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As discussed in the following, whether at zero spin density 
and finite temperatures the spin stiffness of the spin-1/2 
XXX chain is finite or vanishes remains an unsolved and 
con t rove rs ia l i s sue , as d i f fe re n t approache s y ie ld 
contradictory results

1D ideal spin conductors are typically correlated integrable 
models whose real part of the spin conductivity shows a 
delta peak and thus a finite spin stiffness at T>0. The dc 
conductivity is infinite at T>0 and the system exhibits 
ballistic transport 

The main goal of this talk is to rigorously show that in the 
thermodynamic limit at finite temperatures the spin 
stiffness of the spin-1/2 XXX chain vanishes within the 
(micro)canonical ensemble for fixed total z-component spin 
projection, including at zero spin projection, i.e. it vanishes 
both at zero spin density and in the limit of zero spin density 



The more general anisotropic spin-1/2 Heisenberg XXZ chain 
with anisotropy parameter larger than or equal to zero and 
exchange integral J is a paradigmatic example of an 
integrable strongly correlated system

In the limit of a large system, the thermodynamic Bethe 
ansatz becomes exact for the model Hamiltonian in the 
absence of a uniform vector potential

M. Takahashi and M. Suzuki, Prog. Theor. Phys. 48, 2187 (1972)

As discussed in the following, there persists doubts about the 
validit y of calculat ing the spin st if fness from the 
thermodynamic Bethe ansatz eigenvalues of the Hamiltonian 
in a uniform vector potential without the knowledge of 
matrix elements

X. Zotos, Phys. Rev. Lett. 82, 1764 (1999)  
J. Benz, T. Fukui, A. Klümper, and C. Scheeren, J. Phys. Soc. Jpn. Suppl. 74, 181 (2005) 
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Integrable models have a set of orthogonal commuting linearly 
extensive local and quasi local conserved quantities such that, 

They provide a rigorous lower bound for the stiffness encoded 
in an inequality due to Mazur,

Quasilocal conserved operators are nonlocal operators for which,

hQ̂†Q̂i / L

T. Prosen, arXiv:1406.2258
R. G. Pereira, V. Pasquier, J. Sirker, I. Affleck, arXiv:1406.2306

(j summation runs over all linearly 
extensive conserved quantities)  

P. Mazur, Physica 43, 533 (1969)



For the anisotropic spin-1/2 Heisenberg XXZ chain there are 
recent rigorous high-temperature results relying on the model's 
deformed symmetries and corresponding quasilocal conserved 
operators. These symmetries can be related to a dense set of 
commensurate easy-plane anisotropies,
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The lower bound reached by accounting for such quasi local 
conservation laws leads to a rigorous high-temperature 
Mazur's inequality, 

T. Prosen, and E. Ilievski, Phys. Rev. Lett. 111, 057203 (2013) 

X. Zotos, Phys. Rev. Lett. 82, 1764 (1999)

spin-stiffness expression derived by Zotos by use of the 
thermodynamic Bethe ansatz in a uniform vector potential

For l = 1 and � = cos(⇡/l0) such a lower bound equals the



The isotropic point of the spin-1/2 XXZ chain (the spin-1/2 
XXX model) is the most experimentally relevant for the 
spin-lattice relaxation rate and other physical quantities 

J. Sirker, R . G. Pereira, and I. Affleck, Phys. Rev. B 83, 035115 (2011) 
N. Motoyama, H. Eisaki, and S. Uchida, Phys. Rev. Lett. 76, 3212 (1996) 
K. R. Thurber, A. W. Hunt,T. Imai, and F. C. Chou, Phys. Rev. Lett. 87, 247202 (2001)

It is also the case that poses most challenging technical 
problems for theory. At the isotropic point the above Mazur's 
inequality is inconclusive, as it vanishes at zero spin density
Moreover, close to the isotropic point the numer ical 
investigation of the spin stiffness expressions within the 
thermodynamic Bethe ansatz calculat ing i t f rom the 
eigenvalues of the Hamiltonian in a uniform vector potential 
without the knowledge of matrix elements is difficult since the 
number of equations to solve diverges 

X. Zotos, Phys. Rev. Lett. 82, 1764 (1999)  
J. Benz, T. Fukui, A. Klümper, and C. Scheeren, J. Phys. Soc. Jpn. Suppl. 74, 181 (2005) 



