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Nel BCS uno costruisce due repliche del metallo: una in termine di elettroni e una in termine di buche, le 
accoppia  e ottiene due branche di eccitazione. Una solo di esse è fisica, l’altra è una replica ottenibile 
mediante coniugazione di carica (P-H pairs). Pertanto solo metà degli stati bastano a descrivere il sistema. 
Ci sono casi in cui un singolo stato spaiato a energia zero appare. Usando la descrizione di sopra è come 
se a energia zero ci sia mezzo stato. Questo mezzo stato ha le proprietà di un fermione di majorana. 
Questo non accade in tutti i superconduttori ordinari. Kitaev ha dimostrato che queste eccitazioni a energia 
zero possono apparire in un filo superconduttivo in onda p



Ballistic Transport Regime
• Bi2Te3

• Eth = 96 μeV -> ξn = 0.7 ㎛ 

• L = 200 ㎚
• Bi2Se3

• Eth = 100 μeV -> ξn = 3 ㎛ 

• L = 300 ㎚
★ Ballistic proximity regime 

through the topological 
edge states

(L. Galletti et al., PRB89)

Bi2Se3

Bi2Te3

Thouless energy MORE than the distance between the electrodes (300 nm)
The conclusion is that … An inconsistent scenario would arise from … I will be back on this aspect.
Krezin, PRB, 34 (1986) Beenakker, Universal mesoscopic Josephson (1992)
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InAs wire  with YBCO contacts

Content

• INTRO:    Josephson junction in Kitaev’s chain
• π-junction  and YBCO tricrystal geometry

• long wavelength  3D-TI model and  helicity of 
boundary states

• s-wave superconductive proximity of a TI flake

• π-loop: d-wave pairing proximity and Majorana 
Bound state
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Kitaev Model for 1D p wave superconductor

|µ|>2t  :  Strong pairing phase 

              trivial superconductor
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|µ|<2t  :  Weak pairing phase  

              topological superconductor

Similar to SSH model, except different symmetry :  
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Kitaev’s Model

One-dimensional p-wave spinless superconductor
A. Kitaev Annals of Physics 

2003

Nel BCS uno costruisce due repliche del metallo: una in termine di elettroni e una in termine di buche, le 
accoppia  e ottiene due branche di eccitazione. Una solo di esse è fisica, l’altra è una replica ottenibile 
mediante coniugazione di carica (P-H pairs). Pertanto solo metà degli stati bastano a descrivere il sistema. 
Ci sono casi in cui un singolo stato spaiato a energia zero appare. Usando la descrizione di sopra è come 
se a energia zero ci sia mezzo stato. Questo mezzo stato ha le proprietà di un fermione di majorana. 
Questo non accade in tutti i superconduttori ordinari. Kitaev ha dimostrato che queste eccitazioni a energia 
zero possono apparire in un filo superconduttivo in onda pci = �Bi + i�Ai

µc†i ci = 2iµ�Bi�Ai

μ acts within the same site
t and Δ couple different site MFs

�(cici+1 + h.c.) = 2i�(�Bi�Ai+1 + �Ai�Bi+1)

t(c†i ci+1 + h.c.) = 2it(�Bi�Ai+1 � �Ai�Bi+1)

t = �

Mapping of spinless Dirac Fermions into Majorana 
Fermions

N-site fermion chain

2N-site Majorana 
chain

A
B

{�i, �j} = 2�ij

�2
i = 1

Nel BCS uno costruisce due repliche del metallo: una in termine di elettroni e una in termine di buche, le 
accoppia  e ottiene due branche di eccitazione. Una solo di esse è fisica, l’altra è una replica ottenibile 
mediante coniugazione di carica (P-H pairs). Pertanto solo metà degli stati bastano a descrivere il sistema. 
Ci sono casi in cui un singolo stato spaiato a energia zero appare. Usando la descrizione di sopra è come 
se a energia zero ci sia mezzo stato. Questo mezzo stato ha le proprietà di un fermione di majorana. 
Questo non accade in tutti i superconduttori ordinari. Kitaev ha dimostrato che queste eccitazioni a energia 
zero possono apparire in un filo superconduttivo in onda p



Unpaired Majorana 
end states

|0i f |0i = 0 f†|0i = |1i

H|0i = H|1i

Limiting case μ=0, 2t>0

f = �A1 + i�BN

μ>2t Intra-site interact.

μ<2t Inter-site interact.

μ=0

Ground state degeneracy ( fermion parity)
Nel BCS uno costruisce due repliche del metallo: una in termine di elettroni e una in termine di buche, le 
accoppia  e ottiene due branche di eccitazione. Una solo di esse è fisica, l’altra è una replica ottenibile 
mediante coniugazione di carica (P-H pairs). Pertanto solo metà degli stati bastano a descrivere il sistema. 
Ci sono casi in cui un singolo stato spaiato a energia zero appare. Usando la descrizione di sopra è come 
se a energia zero ci sia mezzo stato. Questo mezzo stato ha le proprietà di un fermione di majorana. 
Questo non accade in tutti i superconduttori ordinari. Kitaev ha dimostrato che queste eccitazioni a energia 
zero possono apparire in un filo superconduttivo in onda p

Josephson conduction  in Kitaev chains
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Simplified approach

Following Alicea (Rep.Prog.Phys., 75, 076501 (2012)) we can project HΓ onto the zero energy subspace and easily
drop out γL

AN and γR
B1 of the Hamiltonian HΓ. Therefore:

HΓ = −i
Γ

2
cos((φL − φR)/2)γ

L
BNγR

A1 . (36)

Then, we define ∆φ = φL − φR: easily the current is

I =
2e

!

d⟨HL +HR +HΓ⟩
d∆φ

∝ sin(∆φ/2)⟨γL
BNγR

A1⟩ . (37)

Thus, if we define:

dend =
1

2
(γR

A1 + iγL
BN) , (38)

the average current is

I ∝ sin(∆φ/2)⟨d†enddend − 1/2⟩ = sin(∆φ/2)⟨nend − 1/2⟩ , (39)

This current has two interesting features:

• It shows a doubled periodicity w.r. to the conventional Josephson current (fractional Josephson effect).

• It shows an explicit dependance on the Fermion parity.

Less trivial approximation

We map HΓ of Eq.35 the Hamiltonian onto the d fermions defined as

d(†)αj =
1

2
(γα

Aj+1 − /(+)iγα
Bj) (40)

Then, after some boring algebra we have:

HΓ =
Γ

2

{

cos(∆φ/2)(2d†enddend − 1)+ (41)

sin(∆φ/2)
(

i d†end(d
†
R1 − dR1 + dLN−1 + d†LN−1) + h.c.

)

(42)

+ cos(∆φ/2)
(

d†R1(d
†
LN−1 − dLN−1) + h.c.

)}

, (43)

and using

dA =
dLN−1 + dR1√

2
, (44)

dB =
dLN−1 − dR1√

2
, (45)

we recast the hopping hamiltonian in the following simple form.

HΓ =
Γ

2

{

cos(∆φ/2)
(

(2d†enddend − 1) + (d†AdA − d†BdB) + (d†Ad
†
B + h.c.)

)

+ sin(∆φ/2)
(

id†end(d
†
A + dB) + h.c.

)}

.(46)

Now we can use two diffent approaches.
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FIG. 5: Unpaired MFs in the two limiting cases t = ±∆

Josephson effect between two Majorana chains. The ”0” junction case.

Let us focus on the case ∆ = t, and describe two chains Left = L and Right = R coupled by a hopping hamiltonian
(see Fig. 6):

HΓ = −Γ
(

c†LNcR1 + h.c.
)

, (32)

the hopping involves just one dirac fermion per side, however ”half of it” is coupled by the Majorana chain to all
the others, therefore, in the unpaired Majorana Regime (µ = 0 and t = ∆), it is useful to resort to an alternative
representation in terms of MF’s γ or, following Nature Physics 7, 412417 (2011) in terms of new Dirac fermions to be
properly defined. The first step is to apply the generalized transformations:

FIG. 6: Josephson effect between two Majorana Chains

γα
Bj = cαje

iφαj/2 + c†αje
−iφαj/2 , (33)

γα
Aj =

cαjeiφαj/2 − c†αje
−iφαj/2

i
, (34)

where α = (L,R).

HΓ = −
Γ

4

[

ei(φL−φR)/2(γL
BN − iγL

AN )(γR
B1 − iγR

A1) + h.c.
]

, (35)

where we have defined φL = φLN and φR = φR1. Then the following two approaches are possible.

�ei�L �ei�R

Jason Alicea, Yuval Oreg, Gil Refael, Felix von Oppen & Matthew P. A. Fisher  Nature Physics 2011

zero energy bound state !

(μ=0, t=Δ)

E
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and the hamiltonian (including corrections due to the kinetic energy of A,B fermions) reads:

Heven = A+

⎛

⎜

⎜

⎝

0 C −iS 0
C 4t iS 0
iS −iS 2t+ 3C 0
0 0 0 2t+ C

⎞

⎟

⎟

⎠

(52)

where

A = −2t− C , (53)

C =
Γ

2
cos(∆φ/2) , (54)

S =
Γ√
2
sin(∆φ/2) , (55)

While in the odd subspace, the basis is
⎛

⎜

⎜

⎝

|A⟩
|B⟩
|E⟩

|ABE⟩

⎞

⎟

⎟

⎠

(56)

and the Hamiltonian reads:

Hodd = A+

⎛

⎜

⎜

⎝

2t+ C 0 0 0
0 2t− C iS iS
0 −iS C C
0 −iS C 4t+ C

⎞

⎟

⎟

⎠

. (57)

Even and odd parities are easily related by Particle-Hole symmetry, therefore the spectrum itself is P-H symmetric.
Differences between exact and second order calculation, mainly involve higher energy excitations, while the low-lying
ones (closer to Fermi) are practically exact even in the perturbative approach (as easily understood by the matrix
structure of the Hamiltonians in Eq.s 52,57.

