the higher diverging scale among
these two competing orders as a function of doping (solid
line). We found a similar phase diagram near −1/4 (hole)
doping (not shown), mirroring that of electron doping. (Notice
that the particle-hole symmetry is not exact in the presence of
hopping integrals t2,3.) The above results imply degenerate
d-wave pairing instabilities. As for the degenerate SDW
instabilities, additional analysis, such as the mean-field theory
or Ginzburg-Landau theory, is needed to fix the structure of
the pairing function in the ordered state. To a large extent,
this kind of analysis has been performed in Ref. 12. We
have also performed simple mean-field calculations using
the renormalized pairing interaction. The result is that a
time-reversal breaking dx2−y2 ± idxy-wave pairing is always
more favorable. This could have been anticipated since both
dx2−y2 and dxy form factors have nodes on the Fermi surface; a
natural way to gain energy is to form the above chiral d-wave
pairing, which gaps out the entire Fermi surface.

We now discuss briefly the effect of the nearest-neighbor
interaction V . As a typical example, we set U = 3.6t1 and V =
t1, and perform the FRG calculations. We find that the results
are qualitatively similar to the cases with V = 0, except that
in the leading pairing singular mode, φsc(d2,2′ ,A/B) becomes
slightly stronger, but still smaller than φsc(d1,1′ ,A/B) by a
factor of 4–6. The phase diagram for V = t1 is also drawn
in Fig. 6(a) (dashed line). The critical scale is slightly higher
than in the case of V = 0. In the SC region this is due to
the slight enhancement of d-wave pairing on second neighbor
bonds. Unlike that claimed in Ref. 23, in all cases studied in
this paper the f -wave pairing is not a leading instability.

We end by presenting Fig. 6(b) as a schematic phase
diagram in the temperature-doping plane. In reality when the
doping level slightly deviates from 1/4, the extra charges will
be localized by the presence of disorder, which enables the
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FIG. 1. (Color online). Schematic phase diagram displaying
the critical instability scale �c � Tc as a function of dop-
ing. At the van Hove singularity (VHS, light shaded (orange)
area), d + id competes with spin density wave (SDW) (left
flow picture: dominant d + id instability for U0 = 10eV and
the band structure in [5]). Away from the VHS (dark shaded
(blue) area), �c drops and whether the d+id or f -wave SC in-
stability is preferred depends on the long-rangedness of inter-
action (right flow picture: U1/U0 = 0.45 and U2/U0 = 0.15).

investigate in detail how di�erent band structure param-
eters a�ect the phase diagram. We find that rather small
variations of the longer range hopping parameters such as
next nearest (t2) and next-next-nearest (t3) hopping can
shift the position of perfect Fermi surface nesting against
the VHS [Fig. 2], which significantly influences the com-
petition between magnetism and SC. Moreover, in par-
ticular away from the exact VHS, the reduced screening
of the Coulomb interaction does not justify the assump-
tion of a local Hubbard model description. For this case,
we find that only a small fraction of longer-ranged Hub-
bard interaction [21] can significantly change the phase
diagram, as CDW fluctuations become more competitive
to SDW fluctuations, and a triplet SC phase can appear.
In particular, we study how the Cooper pairing in the
di�erent SC phases responds to di�erently long-ranged
Hubbard interactions. Our results suggest that in ex-
periment, modifications of the band structure as well as
changing the dielectric environment of the graphene sam-
ple would enable the realization of di�erent many-body
states and possible phase transitions between them.

Model. We consider the ⇥ band structure of graphene
approximated by a tight binding model including up to
3rd nearest neighbors on the hexagonal lattice:

H0 =
⇤
t1

⇥

⇤i,j⌅

⇥

�

c†i,�cj,� + t2
⇥

⇤⇤i,j⌅⌅

⇥

�

c†i,�cj,�

+t3
⇥

⇤⇤⇤i,j⌅⌅⌅

⇥

�

c†i,�cj,� + h.c.
⌅
� µn, (1)

where n =
�

i,� ni,� =
�

i,� c
†
i,�ci,�, and c†i,� denotes the

electron annihilation operator of spin ⇤ =⇥, ⇤ at site i.