Our discussions focus mainly on the spin 1/2 isotropic 
Heisenberg model (XXX chain) at zero spin density. The 
Hamiltonian reads,

�(!, T ) = 2⇡D(T ) �(!) + �reg(!, T )

The real part of the spin conductivity can be written as,

ĤHei = J

LX

j=1

~̂Sj · ~̂Sj+1

spin stiffness

D(T ) =
1

2TL

X

⌫

p⌫
X

⌫0(✏⌫=✏⌫0 )

|h⌫|Ĵ |⌫0i|2

If the T>0 stiffness is finite there is ballistic spin transport
X. Zotos and P. Prelovsek, Phys. Rev. B 53, 983 (1996) 



The spin stiffness is directly related to the long-time 
asymptotic current-current correlation function as,

Ballistic spin transport then means that the correlation 
functions do not completely decay in time  
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Different approaches yie ld contradictory results on 
whether at zero spin density and finite temperatures the 
spin stiffness of the spin-1/2 XXX chain is finite or vanishes

The z-component spin current in the stiffness expression reads,

Ĵ = �i J
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C. Karrasch, J. Hauschild, S. Langer, and F. Heidrich-Meisner, Phys. Rev. B 87, 245128 (2013) 
C. Karrasch, J. H. Bardarson, and J. E. Moore, Phys. Rev. Lett. 108, 227206 (2012) 
J. Benz, T. Fukui, A. Klümper, and C. Scheeren, J. Phys. Soc. Jpn. Suppl. 74, 181 (2005)  
S. Fujimoto and N. Kawakami, Phys. Rev. Lett. 90, 197202 (2003) 
F. Heidrich-Meisner, A. Honecker, D. C. Cabra, and W. Brenig , Phys. Rev. B 68, 134436 (2003) 
J. V. Alvarez and C. Gros, Phys. Rev. Lett. 88, 077203 (2002)

Several (mainly) numerical approaches lead to a finite value for 
the spin stiffness of the XXX chain at finite temperature, as 
for instance those used in the following papers:

Other methods lead to results consistent with a very small or 
zero value for it, as those reported for instance in,
T. Prosen, and E. Ilievski, Phys. Rev. Lett. 111, 057203 (2013)  
M. Znidaric, Phys. Rev. Lett. 106, 220601 (2011) 
J. Herbrych, P. Prelovsek, and X. Zotos, Phys. Rev. B 84, 155125 (2011) 
J. Sirker, R . G. Pereira, and I. Affleck, Phys. Rev. B 83, 035115 (2011) 
J. Sirker, R . G. Pereira, and I. Affleck, Phys. Rev. Lett. 103, 216602 (2009) 
N.M.R. Peres, P.D. Sacramento, D.K. Campbell, and J.M.P.C., Phys. Rev. B 59, 7382 (1999) 
X. Zotos, Phys. Rev. Lett. 82, 1764 (1999)

Here we are mainly interested in methods using the 
thermodynamic Bethe anstaz



Different methods to derive the stiffness from the 
thermodynamic Bethe ansatz

1- The spin stiffness of the spin-1/2 XXZ chain has been 
calculated numerically within the thermodynamic Bethe 
ansatz from the eigenvalues of the Hamiltonian in a uniform 
vector potential without the knowledge of matrix elements

X. Zotos, Phys. Rev. Lett. 82, 1764 (1999) 

S. Fujimoto and N. Kawakami, J. Phys. A 31, 465 (1998) 

The method of that study was first used for the charge 
stiffness of the 1D Hubbard model
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J. Benz, T. Fukui, A. Klümper, and C. Scheeren, J. Phys. Soc. Jpn. Suppl. 74, 181 (2005) 

The doubts about the validity of that method stem from the 
divergences emerging in the integrands of Eqs. (24) and (25) of 
the following reference,

2- Alternatively, the authors of the latter reference used a 
phenomenological method that relies on a spinon and anti-
spinon basis for the thermodynamic Bethe ansatz. They 
reached a larger value for the finite-T spin stiffness at zero 
spin density, which remains finite at the isotropic point 
More recent very careful studies excluded the large spin 
stiffness found by that phenomenological method. They indicate 
that spin transport at finite temperatures is dominated by a 
diffusive contribution, the spin stiffness of the spin-1/2 XXX 
chain being very small or zero at zero spin density, as also found 
by the first above mentioned method