FIG. 8: Exact spectrum as a function of the phase difference. Different colors correspond to different fermion parities. Exact
(points) and second order (full lines) results are plotted.

π 2π 4π0

ΔΦ

2t

-2t

H� = �� ei��/2 c†LNcR1 + h.c.
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Second Order Perturbation theory

We can consider second order in Γ/t correction to the hamiltonian H = HL +HR. Within this approximation the
effective second order Hamiltonian is:

Heff = EA

(

d̃†Ad̃A −
1

2

)

+ EB

(

d̃†B d̃B −
1

2

)

+ EE

(

d̃†endd̃end −
1

2

)

(47)

where, now, the d̃ fermions are new effective fermions renormalized by the perturbation, and

EA/B = 2t±
Γ

2
+

Γ2

32t
(5− 3cos(∆φ)) , (48)

Eend = Γ cos(∆φ/2) . (49)

The Hamiltonian Heff is now diagonal and the spectrum is depicted in Fig. 7.

FIG. 7: Second order spectrum as a function of the phase difference. Different colors correspond to different fermion parities.

We can, thus, have two different current states:

I± = ±
eΓ

2!
sin(∆φ/2)−

3eΓ2

16!t
sin(∆φ) (50)

where ± branches correspond to different occupations of the dend fermion. The first term is the so called fractional
Jopsephson effect, while the second one, as obvious, corresponds to the conventional pair tunneling.

Exact diagonalization results

The Hamiltonian H = HL +HR +HΓ can be diagonalized exactly. However, we here notice that the Hamiltonian
commutes with the fermion parity (occupation number either changes by 0 or 2 in H) therefore we can diagonalize
the even and odd occupation numbers separately. In the even subspace the basis vectors are

⎛

⎜

⎜

⎝

|0⟩
|AB⟩
|AE⟩
|BE⟩

⎞

⎟

⎟

⎠

(51)

Nel BCS uno costruisce due repliche del metallo: una in termine di elettroni e una in termine di buche, le 
accoppia  e ottiene due branche di eccitazione. Una solo di esse è fisica, l’altra è una replica ottenibile 
mediante coniugazione di carica (P-H pairs). Pertanto solo metà degli stati bastano a descrivere il sistema. 
Ci sono casi in cui un singolo stato spaiato a energia zero appare. Usando la descrizione di sopra è come 
se a energia zero ci sia mezzo stato. Questo mezzo stato ha le proprietà di un fermione di majorana. 
Questo non accade in tutti i superconduttori ordinari. Kitaev ha dimostrato che queste eccitazioni a energia 
zero possono apparire in un filo superconduttivo in onda p



switching from 0- to 
π-junction 

d-wave superconductors:

3

for i ̸= 0 or the I2 identity matrix for i = 0. They refer
to the Nambu and spin degrees of freedom respectively.
We will calculate numerically the low lying part of the

spectrum of the Hamiltonian of Eq.5 following an ap-
proach a’la Blonder Tinhkam Klapwijk [13].
In order to simplify calculations we will work in the

limit L/ξ << 1. This assumption is physically rea-
sonable for most of the etherostructures (per l’YBCO
non tanto vero!!!), moreover, as shown in [3], it does
not alter the generality of our results affecting them
only quantitatively and not qualitatively. Matching
conditions on the wavefunction and on its first deriva-
tive, in this limit, reduces to ψ(0−) = ψ(0+) and
∂xψ(x)|x=0− = ∂xψ(x)|x=0+ . In agreement with [3, 4],
depending on the hamiltonian parameters we find a topo-
logically non-trivial phase whose boundary states are Ma-
jorana Fermions and a topologically trivial phase, where
no Majorana states are present. The latter is adia-
batically deformable to the usual Andreev physics [13]
whereas the former deserves more attention.

FIG. 2: default2

The characteristic signature of the topological nontriv-
ial phase is the presence of odd number of crossings in
the Andreev spectrum in contrast with the TP trivial
phase where number of crossings is even as required by
2π periodicity of the Hamiltonian.
The conditions on the Hamiltonian parameters to have

Majorana Fermions in the case of s-wave superconductiv-
ity have been derived here [3]. In our case it can be shown
that topologically protected zero energyMajorana Bound
states appear as long as B2 > µ2 + max(|∆L|2, |∆R|2).
Throughout the paper we will focus on this limit.
As usual, the occurrence of MBS can be revealed by

the dispersion relation of Andreev levels. For αR < π/4

the Andreev levels show a single crossing at φ = π. This
is consistent with what found with conventional s-wave
superconductivity.
Interestingly enough, the Andreev spectrum shows an

unexpected behavior when αR > π/4 i.e. when the effec-
tive induced gaps have opposite signs. In this case the
zero energy Majorana state moves from φ = π to φ = 0.
This can be naively interpreted with the following ar-
gument: when α < π/4 the gaps ∆L and ∆R have the
same sign, therefore, in order to realize the gap inversion
between the two regions S1 and S2, necessary for the
topological protection, we need a to introduce a phase
difference π between the two order parameter which is
unnecessary in the case α > π/4 where the two gaps
have already opposite signs and the Majorana Fermion
localizes at φ = 0.
However this naive argument does not forbid, in prin-

ciple, the presence of MF’s at φ ̸= 0,π provided that the
gap inversion condition is realized. This is prevented,
however, by symmetry arguments.
In order to have MF’s the effective Hamiltonian pre-

serving particle-hole invariance has to be real: this con-
dition is only realized at φ = 0,π.
In Fig. 3 the dispersion relation of Majorana Bound

states is shown as a function of the phase difference be-
tween the superconducting pads φ. Independently of the
relative strength of the two gaps the MF’s are forced
to be at φ = 0,π. However the shape of the disper-
sion relation changes and, more interestingly, the cur-
rent increases with the gaps reaching its maximum when
α = 0orπ/2 i.e. when ∆L = ±∆R (maximum gaps).
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We acknowledge important discussions with D.
Bercioux and D. Urban...

[1] A. Y. Kitaev, Annals of Physics (N.Y.) p. 303 (2003).

Zero modes of the 

theory  is a  BMF !

(θ=0)

P.Lucignano, et al  PRB 2012
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Majorana Fermions and a Topological Phase Transition
in Semiconductor-Superconductor Heterostructures

Roman M. Lutchyn, Jay D. Sau, and S. Das Sarma
Joint Quantum Institute and Condensed Matter Theory Center, Department of Physics, University of Maryland,

College Park, Maryland 20742-4111, USA
(Received 24 February 2010; published 13 August 2010)

We propose and analyze theoretically an experimental setup for detecting the elusive Majorana particle

in semiconductor-superconductor heterostructures. The experimental system consists of one-dimensional

semiconductor wire with strong spin-orbit Rashba interaction embedded into a superconducting quantum

interference device. We show that the energy spectra of the Andreev bound states at the junction are

qualitatively different in topologically trivial (i.e., not containing any Majorana) and nontrivial phases

having an even and odd number of crossings at zero energy, respectively. The measurement of the

supercurrent through the junction allows one to discern topologically distinct phases and observe a

topological phase transition by simply changing the in-plane magnetic field or the gate voltage. The

observation of this phase transition will be a direct demonstration of the existence of Majorana particles.

DOI: 10.1103/PhysRevLett.105.077001 PACS numbers: 74.78.Fk, 03.67.Lx, 71.10.Pm, 74.45.+c

The Majorana fermions were envisioned by Majorana
[1] in 1937 as fundamental constituents of nature.
Majorana particles are intriguing and exotic because each
Majorana particle is its own antiparticle unlike Dirac fer-
mions where electrons and positrons (or holes) are distinct.
Recently, the search for Majorana fermions has focused on
solid state systems where many-body ground states may
have fundamental quasiparticle excitations which are
Majorana fermions [2]. Although the emergence of
Majorana excitations, which are effectively fractionalized
objects (anyons) obeying non-Abelian statistics rather than
Fermi or Bose statistics [3], in solid state systems is by
itself an extraordinary phenomenon, what has attracted a
great deal of attention is the possibility of carrying out fault
tolerant topological quantum computation in 2D systems
using these Majorana particles [4]. Such topological quan-
tum computation, in contrast to ordinary quantum compu-
tation, would not require any quantum error correction
since the Majorana excitations are immune to local noise
by virtue of their nonlocal ‘‘topological’’ (TP) nature [3,4].
The direct experimental observation of Majorana particles
in solid state systems would therefore be a true break-
through both from the perspective of fundamental physics
of fractional statistics in nature and the techno-
logical perspective of building a working quantum com-
puter. It is therefore not surprising that there have been
several recent proposals for the experimental realization of
Majorana fermions (MFs) in solid state systems [5–7].