FIG. 2. (Color online). (a) Band structure of graphene once
for t1 = 2.8eV (red) and t1 = 2.8, t2 = 0.7, t3 = 0.02eV
(black). (b) Brillouin zone displaying the Fermi surface near
the van Hove point (dashed blue level in (a), 96 patches used
in the FRG and the nesting vector, and the partial nesting
vectors. (c) Density of states for both band structures in (a).
The inset show the position shift of Fermi surface nesting
(dashed vertical lines) versus the VHS peak.

The resulting band structure is a two band model due
to two atoms per unit cell [Fig. 2]. There are certain
uncertainties about the most appropriate tight binding fit
for graphene, in particular as it concerns the longer range
hybridization integrals [1, 22]. For dominant t1, the band
structure features a van Hove singularity (VHS) at x =
3/8, 5/8. Constraining ourselves to the electron-doped
case, the x = 5/8 electron-like Fermi surface is shown
in Fig. 2b. As depicted, this is the regime of largely
enhanced density of states which we investigate in the
following. For t2 = t3 = 0 [red curve in Fig. 2], the VHS
coincides with the partial nesting of di�erent sections of
the Fermi surface for Q = (0, 2⇥/

⌅
3), (⇥,⇥/

⌅
3), and

(⇥,�⇥/
⌅
3). For a realistic band structure estimate with

finite t2 and t3 [5] [black curve in Fig. 2], this gives a
relevant shift of the perfect nesting position versus the
VHS as well as density of states at the VHS, and a�ects
the many-body phase found there.
We assume Coulomb interactions represented by a long

range Hubbard Hamiltonian [21]

Hint = U0

⇥

i

ni,�ni,⇥ +
1

2
U1

⇥

⇤i,j⌅,�,�0

ni,�nj,�0

+
1

2
U2

⇥

⇤⇤i,j⌅⌅,�,�0

ni,�nj,�0 , (2)

where U0...2 parametrizes the Coulomb repulsion scale
from onsite to the second nearest neighbor interaction.
It depends on the density of states how strongly the
Coulomb interaction is screened. At the VHS, we as-
sume perfect screening and consider U0 only, while away
from the VHS, we investigate the phenomenology of tak-

Chiral d-wave superconductivity close to 
van Hove singularity 
•  Pairing on NN, NNN, … bonds         

(depending on range of  Coulomb interaction) 
 

3

FIG. 1: (Color online) Results for δ = 1/4. (a) The k points
on a self-adaptive mesh used in the FRG loop integration.
The dense region traces the Fermi surface as well as van Hove
singularities. The color scale encodes the gap function (real-
part) in band basis generated by one of the degenerate pair-
ing modes. The Red line indicates the Brillouin zone bound-
ary. (b) FRG flow of the most negative singular values in
the SC (blue), SDW (green) and CDW (red) channels. (c)
and (d) are the renormalized interaction Vsc(q)

AσBτ,BτAσ
d,d and

Vsdw(q)
AσAτ,AτAσ
s,s as functions of the collective momentum

q, extrapolated from a self-adaptive mesh. Camera lighting
is used to enhance visibility. White hexagons indicate the
Brillouine zone boundary.