J. Sirker, R . G. Pereira, and I. Affleck, Phys. Rev. B 83, 035115 (2011)



3- Here we calculate the spin stiffness of the spin-1/2 XXX 
chain by a third method that also uses the thermodynamic 
Bethe ansatz. Our method is rigorous 

J.M.P.C., T. Prosen, and D.K. Campbell, arXiv:1407.0732

Rather than calculating the spin stiffness from the 
eigenvalues of the Hamiltonian in a uniform vector 
potential without the knowledge of matrix elements, our 
method relies on the evaluation of matrix elements in the 
absence of a vector potential

However, s ince vanishing spin densi t y may in the 
thermodynamic limit also be approached by any finite fixed z-
component spin projection value, or fixed window of spin 
projection values, and then letting the system length going 
to infinity, we carefully estimate the spin stiffness for finite 
spin projection values. We do that by calculating a suitable 
stiffness upper bound

First, we derive the spin stiffness at zero spin density and 
find that it vanishes in the thermodynamic limit



J.M.P.C., S.-J. Gu, and P. D. Sacramento, Ann. Phys. 339, 484 (2013) 
J.M.P.C., S.-J. Gu, and M.J. Sampaio, J. Phys. A 47, 255004 (2014) 

Our matrix-element derivation of the spin-1/2 XXX chain 
spin stiffness at zero spin density shows technicality 
similarities with the method recently used to calculate the 
charge stiffness of the 1D Hubbard model at half filling

S. Fujimoto and N. Kawakami, J. Phys. A 31, 465 (1998) 

That charge stiffness vanishes for on-site repulsion U>0 in 
the thermodynamic limit for all temperatures, in contrast 
to the predictions of,

Why the method introduced by these authors seems to lead 
to a correct spin stiffness value for the spin-1/2 XXZ chain 
and a wrong value for the charge stiffness of the half-filled 
1D Hubbard model is an issue that is shortly discussed in the 
end of this talk
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Our derivation of matrix elements uses the following commutation 
relations between the current operator and the generators of the 
spin SU(2) symmetry,

At zero spin density the Bethe states are both lowest-weight 
states (LWSs) and highest-weight states of the spin SU(2) 
symmetry algebra, so that,

Here the two SU(2) symmetry operator components of the 
current operator (other than that of the z-component) read,



|lr, S, Szi = 1p
C
(Ŝ+)ns |lr, S,�Si

C = (ns!)
nsY

j=1

( 2S + 1� j ) ns = 1, ..., 2S

The energy eigenstates that are not LWSs are generated from 
the corresponding Bethe states as follows,

where,

M. Takahashi, Prog. Theor. Phys. 46, 401 (1971)

Our thermodynamic Bethe ansatz refers to the energy 
eigenstates of the spin-1/2 XXX chain that are LWSs of the 
spin SU(2) algebra, which here we call Bethe states

lr

refers to all quantum numbers other 
than the spin and spin projection needed 
to uniquely specify an energy eigenstate



hlr, S, Sz|Ĵ |l0r, S0, Szi = hlr, S,�S|(Ŝ�)ns Ĵ(Ŝ+)n
0
s |l0r, S0,�S0ip

CC0

hlr, S, Sz|Ĵ |l0r, S, Szi = �Sz

S
hlr, S,�S|Ĵ |l0r, S,�Si ; S � 1/2

Sz = �S + ns
ns = 1, ..., 2S

Within our representation for the energy eigenstates the 
current matrix elements involved in the spin stiffness 
expression can be written as,

From the use of both the above commutators involving the 
spin current operator and state transformation laws one 
finds the following relation involving matrix elements 
between energy eigenstates with the same finite spin value,

where

In the thermodynamic limit, only matrix elements between 
such energy eigenstates contribute to the spin stiffness at 
finite temperature, as discussed in the following



D(T ) =
1

2TL

X

⌫

p⌫ |h⌫|Ĵ |⌫i|2 ; T > 0 ; L ! 1

For large L there are two temperature T regimes: 
(i) T smaller than the energy eigenvalues level spacing

In the present thermodynamic limit, the T regime (i) shrinks 
to T=0, while the T region (ii) includes all of T>0 

(ii) T larger than the energy eigenvalues level spacing

Moreover, in that limit the persistent currents vanish
X. Zotos, F. Naef, and P. Prelovsek, Phys. Rev. B. 55, 11029 (1997)