In this Letter, we propose and validate theoretically a
specific experimental setup for the direct observation of
MFs in one of the simplest proposed solid state systems—
1D semiconductor-superconductor heterostructure based
quantum wires. This particular heterostructure consisting
of an ordinary superconductor (e.g., Nb) and a semicon-
ductor with strong spin-orbit coupling (e.g., InAs) as pro-
posed originally by Sau et al. [6] and expanded by Alicea

[7], is simple and does not require any specialized materi-
als for producing Majorana modes. The superconductor
(SC) induces superconductivity in the semiconductor
(SM) where the presence of spin-orbit coupling leads to
the existence of MFs at the ends of the wire. We show that
in a suitable geometry (see Fig. 1) the superconducting
state in the semiconductor undergoes a phase transition, as
the chemical potential or magnetic field is tuned, from a
superconducting state containing Majorana modes at the
junction to an ordinary nontopological superconducting
state with no Majorana modes at the junction. We establish
that such a transition is indeed feasible to observe in the
laboratory in semiconductor nanowires, showing in the
process how one can directly experimentally discover the
Majorana mode in the SM/SC heterostructure.
Specifically, we consider here 1D InAs nanowire

proximity coupled with an s-wave superconductor (e.g.,

FIG. 1 (color online). (a) Top view of SM/SC heterostructure
embedded into small-inductance SC loop. (b) Side view of the
SM/SC heterostructure. The nanowire can be top gated to control
chemical potential. Here we assume L ! ! and L1 " ! with !
being the SC coherence length. (c) Proposed readout scheme for
the Andreev energy levels. Inductively coupled rf-driven tank
circuit allows time-resolved measuring of the effective state-
dependent Josephson inductance [19].
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(gNb ∼ 1) and InAs (gInAs ∼ 35) the in plane magnetic
field B ∼ 0.1T can open a sizable Zeeman gap in InAs
(Vx ≤ 1K) without substantially suppressing the super-
conductivity in Nb .
This is one of the key sentences which inspired us to ex-

plore cuprate high Tc superconductors as promising can-
didate for the search of Majorana Fermions in solid state
etherostructures.
In other words, on the one hand we need a super-

conducting gap, on the other hand the magnetic field
should be large enough to open a sizable zeeman gap in
the semiconductor without reducing the superconduct-
ing gap. High Tc YBCO superconductors have a sizable
gap, along the aninodal directions [? ] which is poorly

affected by magnetic fields. [Francesco qui serve una
stima e una conferma di quanto ho scritto: quanto
si riduce la gap dell’YBCO con campi magnetici
dell’ordine (o leggermente superiori a 0.1 T) ? In-
oltre mi serve una referenza e un numero per il
g-factor dell’YBCO! ]
Here we will briefly introduce our model and then we

will discuss our results.
We assume that the wire length LTOT is much longer

than the phase coherence length ξ and the normal region
LN << ξ. These assumptions assure that, on the one
hand the superconducting regions can be considered as
bulk, and, on the other hand, their coupling, through N
is fully coherent.

We adopt a mean field Bodoliubov De Gennes approach. The normal region is described by the Hamiltonian

H0 =

∫ ∞

−∞

dxψ†
α(x)

((

−
∂2
x

2m∗
− µ

)

I2 + iσy∂x +Bxσx

)

αβ

ψβ(x) (1)

where m∗, µ and α are the effective mass, the chemical potential and the Rashba spin orbit coupling strength
respectively and x is the coordinate along the wire. Bx = gµBB/2 is the effective spin splitting due to a magnetic
field B = (B, 0, 0) along the wire direction (g is the InAs g-factor). Superconductivity in the proximized regions is
described by the usual electron pairing:

HS = H0 +

∫ ∞

−∞

dx
(

∆(x)ψ†
↑(x)ψ

†
↑(x) + h.c.

)

, (2)

where the gap, according to the Fig.1 is

∆(x) =

⎧

⎨

⎩

∆L for x < −LN/2 ,
0 for − LN/2 ≤ x ≤ LN/2 ,
∆R for x > LN/2 ,

(3)

with

∆L = ∆0cos(2(θ − αL)) ,
∆R = ∆0cos(2(θ − αR)) exp(−iϕ) .

(4)

Depending on the relative orientation of the order parameters of the superconducting regions and of the nanowire many
cases emerge, depicting a very rich and complicated scenario. In what follows, we will consider only few significative
examples.
First of all, we will choose θ = 0, this will not affect the results as both αR and αL can still take all the values

in [0, 2π[. However what is really relevant is the projection of the gap along the wire direction, therefore, in order
to further simplify the scenario we will focus our attention on the case αL = 0. By rotating αR from 0 to π/2 we
can explore with continuity all the configurations from lobe-lobe (+/+) to lobe-antilobe(+/-). Surprisingly enough,
qualitatively different scenarios will occur, depending on the relative orientation of the order parameters lobes.
In the real space Nambu basis ψ(x) = [u↑(x), u↓(x), v↓(x),−v↑(x)] the full Hamiltonian can be recast in the compact

form:

H̃ =

(

−
∂2
x

2m∗
σ0 + i∂xσy

)

τz +Bxσxτ0 +∆(x)τx (5)

where we have introduced new coordinates x = m∗αx
and energies E = E/m∗α2 and expressed the Hamilto-

nian in term of the tensor product of matrices τi×σj with
{i, j} ∈ {0, 1, 2, 3}. τi and σi are the usual Pauli matrices
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II. MAJORANA FERMION STATES LOCALIZED AT THE ⇡� AND THE 0�JUNCTION OF AN HTS
TRICRYSTAL ISOLATED ISLAND

A. Introductory remarks and physical picture

FIG. 2: (Color online) d� wave tricrystal with one ⇡�junction and two 0� junctions

As reported in the main text, a Majorana bound state (MBS) can be present at the boundary between a topologically
non trivial superconducting nanowire and d�wave HTS banks, under appropriate conditions. The MBS is localized at
a ⇡�junction, or at a 0�junction,when the superconducting order parameter has a 0 or ⇡ phase di↵erence, respectively.
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YBCO:    TRICRYSTAL GEOMETRY:  

in inner diameter, 10 !m in width) were patterned by a
standard ion-milling photolithographic technique. In ad-
dition to the three-junction ring located at the tricrystal
meeting point, two two-junction rings and one ring with
no junction were also made as controls (see Fig. 11). The
control rings are in the zero-ring configuration and
should exhibit the standard integer flux quantization.
Current-voltage measurements on test microbridges (25
!m long and 10 !m wide) perpendicular to each of the
three grain boundaries indicated that (1) electrical resis-
tance as a function of temperature, R(T), showed typi-
cal features of a grain-boundary weak-link junction; (2)
the I-V curve displayed typical resistively shunted
Josephson-junction characteristics; and (3) the values of
the critical current for all three junctions agreed within
20% (Ic"1.8 mA). Since the estimated self-inductance
of the ring L was 100 pH, the IcL product was about
100#0 , easily satisfying the condition IcL!#0 for ob-
serving the half-integer flux quantization.

2. Magnetic-flux imaging

A high-resolution scanning SQUID microscope (Kirt-
ley, Ketchen, et al., 1995) was used to directly measure
the magnetic flux threading through the superconduct-
ing cuprate rings in the tricrystal magnetometry experi-
ments. The SQUID’s used for these experiments were
low-Tc Nb-AlOx-Nb trilayer SQUID’s, fabricated using
the planarized, all-refractory technology for supercon-
ductivity (PARTS) process (Ketchen et al., 1991; Fig.
12), with SQUID noise about 2"10#6#0 /Hz1/2.

Since the pickup loops in these SQUID’s were photo-
lithographically patterned with well-shielded leads (Fig.
12), it was possible to quantitatively model the magnetic

fields imaged by them. In this modeling, the finite width
of the lines making up the loop were accounted for by
taking the effective loop pickup area as the geometric
mean area $rinrout (Ketchen et al., 1985). Two genera-
tions of SQUID pickup loops were used for these ex-
periments. The first [Fig. 12(b)] had octagonal pickup
loops 10 !m in diameter (center to center) with leads 1.2
!m wide, spaced by 2.4 !m. This loop was modeled as
an octagonal pickup area 9.9 !m in diameter, with an
additional slot area 19 !m long and 2.4 !m wide. The
second-generation loop [Fig. 12(c)] had better shielded
leads, with minimum linewidths and spacings of 0.8 !m.
These loops were modeled with effective pickup areas,
each of which was the sum of the loop area itself plus an
additional area from the shielding of the leads close to
the loop, to account for flux-focusing effects. As an ex-
ample, the smallest of these loops [Fig. 12(c)], with a
4-!m-diameter octagonal pickup loop, was modeled as
an octagonal area 3.9 !m in diameter, with an additional
area 4 !m by 4 !m, from which one-third of the flux was
added to the ring flux.

Figure 13 shows a scanning SQUID microscope image
of a three-junction YBCO ring in the original tricrystal
magnetometry experiments (Tsuei et al., 1994). The

FIG. 11. Experimental configuration for the $-ring tricrystal
experiment of Tsuei et al. (1994). The central, three-junction
ring is a $ ring, which should show half-integer flux quantiza-
tion for a dx2#y2 superconductor, and the two-junction rings
and zero-junction ring are zero rings, which should show inte-
ger flux quantization, independent of the pairing symmetry.