the number of electrons per site. The results for δ = 1/4
is presented in Fig. 1. The k-mesh we used in the FRG
loop integration is shown in Fig. 1(a), which is much
denser near the Fermi surface and around van Hove sin-
gularities. In Fig. 1(b) we show the flow of the the most
negative singular values in the SC (blue), SDW (green)
and CDW (red) channels. Clearly the SDW channel is
the dominant one. This is because the scattering in the
SDW channel is attractive at high energies and is en-
hanced by the Fermi surface nesting down to the lowest
energies. In contrast, the scattering in the pairing chan-
nel is initially repulsive, and only becomes attractive af-
ter the SDW scattering grows strong. In the SC channel
we always find two exactly degenerate attractive singu-
lar modes, which are arbitrary linear combinations of the
dx2−y2 and dxy doublets. One of these modes is used to
generate the color-encoded gap function in the band basis
shown in Fig. 1(a). The CDW channel is weak in all ex-
amples we checked hence will not be discussed. Fig. 1(c)
shows the renormalized Vsc(q)

AσBτ,BτAσ
d,d (d indicates the

fd form factor) as a function of q on a self-adaptive
q-mesh. It peaks (negatively) at q = 0 but is weak.
Fig. 1(d) shows the renormalized Vsdw(q)AσAτ,AτAσ

s,s ,
which peaks negatively at three independent nesting mo-

FIG. 2: Chiral SDW order on the honeycomb lattice. (a)
A,B label two sites in one unit cell. 1, 2, 3, 4 indicate the
four sublattices of the chiral SDW order[11]. The magnetic
moment on sites 1, 2, 3, 4 are M1+M2+M3, −M1−M2+M3,
M1−M2−M3, −M1+M2−M3 respectively (see main text).
(b) A 3D perspective view of the chiral SDW order.

menta and their symmetric images. A general linear
combination of the three SDW order parameters has
[11] 〈SR,A〉 = M3eiQ3·R + M1eiQ1·R + M2eiQ2·R and
〈SR,B〉 = M3eiQ3·R − M1eiQ1·R − M2eiQ2·R, where R

labels position of unit cell, Q1 = (0, 2π/
√
3) and Q2 =

(−π,π/
√
3) and Q3 = (π,π/

√
3) are the three nesting

momenta, vectors M1,2,3 are the three SDW order pa-
rameters. According to the mean field study of Ref. [11]
the energetically favored state has |M1| = |M2| = |M3|
and M1 ·M2 = M2 ·M3 = M3 ·M1 = 0. The handed-
ness of the M1,2,3 triad breaks time-reversal and spatial
reflection symmetry. The resulting four-sublattice chiral
SDW order is shown in Fig. 2. Since Ref. [10] find d-wave
superconducting pairing as the leading electronic insta-
bility in the limit of vanishing interaction strength, we
further check the above conclusion by variational Monte-
Carlo (VMC) calculation at δ = 1

4 . We adopted the par-
tially Gutzwiller-projected mean-field wave-functions[17]
as our trial wave-functions, with the pairing form factor
guided by the present FRG result. Fig. 3(a) shows the
energy gain per site due to d+id′ pairing on lattices of dif-
ferent sizes, showing negligible size dependence. We then
continue to compare the energy gain associated with the
d+ id′ SC and the chiral SDW in Fig. 3(b). In this cal-
culation we only include the first neighbor hopping, and
U = 2t1. From Fig. 3(b) it is clear that the SDW state is
far more energetically favorable than the chiral SC state.
We believe including the small second and third neigh-
bor hopping and increases Hubbard U will not change
the result qualitatively.

Below 1/4 doping, the the Fermi level moves away from
the van Hove points and the Fermi surface nesting wors-
ens. This is shown in Fig. 4(a) for δ = 0.194 as an ex-
ample. The SDW scattering is still attractive at high
energies. As seen in Eq.(4), this relatively strong SDW
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Edges and Impurities 
The two d-wave solutions are degenerate on the honeycomb lattice 
•  Bulk: d(x2-y2)+id(xy) 

 

What happens when translational symmetry is broken? 
•  Edges 

-  Zigzag (ZZ) 
-  Armchair (AC) 