N. Yu and M. Fowler, Phys. Rev. B 45, 11795 (1992)

P. Ginsparg, in Fields, Strings and Critical Phenomena (North-Holland, Amsterdam,1990)

One then finds by summing over momentum k and -k subspaces, 
the result that within the T>0 regime (ii) the expression of the 
stiffness involves only current expectation values

X. Zotos, F. Naef, and P. Prelovsek, Phys. Rev. B. 55, 11029 (1997)



Ĵ =
1

2
[Ĵ+, Ŝ�]

hlr, 0, 0|Ĵ |l0r, 0, 0i =
1

2
(hlr, 0, 0|Ĵ+Ŝ�|l0r, 0, 0i

� hlr, 0, 0|Ŝ�Ĵ+|l0r, 0, 0i) = 0

The above relations are valid only for energy eigenstates with 
spin S>1/2. Concerning matrix elements between S=0 energy 
eigenstates, it follows trivially from the operator algebra 
relations that the spin current operator can be written as,

It is then straightforward to show that matrix elements 
between S=0 energy eigenstates vanish,



D(T ) =
1

2TL

X

lr

L/2X

S=|Sz|

plr,S,Sz |hlr, S, Sz|Ĵ |lr, S, Szi|2

The spin stiffness of the spin-1/2 XXX chain,

hlr, 0, 0|Ĵ |lr, 0, 0i = 0

hlr, S, Sz|Ĵ |lr, S, Szi = �Sz

S
hlr, S,�S|Ĵ |lr, S,�Si

DSz=0(T ) = 0, T > 0

This follows from the above matrix elements relations 
implying the validity of the following current expectation 
values results,

then vanishes at zero z-component spin projection for finite 
temperatures T>0, 

Hence the spin current of all zero z-component spin 
projection energy eigenstates vanishes



DSz (T ) =
(2Sz)2

2LT

L/2X

S=|Sz|

X

lr

plr,S,Sz
|hlr, S,�S|Ĵ |lr, S,�Si|2

(2S)2

The use of the above matrix-elements relations allows writing 
the finite-temperature spin stiffness for arbitrary value of 
the z-component spin projection different from zero as,

However, it is important not to restrict ourselves only to 
spin density m=0, which may be sensitive to certain 
pathologies
A rigorous analysis requires that one considers the spin 
stiffness for m>0 and confirms that it vanishes in the limit 
of the density tending to 0

In the following we express the energy eigenstate spin 
currents in terms of thermodynamic Bethe ansatz quantum 
number occupancy configurations and clarify the relation of 
such configurations to those of the model L spins 1/2



LX

2S=0 (integers)

N (S) = 2L

N (S) = (2S + 1)Nsinglet(S)
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The number of independent occupancy configurations of the L 
spins 1/2 equals the Hilbert space dimension,

Here the is sum over the number of independent occupancy 
configurations of the L spins 1/2 in each of the sub-spaces of 
fixed spin S, whose dimension reads,

Such a dimension equals the product of the number of multiplet 
and singlet configurations, respectively. From the use of the 
spin SU(2) symmetry algebra one finds that the latter reads,



2S spins 1/2 (2S + 1)

L� 2S spins 1/2 Nsinglet(S)

The number of spins 1/2 that contribute to the multiplet and 
singlet configurations, respectively, are uniquely defined,

In the following we relate the quantum numbers of the 
thermodynamic Bethe ansatz equations whose occupancy 
configurations generate the energy eigenstates with these 
two sets of spins 1/2

M. Takahashi, Prog. Theor. Phys. 46, 401 (1971)

L� 2S spins 1/2
in singlet  

configurations

part of their degrees of freedom are 
contained in the n-pair configurations

(often called strings of length n)

An important property for the present study is that only the 
first group of 2S spins 1/2 in the multiplet configurations 
contribute to the spin current hĴi = h[Ĵ+, Ŝ�]i/2



{Mn} L� 2S =
1X

n=1

2nMn

That each n-pair configuration contains degrees of 
freedom of n spins 1/2 singlet pairs is consistent with the 
sum rule obeyed by the n-pair configuration number values 
of the energy eigenstates,

Within the thermodynamic Bethe ansatz, there is for each 
type of n-pair configuration associated with a given fixed n 
value n=1,2,3,… a set of quantum numbers,

Inj
0,±1,±2, ...
±1/2,±3/2,±5/2, ...