FIG. 12. Schematic diagram (not to scale) of an IBM SQUID
magnetometer and effective pickup areas: (a) SQUID magne-
tometer with an integrated, shielded pickup loop; (b) effective
pickup area of the first-generation IBM integrated pickup loop
SQUID’s; (c) effective pickup area of the second-generation
IBM integrated pickup loop SQUID’s.
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sample was cooled to 4.2 K and imaged in a magnetic
field estimated to be less than 0.4 !T. The interpretation
of this image is that the three outer control rings have no
magnetic flux trapped in them, but that the central
three-junction ring has "0/2 total flux in it. The control
rings are visible due to a slight change in the inductance
of the SQUID when it passes over the superconducting
rings.

Four different techniques were used to determine the
amount of flux in the rings in these experiments (Fig.
14). The first was to calculate directly the SQUID signal
for a given flux magnitude in the rings. Since the width
of the rings is comparable to the 10-!m diameter of the
pickup loops used to image these samples, the currents
in these rings can be modeled as infinitely narrow lines
of current. The mutual inductance M(#! ) between a
pickup loop tilted at an angle $ from the sample x-y
plane in the x-z plane and a circular wire of radius R at
the origin can be written as

M%#! &!
!0R
4' ! dx dy!

0

2'
d(

"
cos $%R#y sin (#x cos (&#sin $%z cos (&

%x2$y2$z2#2xR cos (#2yR sin (&3/2 ,

(41)

where the integral dx dy is over the plane of the pickup
loop, and the vector #! specifies the displacement of the
pickup loop with respect to the ring in the x-y plane.

Numerical integration of Eq. (41), using the pickup
loop geometry of Fig. 12(b), a tilt angle of 20°, and a
distance between the pickup loop center and the point
of contact of the SQUID substrate with the sample sur-
face of 10 !m, gives a mutual inductance of 2.4 pH be-
tween the pickup loop and one of the rings when the
pickup loop is centered above the ring. The ring induc-
tance was calculated to be 99%5 pH. This means that

the fields induced by the pickup loop in the ring are a
small perturbation of the self-fields induced by the cir-
culating currents in the rings. A given flux " threading a
superconducting ring with self-inductance L induces a

FIG. 13. Three-dimensional rendering of a scanning SQUID microscope image of a thin-film YBCO tricrystal ring sample, cooled
and imaged in nominally zero magnetic field. The outer control rings have no flux in them; the central three-junction ring has half
of a superconducting quantum of flux spontaneously generated in it [Color].

FIG. 14. Four techniques for demonstrating the half integer
flux-quantum effect in tricrystal ring samples: (a) Direct calcu-
lation, assuming the central ring has "0/2!h/4e flux in it. (b)
Observation of the change in the SQUID signal as individual
vortices enter the three-junction ring, with the pickup loop
centered on the ring. (c) Measurements of the absolute values
of the pickup loop flux when it is directly above the zero-
junction ring minus that above !, the two-junction ring and ",
the three-junction ring, for a number of cooldowns. (d) Mea-
surements of the SQUID signal directly above the rings, as a
function of externally applied field.
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ground state !!0, while the " ring has a ladder of states
shifted by !0/2 from those of the 0 state, centered on a
doubly degenerate ground state with (in the limit !Ic!L
"!0) #!0/2 spontaneous magnetization.

In short, in the limit !Ic!L"!0 ,

!!n!0 for N even #0 ring$ (37)

and

!!" n$
1
2 #!0 for N odd #" ring$, (38)

where N is an integer. The last, half-integer flux-
quantum effect,13 is in striking contrast to the integer
flux-quantum effect observed by Gough et al. (1987).

C. Paramagnetic Meissner effect

Conventional superconductors generally tend to expel
a small external magnetic field upon cooling into the
superconducting state. This ‘‘Meissner effect’’ leads to
complete or (due to remnant trapped flux, e.g., in ce-
ramic samples composed of grains and voids) partial dia-
magnetism. Therefore it came as a surprise when a para-
magnetic signal was observed in ceramic Bi2Sr2CaCu2O8
(Svedlindh et al., 1989; Braunisch et al., 1992, 1993; Hei-
nzel, 1993; Niskanen, 1994; Shrivastava, 1994). The ori-
gin of this effect has been controversial. Braunisch et al.
(1992, 1993) and Kusmartsev (1992) proposed that some
form of spontaneous orbital currents was responsible,
giving rise to magnetic moments that could be aligned
by the magnetic field. This proposal for spontaneous or-
bital currents (the Wohlleben effect) in turn led Sigrist
and Rice (1992, 1995) to propose that an intrinsic dx2%y2

symmetry of the superconducting state would naturally
lead to frustrated Josephson-junction circuits (" rings)
in a ceramic sample where randomly oriented grains
contact each other. The origin of this explanation for
paramagnetic shielding can be understood from Fig. 6: if
2"LIc /!0&1, a zero ring has an induced flux with the

opposite sign to the applied flux for small applied fields
(diamagnetic shielding), but a " ring has an induced flux
with the same sign as the applied flux (paramagnetic
shielding). Further, if 2"LIc /!0'1, then the " ring ex-
hibits spontaneous magnetization that is larger than the
applied flux for small applied fields. The paramagnetic
shielding in these samples has been associated with
anomalies in other properties (Khomskii, 1994; Sigrist
and Rice, 1995), including microwave absorption (Brau-
nisch et al., 1992; Knauf, 1998), second harmonics in the
magnetic susceptibility (Heinzel et al., 1993), and noise
in the magnetization (Magnusson et al., 1997), which can
also be understood in terms of the magnetic properties
of superconducting " rings (Khomskii, 1994; Sigrist and
Rice, 1995).

However, paramagnetic shielding has also been ob-
served in bulk Nb (Thompson et al., 1995; Kostić et al.,
1996; Pŏst et al., 1998) and Al disks (Geim et al., 1998).
Both are presumably conventional s-wave supercon-
ductors. This has been taken as evidence against the in-
terpretation of the Wohlleben effect in terms of intrinsic
superconducting " rings (Kostić et al., 1996; Geim et al.,
1998). For large Nb disks it has been suggested that, due
to sample inhomogeneity, during the cooling process the
surface region nucleates superconductivity before the
bulk, so that magnetic flux in the sample is compressed
and creates an enhanced magnetization (Koshelev and
Larkin, 1995; Obhukov, 1998). For small disks, flux cap-
tured at the third (surface) critical field inside the super-
conducting sheath compresses into a smaller volume, al-
lowing extra flux to penetrate at the surface
(Moschalkov et al., 1997; Geim et al., 1998). A small

13Spontaneous magnetization upon entering the supercon-
ducting state was historically the first-discussed aspect (Bulae-
vski et al., 1977), and is arguably the most striking aspect of the
physics of superconducting samples in a frustrated geometry.
For the sake of simplicity, we have confined the above discus-
sion to a ring geometry. In this geometry the spontaneous
magnetization for a frustrated ring can be less than !0/2 if LIc
is comparable to !0 or if there is broken time-reversal symme-
try. However, to date, symmetry tests on the widest variety of
the cuprates (Table IV) have been performed in a blanket film
geometry (Sec. IV.C.4). In this geometry, the total magnetic
field spontaneously generated in the sample must be exactly
!0/2 for a frustrated sample, in the absence of broken time-
reversal symmetry, independent of the strength of the Joseph-
son coupling across the grain boundaries. Further, to date
there is no evidence for broken time-reversal symmetry from
tricrystal or thin-film SQUID magnetometry experiments in
any of the cuprates, at any temperature (Sec. IV.E.3). There-
fore we use the term ‘‘half-integer flux-quantum effect’’ ge-
nerically in this review.

FIG. 7. Free energy of a superconducting ring with a single
junction in different configurations, with zero external applied
field [Eq. (36)]: (a) zero ring; (b) " ring. Here %!2"LIc /!0
!5.
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0-loop

π-loop

SQUID
Φo/2

free energy

Js
d!!C4n"2,4n!"2 cos"#4n"2 $%L&cos"#4n!"2 $%R&

"S4n"2,4n!"2 sin"#4n"2 $%L&sin"#4n!"2 $%R&'

#sin ( , (31)

which can be rewritten as

Js
d!!C2,2 cos#2%L$cos#2%R$"S2,2 sin#2%L$sin#2%R$

"¯'sin ( . (32)

It is interesting to note that, in Eq. (32), the first term
is just the Sigrist-Rice clean-limit formula [Eq. (26)]. If
S2,2!$C2,2 , the sum of the first two terms leads to the
dirty-limit formula [Eq. (27)].

B. Flux quantization in a superconducting ring

The most striking effect associated with sign changes
in the critical current, suggested by Bulaevskii et al.
(1977), Geshkenbein and Larkin (1986), and Sigrist and
Rice (1992), is that a superconducting ring containing an
odd number of ) shifts will (under certain conditions)
spontaneously generate a magnetic field with half of the
conventional flux quantization.12

The flux quantization of a superconducting ring with
self-inductance L can be expressed (based on the funda-
mental requirement of single-valuedness of the macro-
scopic pair wave function) by

*a"IsL"
*o

2) +
ij

( ij!n*o . (33)

The supercurrent circulating in the ring is given by

Is!Ic
ij#% i ,% j$sin ( ij , (34)

where Ic
ij(% i ,% j) is the critical current of the junction

between superconducting electrodes i and j , and % i and
% j are the corresponding angles of the crystallographic
axes with respect to the junction interface. The gauge-
invariant phase difference across the junction ( ij is de-
fined as before [Eq. (20)]. Flux quantization of a multi-
ply connected superconductor represents one of the
most fundamental demonstrations of macroscopic phase
coherence (i.e., off-diagonal long-range order) in the su-
perconducting state (Yang, 1962). The condition of flux
quantization as expressed by Eq. (33) is robust and valid
for a superconducting ring with any pairing symmetry.
For a ring with an odd number of sign changes in the
circulating supercurrent Is , it is sufficient to consider the
case in which only one critical current is negative (say,
Ic

12!$!Ic
12!). Then Is!!Ic

12!sin((12")). In the absence
of an external field, *a!0, n!0 for the ground state,
the combined conditions of Eqs. (33) and (34) lead to
(Tsuei et al., 1994)

Is!
)

2)" L
*0

#"
1

!Ic
12!