•  Impurities 
•  Singe-site vacancies 
•  Bivacancies 



Bogoliubov-de Gennes Solution 

with site-dependent self-consistency criterion: 

a1

a2

a3

Solve 

close to the van Hove singularity at µ = t 

ABS, PRL 109, 197001 (2012), Löthman and ABS, arXiv:1402.3195  



Superconductivity at the Edge 
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Real(Δ) ≈ d(x2-y2) = (2,-1,-1)  Imag(Δ) ≈ d(xy) = (0,1,-1)  

Δ(eV) Δ (eV) 

x (Å) x (Å) 

x (Å) 

ZZ edge 

Character of  Δ 

d(x2-y2)  

d(xy)  
s d(x2-y2)+id(xy)  

ZZ and AC edges: 
•  Completely destroy d(xy) part 
•  Enhance d(x2-y2) part 

 

➔  Pure d(x2-y2)-wave at the edge 
➔  Graphene edges are not pair breaking 
 

ABS, PRL 109, 197001 (2012)  



d(x2-y2)-wave Edge State 

ZZ 

AC 

a2 

a2 

a3 

a3 

a2 = a3 for both AC and ZZ edges 
 
 

 

 

➔  d(x2-y2)-wave preferred at any edge 
 
ABS, PRL 109, 197001 (2012)  

2 
-1 

-1 

0 
1 

-1 

0 0.005 0.01 0.015

20

40

ΔF = [F(d ) - F(d+id )] (eV) 

J = 0.5t → ξ ~ 25 Å  

Long decay length for weak superconductivity 
 

➔  Edge effects important even for 
macroscopic samples 

 

Decay length  
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Chiral Edge States 
Band structure for uniform d(x2-y2)+id(xy) state  

π	

-π	


k 

E (eV) 
left edge states 

right edge states 

2 chiral (co-propagating) states per edge 
 

➔   quantized thermal- and spin-Hall effects 
 

ABS, PRL 109, 197001 (2012)  
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Chiral Edge States 
Band structure self-consistent solution 

π	

-π	


k 

E (eV) 
self-consistent 
d+id’ uniform 

ABS, PRL 109, 197001 (2012)  
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Chiral Edge States 
Band structure self-consistent solution 

π	

-π	


k 

E (eV) 

d(x2-y2) and d+id’ solutions have similar edge band structures 
 

➔     d(x2-y2) edge does not significantly modify the band structure  
➔     Edge states well localized ~ 20 Å 
 

self-consistent 
d+id uniform 

d(x2-y2) 

ABS, PRL 109, 197001 (2012)  



Spontaneous Edge Current 
•  Chiral edge states carry a spontaneous quasiparticle current 

–  Broken time-reversal and parity symmetries 
–  No quantized current 

ABS, PRL 109, 197001 (2012) 

0.25 0.5
0.05

0.1

Δ(eV) 

I (e/h) 

ZZ µ = t 

ZZ µ = 0.8t 

AC µ = t 



Rashba Spin-Orbit Coupling 
Ad-atom deposition and electric gating break z → -z symmetry 

 

➔    Allows Rashba spin-orbit coupling (SOC): 

 

2D superconducting systems + Rashba SOC + Zeeman field 

➔    Majorana modes at vortices and edges 

z 

⇥k = |
�

�

eik·a↵ | (6)

⌃k = arg(
�

�

eik·a↵) (7)

H = �t
�

<i,j>,⇤
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†
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†
i⇤cj⇤0 (10)
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2
X†HX (12)

Topological insulators:

H = ⇥†(�iv⌅ ·⇧� µ)⇥ (13)

⇥T = (⇧�,⇧⇥) (14)

VSC = �⇧⇥⇧� +H.c. (15)

�† = � (16)

�U = �U⇤ci⇥ci�⌅ = Eg (17)

2

graphene graphene 
gate 



Majorana Modes 
•  Majorana modes 

–  Real solution to a Dirac equation discovered by E. Majorana in 1937 
–  γ = γ †  
–  c = γ1 + iγ2  (1 electron ~ 2 Majorana) 
–  Non-Abelian statistics è fault-tolerant quantum computation 
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Majorana Edge States 

hc 

Majorana-supporting phase 
(Majorana edge mode) 