Each type of n-pair configuration can be associated with 
a n-band whose momentum values have the usual spacing,

qj =
2⇡

L
Inj j = 1, ...,M b

n



M b
n = Mn +Mh

n Mh
n = 2S +

1X

n0=n+1

2(n0 � n)Mn0

Mn(qj) = 1

Mn(qj) = 0

Mh
n (qj) = 0

Mh
n (qj) = 1

The number of a n-band occupied and unoccupied momentum 
values are well defined for each energy eigenstate,

Actually, the energy eigenstates are generated by all possible 
occupancies of the n-band momentum values. Those have 
Pauli-like zero and one occupancies. Hence it is useful to 
introduce alternative n-band momentum distributions for n-
particles and n-holes, respectively,

It is confirmed in the following that the degrees of freedom 
of the two sets of 2S and L-2S spins 1/2 are easiest 
identified within the n-hole representation of the energy 
eigenstates spin currents



jn(qj) = �2J fn(kn(qj)) fn(k) = gn(k) sin k

gn(k) =
2

n
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2
(k/2)

2⇡[⇢n(⇤) + ⇢hn(⇤)]
k 2 [�⇡,⇡]

kn(qj) = 2 arctan(⇤n
j )

hlr, S,�S|Ĵ |lr, S,�Si =
1X

n=1

Mb
nX

j=1

Mn(qj) jn(qj)

Specifically, within the usual Bethe-ansatz n-particle 
representation the spin current of a LWS has the form,

where the n-particle elementary current spectrum is 
defined by the relations,

Here is the real part of the n-pair configuration rapidity⇤n
j

of the energy eigenstate under consideration, which is 
uniquely defined by the coupled Bethe-anstaz equations 
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h
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To express the spin currents in the alternative n-hole 
representation, one must account for the exotic properties of 
the n-bands. In contrast to the usual solid-state bands, 
summing the elementary currents over all n-band momentum 
values gives not in general zero. It rather gives,

One then finds that within the Bethe-ansatz n-hole 
representation the spin current of a LWS has the form,

where,
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n�1X

n0=1

2(n� n0)

Mh
n0
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n0X
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Mh
n0(qj) j

h
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hlr, S,�S|Ĵ |lr, S,�Si =
1X

n=1

Mb
nX

j=1

Mh
n (qj) j

h
n(qj) +

1X

n=2

Mn j
p
n

To dig deeper into the physical meaning of the n-band hole 
representation, we emphasize that the latter spin current 
expression can be rewritten as, 

Here the n-hole elementary currents have contributions both 
from the 2S spins 1/2 in multiplet configurations and the spins 
1/2 in singlet n-pair configurations with n>1 pairs

Their role is to exactly cancelling the unwanted current 
contributions from such n-pair configurations to the n-hole 
elementary currents 

The virtual elementary spin currents in the second term are 
carried by the n-pair configurations with n>1 pairs and read,



As mentioned above, the use of the spin SU(2) symmetry 
algebra alone leads to a number fixed-S spin single t 
configurations whose value is,

Nsinglet(S) =

✓
L

L/2� S

◆
�

✓
L

L/2� S � 1

◆

Consistently with the direct relation of the 2S-L spins 1/2 in 
s u c h c o nfig u r a t i o n s t o t h e B e t h e -a n s a t z n -p a i r 
configurations, one finds that at fixed S the following 
dimension has exactly the same value,

Nsinglet(S) =
X

{Mn}

1Y

n=1

✓
M b

n

Mn

◆

1X

n=1

2nMn = L� 2S

Here the summation is over all sets of n-pair configuration 
numbers that obey the S-fixed sum rule,



hlr, S,�S|Ĵ |lr, S,�Si =
1X

n=1

2S

Mh
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h
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DSz (T ) =
(2Sz)2

2LT

L/2X

S=|Sz|

X

lr

plr,S,Sz
|hlr, S,�S|Ĵ |lr, S,�Si|2

(2S)2

For our spin stiffness computation, it is convenient to 
replace the former n-hole current representation,

in the stiffness general T>0 expression,

Since the summations in this expression are very difficult to 
perform, our goal is to derive a rigorous upper bound for the 
stiffness valid for all z-component spin projection values. 
Specifically, we want to check whether such a upper bound 
vanishes in the limit of zero spin projection 