"
1

Ic
23 "¯

$
*0

2L
, (35)

provided that !Ic
12!L%*0 , . . . ,!Ic

ij!L%*0 . The ground
state of a superconducting ring containing an odd num-
ber of sign changes () ring) has a spontaneous magneti-
zation of a half magnetic-flux quantum (i.e., IsL
,(1/2)*0) when the external field is zero. If the ring
contains an even number of ) shifts, including no )
shifts at all (zero ring), Is!0 in the ground state, and the
magnetic-flux state has the standard integral flux quan-
tization.

Alternately, the magnetic flux * through a ring with
one Josephson junction can be studied by considering
the free energy:

U#* ,*a$!
*0

2

2L % " *$*a

*0
# 2

$" L!Ic!
)*0

#
#cos" 2)

*0
*"- # & , (36)

where -!0,) for a zero ring and a ) ring, respectively.
The ground state of the single-junction ring can be

obtained by minimizing U(* ,*a) to obtain * as a func-
tion of *a (Sigrist and Rice, 1992; Fig. 6). Plots of the
free energy vs * at *a!0 (Fig. 7) show that the zero
ring has a ladder of metastable states centered at the

12Volovik and Mineev (1976), in a discussion of vortices in
He3, pointed out that an unconventional order parameter can
lead to a vortex quantization with half of the conventional
magnitude.

FIG. 6. Minimum-energy solution of Eq. (36) for Is
!(*$*a)/L as a function of the externally applied flux
*a /*0 : (a) for a zero ring; (b) for a ) ring. Dashed line, (
!2)LIc /*0!0.5; solid line, (!2.0. For small applied fields
and (&1, the shielding currents oppose the applied flux for the
zero ring (diamagnetic shielding) and are aligned with the ap-
plied flux for the ) ring (paramagnetic shieding). For ('1, the
) ring has spontaneous magnetization with the same sign as
small externally applied fields.
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Capitolo 2

Proprietà elettroniche di
isolanti topologici 3D

2.1 Modello per gli isolanti topologici 3D.
Il modello Hamiltoniano presentato e discusso in tale paragrafo fa uso dei risultati
teorici circa l’effetto dell’accoppiamento Spin-Orbita sugli stati elettronici in mate-
riali caratterizzati da un elevato numero atomico Z.
Ricordando la procedura esposta nella costruzione di un modello efficace alla de-
scrizione di stati di edge presenti in un isolante topologico bidimensionale, si evi-
denzia come il fenomeno, centrale nella comprensione delle proprietà del sistema,
dell’inversione tra bande ad opera del forte accoppiamento Spin-Orbita, rientras-
se nell’ambito di una più generale descrizione quantistico-relativistica del sistema
stesso. La dispersione di fermioni a massa nulla1 ottenuta nel risolvere l’equazione
di Dirac, suggerisce l’estensione del modello (ora facilmente generalizzabile) al caso
di stati di conduzione in isolanti topologici tridimensionali. Se da un lato, infatti,
l’inversione tra la banda di conduzione e quella di valenza, rende chiara la necessità
di una base di stati ibridi in cui si tiene conto sia del possibile orientamento dello
spin che della differente parità orbitale delle stesse, dall’altro è proprio il formalismo
spinoriale della meccanica quantistica relativistica a giustificare le dimensioni dello
spazio in cui viene modellizzato il materiale.
Dopo tali delucidazioni risulta chiaro che una base che soddisfi tali requisiti è del
tipo :

( g" , u" , g# , u# ) (2.1)

in cui  u� è uno stato dispari per inversione spaziale ( ~r ! �~r ) , mentre  g�

rappresenta uno stato pari per la medesima trasformazione.
E’ ora, in tale base, possibile esibire una rappresentazione dell’Hamiltoniana efficace
[9], che sia adatta alla descrizione delle proprietà elettroniche del sistema :

H0[~r] = ~vF

0

BB@

�M� µ i@z 0 i(@x � i@y)
i@z M� µ i(@x � i@y) 0

0 i(@x + i@y) �M� µ �i@z
i(@x + i@y) 0 �i@z M� µ

1

CCA (2.2)

Dove vF rappresenta la velocità di Fermi2. del sistema .
1D’ora in avanti per uniformarsi alla letteratura si utilizzerà la nomenclatura inglese Dirac

massless fermion.
2La velocità di Fermi è la velocità dei costituenti dei un sistema fermionico sulla superficie, nello

spazio delle fasi, cui corrisponde la massima energia assumibile allo stato fondamentale (Energia
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3

Here  
g�

is even for ~k ! �~k, while  
u�

is odd for ~k ! �~k. Other important symmetries that could be present
are the particle-hole symmetry ⌅ and the chiral symmetry �. ⌅ = �i�y⌧xK is an antiunitary symmetry such
that H(k) = ⌅H(�k)⌅�1. The chiral symmetry � = i · ⇥⌅ is a unitary transformation that changes the sign of
the Hamiltonian without reversing the sign of k. In presence of a non zero chemical potential µ the Hamiltonian
of (1) has neither the particle-hole symmetry ⌅ nor the chiral symmetry �. In fact, ⌅T H(µ)⌅ = �H(�µ) and
�†H(µ)� = H(�µ). Hence it belongs to the class AII of the Altland � Zirnbauer classification[? ]: ⇥2 = �1,
⌅2 = 0, �2 = 0.

Bulk eigenfunctions correspond to E = ±p
M2 + k2 + k2

z

where k2 = k2
x

+ k2
y

= k+k� and k± = k
x

± ik
y

. and
wavefunctions

���E,~k, 1
E

=
1
N

0BB@
E + M

k
z

0
k+

1CCA eikzzeikk·rk ,
���E,~k, 2

E
=

1
N

0BB@
0

k�
E + M
�k

z

1CCA eikzzeikk·rk (2)

The relative sign between M and C1,2 qualifies the insulator as being topologically non trivial or trivial. In Appendix
C we derive the boundary states for a flat surface orthogonal to the ẑ�axis, with the simplifying assumption that
C1,2 = 0 and that M changes sign at the boundary. This provides localized states at the boundary which decay
exponentially with the same decay length 1/M on both sides of the boundary. The simplifying assumption allows for
an analytical treatment of the matching condition[? ]. The reduced Hamiltonian for the boundary states conserves
their helicity, ~� · ~k.

Localized states at the surface could be:

��1; kk
↵

=
1
N

0BB@
M + E

iM sign(z)
0

k+

1CCA e�M |z|eikk·rk ,
��2; kk

↵
= 1

N

0BB@
0

k�
M + E

�iM sign(z)

1CCA e�M |z|eikk·rk eigenvalue E = ±k (3)

They are derived from eigenstates of the Hamiltonian in k�space, continued to imaginary k
z

:

H[M ; z] ⇧
R

=
1
2

0BB@
M i M sign(z) 0 k�

i M sign(z) �M k� 0
0 k+ M �i M sign(z)

k+ 0 �iM sign(z) �M

1CCA . (4)

Note that the parity g/u is respected by the given form. However, so as they stand, they are not continuous at z = 0.
Hence they are not a physical state. Let us introduce the time reversed states where ⇥ = i�

y

⌦ I2⇥2K. Here K is the
complex conjugation, �

i

are the Pauli matrices in the spin space and ⌧
i

are the Pauli matrices acting in the orbital
space. I2⇥2 is the 2⇥ 2 identity. The time reversed states ( z > 0) :

��⇥1; kk
↵

=
1
N

0BB@
0

k�
�(M + E)

iM

1CCA e�Mze�ikk·rk = � ��2;�kk
↵

,
��⇥2; kk

↵
=

1
N

0BB@
M + E

iM
0
�k+

1CCA e�Mze�ikk·rk =
��1;�kk

↵
eigenvalue E = ±k (5)

Note that the Hamiltonian of Eq.(??) is non real so that these states are the eigenstates of the transformed Hamiltonian
⇥H⇥† = H(�kk, z): The time reversed states have a factor e�Mze�ikk·rk . Let P be the space inversion operator
~r ! �~r. The application of P changes rk ! �rk and z ! �⇣. The states P

��⇥1/2±; kk
↵

have a factor eMzeikk·rk

which converges for z < 0. Note that P⇥H⇥†P † = �H(�M). Therefore it is a good Hamiltonian for matching the
surface wavefunction for z > 0 to that for z < 0 with the correct exponentially decaying behavior on the two sides.
But, given i = 1, 2: ��P⇥i; kk

↵
= P⇥H⇥†P † ��P⇥i; kk

↵
= �H(�M)

��P⇥i; kk
↵

(6)

so that if
��i; kk↵ is eigenstate of H(M) with eigenvalue ±k,

��P⇥i; kk
↵

is eigenstate of H(�M) with eigenvalue ⌥k.
Il modello, inclusivo delle derivate seconde presenta stati di superficie che si annullano al bordo e decadono dentro
l’TI . Il cono di Dirac prevede un’avvolgimento dello spin in modo chirale L/R per la particella/buca, che decade

Bulk bands dispersion

⇥H0(~k)⇥�1 = H0(�~k) TR invariant 

p-h symmetric (μ=0)⌅H0(~k)⌅�1 = �H0(�~k)

conserves helicity  (μ=0) � = i ⇥⌅

Zhang et al. 2009
minimal model in the continuum limit:

at the   Γ point
_

�H0(~k)�
�1 = �H0(�~k)

⇥ = I ⌦ i�
y

K, ⌅ = �i⌧
y

⌦ �
x

K, � = ⌧
y

⌦ �
z



boundary states
At the boundary  with a trivial 

insulator, M changes sign:

e�|Mz|/~vFsurface state decays as          
inside TI
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In questo modo la restrizione della funzione d’onda è immaginata sempre deca-
dere verso l’interno del IT.
Emerge, dunque un elemento nuovo precedentemente non considerato precedente-
mente: una seconda superficie. La descrizione del bordo di strutture tridimensionali
da noi proposta, si ripresenta identica nel caso della seconda superficie.