Chiral d-wave superconductor 
(2 chiral edge states) 

Zeeman field, h 

Small Δ, λR, h  →  hc
2 = (µ ± t )2 + (2Δ)2 

•  Topological phase transition = bulk gap closing 

2 chiral edge states 
(spin-split) 

Bulk gap closing at 
k = 0, π	



3 edge states (Majorana 
+ 1 chiral state) 

π	

π	

π	

 -π	

-π	

-π	

 k 

E (eV) 

k k 

E (eV) E (eV) 

ABS, PRL 109, 197001 (2012)  



Realizing the Majorana Phase 

0 0.5 1
0

0.2

Δ (eV) 

h (eV) 

hc = 2Δ   

λR = 0.2t 

λR  
increasing 

Superconducting state for 
finite Zeeman field, h: 

•  λR ~ 0.2t for a superconducting state in 
Majorana-supported phase 
-  Ad-atom induced SOC (?) 
-  Electric field induced SOC (?) 

•  Zeeman field by proximity to 
ferromagnetic insulator 

 

 

ABS, PRL 109, 197001 (2012)  
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Vacancies 
Single vacancy Bivacancy 

s-wave 

Chiral d-wave 

Chiral d-wave symmetry and amplitude 
restored quickly  
 

➔     Chiral d-wave state resilient to defects 
 

Löthman and ABS, arXiv:1402.3195  



Impurity Mid-Gap States 

Löthman and ABS, arXiv:1402.3195  

DOS for chiral d-wave state with impurity Spatial profile of  mid-gap state 
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d-wave Josephson Junction 
Proximity effect in a Josephson junction: 

 

–  Josephson junction with s-wave contacts does not enhance 
chiral d-wave correlations 

–  Josephson junction with d-wave contacts 

J = 0 

t/(kBT) 

ξ 
 (Å

) 

Decay length in N: 

ABS and Doniach, PRB 81,014517 (2010) 

⇠ ⇠ 1

T � Tc



Double Quantized s-wave Vortex 
–  Doubly quantized vortex in an s-wave superconductor 

•  n = 2 vortex winding angular momentum transferred to chiral d-wave state 
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d + id d - idy x

d+id’ (x4) 
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�(T ) ⇠ �(T = 0)

1 + (T � Tc)2/E2
g

Temperature dependence:  
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kBT

|Δ|

T c,J = 0.01T c,U 

T c,J = 0.1T c,U 

ABS, PRB 88, 104506 (2013) 



Detecting the Chiral d-wave State 
•  Spatial profile for the lowest energy state in the vortex: 

–  Without a chiral d-wave core: Vortex bound state Rcore ~  ξS 

–  With a chiral d-wave core: Chiral d-wave edge state Redge < Rcore 
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Spatial profile of  the 
lowest energy state 

Chiral d-wave order 
parameter 

T c,J = 0.01T c,U 

T c,J = 0.015T c,U 

ABS, PRB 88, 104506 (2013) 



Summary 
•  Chiral d(x2-y2)+id(xy) superconductivity in heavily doped graphene 

–  Mean-field result for an effective Hamiltonian 
–  Perturbative RG and fRG results on extended Hubbard models 

•  Edges:  
–  Pure d(x2-y2)-wave with long decay length 
–  Two well-localized chiral edge states 
–  Spontaneous, but not quantized, edge currents 
–  Majorana fermions at the edge (Spin-orbit coupling & Zeeman field) 

•  Impurities 
–  Chiral d-wave state resilient to impurities 

•  Enhancement of the chiral d-wave state by proximity effect 
–  d-wave Josephson junctions 
–  Doubly quantized vortices in s-wave superconductors 

Recent review article (to appear in J. Phys.: Condens. Matter): 
ABS and Honerkamp, arXiv:1406.0101 