Each spin-S subspace can be divided into a set of smaller 
reduced subspaces with the same S value and fixed values for 
the set of n-pair configuration numbers. We denote the 
maximum value of the current absolute value,

in each such reduced subspace by,

Here n>1 because,

is uniquely determined 

|hlr, S,�S|Ĵ |lr, S,�Si|

M1 =
1

2
(L� 2S �

1X

n=2

(2n)Mn)

J
max

(S, {Mn}) , n > 1



�J
min

(S, {Mn}) = J
max

(S, {Mn = 0})� J
max

(S, {Mn}) � 0

�Jmin(S, {Mn}) = 0 , 2S ⌧ L

=
J

L

1X

n=2

(n� 1)Mn , (L� 2S) ⌧ L

Mn = 0 , n > 1

We find that for each S-fixed subspace the maximum spin 
current absolute value is achieved for the reduced subspace 
for which,

Specifically, we find that the minimum value of the deviation,

is an increasing function of S with limiting behaviors,

This result allows us to fulfil the first step of our derivation 
of a rigorous upper bound for the spin stiffness



J
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(S, {Mn = 0})
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(2Sz)2
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X
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J
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(S)/2S = J
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4
, 2S ⌧ L

= J
(L� 2S)

2L
, (L� 2S) ⌧ L

|hlr, S,�S|Ĵ |lr, S,�Si|

It accounts for replacing in the stiffness expression all 
matrix elements associated with a fixed S value,

by their maximum value,

This procedure leads to a first rigorous stiffness upper bound,

Furthermore, J
max

(mS)/2S is found to be a smoothly decreasing
function of S with limiting behaviors,



J
max

(S)

2S
! J

max

(mL)

(mL)

L/2X

S=|Sz|

X

lr

plr,S,Sz = 1

J
max

(mS)/2SHence the maximum value of 
minimum S value,

refers to the 

S = |Sz| = mL/2

J
max

(mS)/2S
A second rigorous yet larger stiffness upper bound is 
then reached by replacing  by its maximum
value for the whole S range contributing to a given m, 

Importantly, the stiffness expression state summations 
can then be performed exactly for all finite temperatures 
T>0. Indeed, the probability distribution in each fixed-spin-
projection canonical ensemble is normalized as, 



D⇤⇤
Sz (T ) =

�
J ⇡

4

�2
m2 L

2T
, m ⌧ 1 ,

=

�
J 1

2

�2
(1�m)2 L

2T
, (1�m) ⌧ 1

The small-m expression confirms that the spin stiffness of 
the spin-1/2 XXX chain vanishes for all finite temperatures in 
the limit of zero spin density, alike at zero spin density
Such a result implies that in the thermodynamic limit and 
at finite temperatures the spin-1/2 isotropic Heisenberg 
chain has no ballistic spin transport at zero spin density

The following simple yet rigorous spin stiffness upper bound 
valid for all finite temperatures is then obtained,
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Its limiting behaviors are,



Summary and short discussion
Our rigorous results show that the spin stiffness of the 
spin-1/2 XXX chain vanishes in the thermodynamic limit for 
finite temperature and any fixed range or even distribution of 
the spin projection, or any distribution of the spin density m 
shrinking sufficiently fast that,

hm2iL ! 0

Note that this leaves out, marginally, the grand canonical 
ensemble in which, 

hm2i = O(1/L)

However, the large overestimate of the energy eigenstates 
spin currents we used in deriving the stiffness upper bound 
leads us to expect that our result remains valid in the grand 
canonical case, in accord with the usual expectation of the 
equivalence of ensembles in the thermodynamic limit



The spin stiffness of the spin-1/2 XXZ chain has for high 
temperature the following limiting values,

� = 0 D =
(J/4)2

T

� = 1 D = 0
(our result is also valid for 
any T including for high T)

The stiffness lower bound found by Prosen and Ilievski given 
above saturates the high-temperature spin stiffness in both 
these two limits. Combined with the equality of that lower 
bound to the spin stiffness found by Zotos at
likely implies that the bound saturates the stiffness for the 
whole range,
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The spin-1/2 XXZ chain belongs to the latter class, the 
divergences emerging at zero spin density in the integrands of 
Eqs. (24) and (25) of the following reference cancelling each 
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