Figura 2.5: Dipendeza spaziale della parametrizzazione M(z). In essa si tiene conto della doppia
inversione da imporre al segno di M e dunque, delle due possibili geometrie del sistema: IT (in
grigio) con intermezzo triviale (in bianco), oppure un bulk di IT centrato (in bianco) tra due
isolanti tradizionali (in grigio).

Applicando infatti, un’inversione spaziale (z ! �z) e cambiando in manie-
ra opportuna il segno della dispersione in kz (si garantisce la convergenza delle
funzioni d’onda sulla seconda superficie) come in Figura 2.5, è possibile mostrare
analiticamente le seguenti relazioni :

H[M ! �M, surf ] |R1i = �k |R1i (2.31)

H[M ! �M, iM ! �iM, surf ] |L2i = �k |L2i (2.32)

E’ quindi, a meno di complicazioni computazionali, affrontabile una trattazione
speculare per le due superfici, le quali avranno globalmente una coppia di stati a
dispersione lineare ciascuna. Siamo dunque giunti alla soluzione del quesito iniziale
enfatizzando in tal modo una caratteristica fondamentale del modello: nonostante
la doppia coppia di stati, ciascuna geometria o equivalentemente ciascuna superficie,
ammette un unico Cono di Dirac.
Dopo tali riflessioni è facile comprendere la sovrabbondanza del modello presentato.
Esso infatti, non si limita alla descrizione di una superficie ma include gli stati
elettronici dell’altra. Al fine di concentrare le nostre indagini sul solo piano di
separazione tra l’IT e l’isolante triviale notiamo come nel verificare le relazioni
(2.26) e (2.23) gli ingressi dei due blocchi 2 ⇥ 2 agiscono allo stesso modo sulle
rispettive componenti spinoriali. Partendo dunque da un modello a due bande,
precedentemente implementato da una base a 4 componenti ( g" , u" , g# , u# ),
nel limite z = 0, si ottiene una rappresentazione 2 ⇥ 2, definendo una base ridotta
mediante la relazione:

 a� =  g� +  u� (2.33)

In tale base gli autostati si rappresentano come :

|L1i = ⇧L |surf, ai /

k + ik�
k � ik+

�
|R2i = ⇧R |surf, ai /


k � ik�
k + ik+

�

Mentre volendo descrivere gli stati sulla seconda superficie mediante l’inversione

TI
non TI

TI z

k± = k
x

± i k
y

k =
q

k2
x

+ k2
y

= k+k�

��surf,+; kk
↵
=

0

BB@

M + k
k� + iM
M + k
k+ � iM

1

CCA

��������
M⇠0

e�
R z dz M(z) eikk·rk , E = +k

��surf,�; kk
↵
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FIG. 1: (color online) Sketch of the Kitaev chain with a
π−junction at the top point U . Red (blue) circles represent
γA(B) type MFs. Yellow ellipses signal strong coupling.

protected states would be the smoking gun evidence for
the existence of the MBS in this device. It is a weird case
that the breaking of the discrete symmetry (P) enforces
the time reversal symmetry to be restored.

Model Hamiltonian

We start considering a N-sites Kitaev chain of unitary
lattice spacing and full length L = 2N , with real inter
site hopping t. When folded in the shape of a ring the
system displays mirror symmetry across the vertical line
connecting points U and D between the top and the bot-
tom (see Fig. 1).

Our device can be described as two N-sites Majorana
wires (left (ℓ) and right (r)), coupled at the top of the
ring U by the weak electron tunneling of energy Γ. At
chemical potential µ = 0, in the presence of an electro-
magnetic vector potential A⃗, the gauge invariant Hamil-
tonian reads as H = Hℓ +Hr, with:

Hα =
N−1
∑

j=1

(

−
t

2
eigαjc†αjcαj+1 +

∆

2
ei(φαj+φαj+1)/2 cαj cαj+1 + h.c.

)

. (1)

Here α labels the ℓ and r side of the ring, cαj are spinless
Dirac fermions at the site j and ∆ is the superconducting
pairing, generating an effective p-wave superconductivity.
The phases gαj acquired in the hopping between the j site
and its nearest neighbor and the gauge invariant phase
φαj are defined as:

gαj = −
e

!c

∫ αj+1

αj
A⃗ · d⃗l , (2)

φαj = θαj −
2e

!c

∫ αj

ℓ1
A⃗ · d⃗l , (3)

where θαj is the phase of the superconducting order pa-
rameter.
At the top point U of the ring (see Fig.1) there is a

tunnel junction which allows for the fractional Josephson
coupling:

HU = −Γ
(

c†ℓ1crN + h.c.
)

, (4)

(Γ << t). For sake of further investigations, we explicitly
consider also the hopping term at the bottom point in the
ring D, where the ℓ and r chains are matched:

HD = −u t
(

c†ℓNcr1 + h.c.
)

. (5)

Here we will keep the dimensionless parameter u (which
may be complex) as a variable, to discuss also the limiting
case of u = 0, which corresponds to the ring cut at D,
with open ends.
The spinless Dirac fermions can be expressed in terms

of two species of Majorana fermions at each site of the
ring γα

A/Bj , such that:

γα
Bj = cαje

iφαj/2 + c†αje
−iφαj/2 , (6)

γα
Aj = −i

(

cαje
iφαj/2 − c†αje

−iφαj/2
)

. (7)

A π−Josephson Junction requires ∆ having opposite
signs at U, between ℓ1 and rN . In the gauge in which
∆ is real, the OP ∆ has to vanish somewhere along the
ring and we choose this point to be D with no loss of
generality. As a first step, to make the approach as sim-
plest as possible, deep in the topological phase, we will
adopt the Kitaev approximation, |∆| = t [1]all along the
chain and we choose ∆ = t in the ℓ region and ∆ = −t
in the r region of the ring. Thus, the chain Hamiltonian
becomes:

Hℓ +Hr = −i
t

2

N−1
∑

j=1

[

γℓ
Bjγ

ℓ
Aj+1 − γr

Ajγ
r
Bj+1

]

. (8)

Kitaev π-loop  
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Pictorially, this kind of hybridization can be represented
as in Fig.1. Blue (red) circles represent B (A)-type MFs.
The yellow ellipses denote effective strong coupling be-
tween nearest neighbor MFs. Were Eq.(8) the full Hamil-
tonian, the ℓ and r chains would dimerize with opposite
phases. In addition, four unpaired MFs appear in Fig.1:
two (the red/A ones) located at U and two (the blu/B

ones) at D.
To account for the extra interactions Γ and ut, fol-

lowing Ref. [25] we refermionize the Hamiltonian by in-
cluding HU + HD and by rearranging the MFs at the
boundaries. Three effective Dirac Fermions, dA, dB, dend
are required, located at the U weak link, and three more
ones, fA, fB, fend, at the D boundary, according to[26]:

Heff = i
2
√
2
tu

[

fend
(

fB − f †
A

)

− h.c.
]

+ t
[

d†AdB + h.c.
]

−Γ
2

[

sin ϕ
2

(

2d†enddend − 1
)

− i
√
2 cos ϕ

2

(

dend(dB + d†A)− h.c.
)

+ sin ϕ
2

(

dBdA + d†Ad
†
B + dAd

†
A − dBd

†
B

)]

,
(9)

where

ϕ = φℓ1 − φrN =
2e

!c

∮

A⃗ · dℓ⃗ . (10)

is the phase difference at the U weak link. The to-
tal energy only depends on the flux threading the ring,
Φ =

∮

A⃗ · dℓ⃗, in units of φo. This Bogolubov-de-Gennes
(BdG) Hamiltonian Heff changes sign under the opera-
tion Ξ of exchanging particles with holes and conserves

the Fermionic parity P = (−1)
∑

i f
†
i fi+d†

idi . It can be
shown that the low energy spectrum only depends on
the first term in the second line, which involves the Dirac
fermion dend =

(

γℓ
A1 + i γr

AN

)

/2, and on terms involving

fend, f
†
end with fend =

(

γr
B1 + i γℓ

BN

)

/2, which can be
obtained by perturbation theory from the first term of
the first line. In addition, residual interactions, not in-
cluded in Heff , can account for finite size effects. In
particular an extra coupling zαΓ ∝ e−N (α = ℓ, r) arises
from realistic long range interactions between the edge
MFs at each chain, when the simple t = |∆|[1] limitation
is relaxed.
We are led to the minimal 4X4 Hamiltonian in the

Majorana representation, just involving the four relevant
MFs:

HM = iΓ

⎛

⎜

⎜

⎝

0 sin ϕ
2 zℓ 0

− sin ϕ
2 0 0 zr

−zℓ 0 0 u′

0 −zr −u′ 0

⎞

⎟

⎟

⎠

, (11)

in the basis
[

γℓ
A1, γ

r
AN , γℓ

BN , γr
B1

]

, with u′ = ut/Γ.
Ring cut at the bottom point : u = 0.

When the control parameter u is set to zero, the ring is
cut at the bottom point D and the system is equivalent
to a linear topological π junction with phase difference ϕ
and open ends. In this case, if the finite size couplings zα
are neglected (see Fig. 2 left panel), there is a crossing at
zero energy and zero flux due to the MFs at the U point,
signalling a change of parity in the GS when the flux
changes sign. Together with it, two dispersionless zero

energy modes appear, corresponding to the dangling MFs
at the open ends, However, the system is expected to be
unstable with respect to finite size interactions described
by the zα couplings. Indeed as soon as one turns zα on, a
gap opens and the zero energy MBS disappears (see Fig.
2 b).
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FIG. 2: (color online)Andreev Bound States as a function of
the magnetic flux for an open ring (u′ = 0). Left panel) Finite
size corrections not included zl = zr = 0. Right panel) When
finite size corrections are included zl = zr = 0.2 there is a
splitting of the zero energy Andreev Bound State.

π−ring configuration: u ̸= 0.
In the ring configuration (u ̸= 0), the situation is quite
different (see Fig. 3). The zero energy MBS is always
present, no matter how strong the finite size effects zα
are. In the non-symmetric case (zℓ ̸= zr), the location
of the crossing occurs at non zero flux. With increasing
of u′, the flux of the crossing point drifts towards ϕ = 0
(see Fig. 3 bottom panels). For the physically relevant
case u′ >> zℓ, zr, just the crossing Andreev bound states
survive at low energy and the dispersion turns out to
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(Γ << t). For sake of further investigations, we explicitly
consider also the hopping term at the bottom point in the
ring D, where the ℓ and r chains are matched:

HD = −u t
(

c†ℓNcr1 + h.c.
)

. (5)

Here we will keep the dimensionless parameter u (which
may be complex) as a variable, to discuss also the limiting
case of u = 0, which corresponds to the ring cut at D,
with open ends.
The spinless Dirac fermions can be expressed in terms

of two species of Majorana fermions at each site of the
ring γα

A/Bj , such that:

γα
Bj = cαje

iφαj/2 + c†αje
−iφαj/2 , (6)

γα
Aj = −i

(

cαje
iφαj/2 − c†αje

−iφαj/2
)

. (7)

A π−Josephson Junction requires ∆ having opposite
signs at U, between ℓ1 and rN . In the gauge in which
∆ is real, the OP ∆ has to vanish somewhere along the
ring and we choose this point to be D with no loss of
generality. As a first step, to make the approach as sim-
plest as possible, deep in the topological phase, we will
adopt the Kitaev approximation, |∆| = t [1]all along the
chain and we choose ∆ = t in the ℓ region and ∆ = −t
in the r region of the ring. Thus, the chain Hamiltonian
becomes:

Hℓ +Hr = −i
t

2

N−1
∑

j=1

[

γℓ
Bjγ

ℓ
Aj+1 − γr

Ajγ
r
Bj+1

]

. (8)
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chains, in terms of Majorana Fermions is:

HL =
N−1
∑

j=1

−i
t

2
γL
Bjγ

L
Aj+1 , (59)

HR =
N−1
∑

j=1

i
t

2
γR
Ajγ

R
Bj+1 . (60)

In addition we have to consider the inter chains couplings at the top and the bottom of the ring. The josephson
coupling is realized, as shown in the previous sections by

Htop = −Γ
(

c†L1cRN + h.c.
)

, (61)

while the hopping coupling (bottom of the chain) is realized by

Hbottom = −
t

2

(

c†LNcR1 + h.c.
)

. (62)

The next step is expressing the dirac fermions c in terms of Majorana Fermions γ and then again, as done in the
previous Section, finding effective Dirac Fermions describing the whole device in a simplified way. We will, now, deal
with Htop and will report only the final result for Hbottom. It is possible to introduce three new Dirac Fermions

dend =
1

2
(γLA1 + iγRAN ) , (63)

d1 =
1

2
(γLA2 + iγLB1) , (64)

fN−1 =
1

2
(γRBN + iγRAN−1) , (65)

3

Pictorially, this kind of hybridization can be represented
as in Fig.1. Blue (red) circles represent B (A)-type MFs.
The yellow ellipses denote effective strong coupling be-
tween nearest neighbor MFs. Were Eq.(8) the full Hamil-
tonian, the ℓ and r chains would dimerize with opposite
phases. In addition, four unpaired MFs appear in Fig.1:
two (the red/A ones) located at U and two (the blu/B

ones) at D.
To account for the extra interactions Γ and ut, fol-

lowing Ref. [25] we refermionize the Hamiltonian by in-
cluding HU + HD and by rearranging the MFs at the
boundaries. Three effective Dirac Fermions, dA, dB, dend
are required, located at the U weak link, and three more
ones, fA, fB, fend, at the D boundary, according to[26]:

Heff = i
2
√
2
tu

[

fend
(

fB − f †
A

)

− h.c.
]

+ t
[

d†AdB + h.c.
]

−Γ
2

[

sin ϕ
2

(

2d†enddend − 1
)

− i
√
2 cos ϕ

2

(

dend(dB + d†A)− h.c.
)

+ sin ϕ
2

(

dBdA + d†Ad
†
B + dAd

†
A − dBd

†
B

)]

,
(9)

where

ϕ = φℓ1 − φrN =
2e

!c

∮

A⃗ · dℓ⃗ . (10)

is the phase difference at the U weak link. The to-
tal energy only depends on the flux threading the ring,
Φ =

∮

A⃗ · dℓ⃗, in units of φo. This Bogolubov-de-Gennes
(BdG) Hamiltonian Heff changes sign under the opera-
tion Ξ of exchanging particles with holes and conserves

the Fermionic parity P = (−1)
∑

i f
†
i fi+d†

idi . It can be
shown that the low energy spectrum only depends on
the first term in the second line, which involves the Dirac
fermion dend =

(

γℓ
A1 + i γr

AN

)

/2, and on terms involving

fend, f
†
end with fend =

(

γr
B1 + i γℓ

BN

)

/2, which can be
obtained by perturbation theory from the first term of
the first line. In addition, residual interactions, not in-
cluded in Heff , can account for finite size effects. In
particular an extra coupling zαΓ ∝ e−N (α = ℓ, r) arises
from realistic long range interactions between the edge
MFs at each chain, when the simple t = |∆|[1] limitation
is relaxed.
We are led to the minimal 4X4 Hamiltonian in the

Majorana representation, just involving the four relevant
MFs:

HM = iΓ

⎛

⎜

⎜

⎝

0 sin ϕ
2 zℓ 0

− sin ϕ
2 0 0 zr

−zℓ 0 0 u′

0 −zr −u′ 0

⎞

⎟

⎟

⎠

, (11)

in the basis
[

γℓ
A1, γ

r
AN , γℓ

BN , γr
B1

]

, with u′ = ut/Γ.
Ring cut at the bottom point : u = 0.

When the control parameter u is set to zero, the ring is
cut at the bottom point D and the system is equivalent
to a linear topological π junction with phase difference ϕ
and open ends. In this case, if the finite size couplings zα
are neglected (see Fig. 2 left panel), there is a crossing at
zero energy and zero flux due to the MFs at the U point,
signalling a change of parity in the GS when the flux
changes sign. Together with it, two dispersionless zero

energy modes appear, corresponding to the dangling MFs
at the open ends, However, the system is expected to be
unstable with respect to finite size interactions described
by the zα couplings. Indeed as soon as one turns zα on, a
gap opens and the zero energy MBS disappears (see Fig.
2 b).
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FIG. 2: (color online)Andreev Bound States as a function of
the magnetic flux for an open ring (u′ = 0). Left panel) Finite
size corrections not included zl = zr = 0. Right panel) When
finite size corrections are included zl = zr = 0.2 there is a
splitting of the zero energy Andreev Bound State.

π−ring configuration: u ̸= 0.
In the ring configuration (u ̸= 0), the situation is quite
different (see Fig. 3). The zero energy MBS is always
present, no matter how strong the finite size effects zα
are. In the non-symmetric case (zℓ ̸= zr), the location
of the crossing occurs at non zero flux. With increasing
of u′, the flux of the crossing point drifts towards ϕ = 0
(see Fig. 3 bottom panels). For the physically relevant
case u′ >> zℓ, zr, just the crossing Andreev bound states
survive at low energy and the dispersion turns out to

Projecting onto the lowest lying bands3

Pictorially, this kind of hybridization can be represented
as in Fig.1. Blue (red) circles represent B (A)-type MFs.
The yellow ellipses denote effective strong coupling be-
tween nearest neighbor MFs. Were Eq.(8) the full Hamil-
tonian, the ℓ and r chains would dimerize with opposite
phases. In addition, four unpaired MFs appear in Fig.1:
two (the red/A ones) located at U and two (the blu/B

ones) at D.
To account for the extra interactions Γ and ut, fol-

lowing Ref. [25] we refermionize the Hamiltonian by in-
cluding HU + HD and by rearranging the MFs at the
boundaries. Three effective Dirac Fermions, dA, dB, dend
are required, located at the U weak link, and three more
ones, fA, fB, fend, at the D boundary, according to[26]:

Heff = i
2
√
2
tu

[

fend
(

fB − f †
A

)

− h.c.
]

+ t
[

d†AdB + h.c.
]

−Γ
2

[

sin ϕ
2

(

2d†enddend − 1
)

− i
√
2 cos ϕ

2

(

dend(dB + d†A)− h.c.
)

+ sin ϕ
2

(

dBdA + d†Ad
†
B + dAd

†
A − dBd

†
B

)]

,
(9)

where

ϕ = φℓ1 − φrN =
2e

!c

∮

A⃗ · dℓ⃗ . (10)

is the phase difference at the U weak link. The to-
tal energy only depends on the flux threading the ring,
Φ =

∮

A⃗ · dℓ⃗, in units of φo. This Bogolubov-de-Gennes
(BdG) Hamiltonian Heff changes sign under the opera-
tion Ξ of exchanging particles with holes and conserves

the Fermionic parity P = (−1)
∑

i f
†
i fi+d†

idi . It can be
shown that the low energy spectrum only depends on
the first term in the second line, which involves the Dirac
fermion dend =

(

γℓ
A1 + i γr

AN

)

/2, and on terms involving

fend, f
†
end with fend =

(

γr
B1 + i γℓ

BN

)

/2, which can be
obtained by perturbation theory from the first term of
the first line. In addition, residual interactions, not in-
cluded in Heff , can account for finite size effects. In
particular an extra coupling zαΓ ∝ e−N (α = ℓ, r) arises
from realistic long range interactions between the edge
MFs at each chain, when the simple t = |∆|[1] limitation
is relaxed.
We are led to the minimal 4X4 Hamiltonian in the

Majorana representation, just involving the four relevant
MFs:

HM = iΓ

⎛

⎜

⎜

⎝

0 sin ϕ
2 zℓ 0

− sin ϕ
2 0 0 zr

−zℓ 0 0 u′

0 −zr −u′ 0

⎞

⎟

⎟

⎠

, (11)

in the basis
[

γℓ
A1, γ

r
AN , γℓ

BN , γr
B1

]

, with u′ = ut/Γ.
Ring cut at the bottom point : u = 0.

When the control parameter u is set to zero, the ring is
cut at the bottom point D and the system is equivalent
to a linear topological π junction with phase difference ϕ
and open ends. In this case, if the finite size couplings zα
are neglected (see Fig. 2 left panel), there is a crossing at
zero energy and zero flux due to the MFs at the U point,
signalling a change of parity in the GS when the flux
changes sign. Together with it, two dispersionless zero

energy modes appear, corresponding to the dangling MFs
at the open ends, However, the system is expected to be
unstable with respect to finite size interactions described
by the zα couplings. Indeed as soon as one turns zα on, a
gap opens and the zero energy MBS disappears (see Fig.
2 b).
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FIG. 2: (color online)Andreev Bound States as a function of
the magnetic flux for an open ring (u′ = 0). Left panel) Finite
size corrections not included zl = zr = 0. Right panel) When
finite size corrections are included zl = zr = 0.2 there is a
splitting of the zero energy Andreev Bound State.

π−ring configuration: u ̸= 0.
In the ring configuration (u ̸= 0), the situation is quite
different (see Fig. 3). The zero energy MBS is always
present, no matter how strong the finite size effects zα
are. In the non-symmetric case (zℓ ̸= zr), the location
of the crossing occurs at non zero flux. With increasing
of u′, the flux of the crossing point drifts towards ϕ = 0
(see Fig. 3 bottom panels). For the physically relevant
case u′ >> zℓ, zr, just the crossing Andreev bound states
survive at low energy and the dispersion turns out to

“Cutting the  ring”: 
the BMS splits

4

be approximately symmetric. The dispersion of the two
crossing low lying energies tends to

E± ∼ Γ sin
(ϕ

2

)

⟨2nend − 1⟩P = ±Γ sin
(ϕ

2

)

. (12)

With the labeling of the average ⟨...⟩P we denote the
fermionic parity of the GS. The minimum is for ϕ ≈ ±π
(i.e. flux±φ0/2), depending on the occupancy observable
nend = d†enddend of the MBS located at the Josephson
Junction.
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FIG. 3: (color online) Andreev Bound States as a function
of the flux for the π ring. Left panels) No asymmetry z =
zℓ = zr. Right panels) Asymmetrical case: zℓ ̸= zr. An
approximately symmetric spectrum is recovered for sizable
u′, independently of the values of the asymmetry parameters
zα. In the closed ring geometry the zero energy Majorana
Bound State is always present.

Model free energy and stationary conditions of the
rf−SQUID.

We have shown that, in the topologically non trivial
π−ring structure, an unpaired zero energy MBS exists
and it is robust with respect to pertubations. This shows
up as a crossing of the particle and hole excitation dis-
persions at flux close to zero. Our π−ring modelizes a
topologically non trivial rf−SQUID device and we now
argue that the MBS characterizes in a measurable way
the stationary conditions of the device.
If the ring has a small diameter, so that its self-

inductance L cannot be disregarded, the free energy is
a function of the circulating current and of an external
flux φext which may be intentionally added. Its simplest
form, arising from Eq.12 is:

FP (I,φext) =
1

2
LI2−

φ0Ic
2π

sin

(

π

φ0
(φext + LI)

)

⟨2nend−1⟩P .

(13)
The free energy FP (I,φext = 0) at zero external flux is
plotted in Fig. 4a). The first and second minimum, be-
longing to the same P , differ in phase by ≈ 2π. Fig.4b

reports the change in shape of the free energy for one
single P , at different applied fluxes φext.
The similarity with the conventional YBCO FπR is

only superficial. At first sight Fig. 4b could report the
free energy plot of a conventional FπR . By fine-tuning
the external flux the two energy minima can be made de-
generate. If P is strictly conserved, this would be the end
of the story and no difference would arise. However, in
the topologically non trivial case, there is a correspond-
ing set of curves belonging to the other P . A switching
between the two different minima e.g. at φext = 0 (see
Fig. 4a) not only requires a flux quantum entering or
exiting the ring but a simultaneous change of P .
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FIG. 4: (color online) a): free energy vs LI/φ0 at zero ex-
ternal magnetic field for φext = 0 (u = and zℓ = zr =) .
Full (dashed) line belong to the two different fermion parity
P . b): Corresponding free energy for different values of the
external magnetic flux and one single parity. The curves are
displaced in energy for clarity

A tool to fix the parity could be a side quantum point
contact (QPC) controlling the charge tunneling. Addi-
tion of an electron on the ring would suddenly require the
switching of the whole device between the two possible
GSs, corresponding to a jump in the trapped sponta-
neous flux. By contrast, a conventional FπR is expected
to be widely insensitive to the in-out tunneling of in-
duced charges. Operating with a side gate on the QPC
allows to distinguish a topological non trivial ring from
a conventional one.
However, in real life, the job of fixing Pappears to be

rather hard. The ring is not expected to be isolated:
background impurities could provide charge noise, by re-
leasing or capturing charges. For a system open to the
environment, the energy spectrum of the isolated ring
looses meaning and a description of the state of affairs
in terms of the statistical density matrix ρ̂(t) is required.
The latter accounts for the transitions, with absorption
and emission of the energy between the two parities and
with simultaneous switching of the flux. Under these

Closed loop structure: the topology 
forces the zero energy crossing!
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Pictorially, this kind of hybridization can be represented
as in Fig.1. Blue (red) circles represent B (A)-type MFs.
The yellow ellipses denote effective strong coupling be-
tween nearest neighbor MFs. Were Eq.(8) the full Hamil-
tonian, the ℓ and r chains would dimerize with opposite
phases. In addition, four unpaired MFs appear in Fig.1:
two (the red/A ones) located at U and two (the blu/B

ones) at D.
To account for the extra interactions Γ and ut, fol-

lowing Ref. [25] we refermionize the Hamiltonian by in-
cluding HU + HD and by rearranging the MFs at the
boundaries. Three effective Dirac Fermions, dA, dB, dend
are required, located at the U weak link, and three more
ones, fA, fB, fend, at the D boundary, according to[26]:

Heff = i
2
√
2
tu

[

fend
(

fB − f †
A

)

− h.c.
]

+ t
[

d†AdB + h.c.
]

−Γ
2

[

sin ϕ
2

(

2d†enddend − 1
)

− i
√
2 cos ϕ

2

(

dend(dB + d†A)− h.c.
)

+ sin ϕ
2

(

dBdA + d†Ad
†
B + dAd

†
A − dBd

†
B

)]

,
(9)

where

ϕ = φℓ1 − φrN =
2e

!c

∮

A⃗ · dℓ⃗ . (10)

is the phase difference at the U weak link. The to-
tal energy only depends on the flux threading the ring,
Φ =

∮

A⃗ · dℓ⃗, in units of φo. This Bogolubov-de-Gennes
(BdG) Hamiltonian Heff changes sign under the opera-
tion Ξ of exchanging particles with holes and conserves

the Fermionic parity P = (−1)
∑

i f
†
i fi+d†

idi . It can be
shown that the low energy spectrum only depends on
the first term in the second line, which involves the Dirac
fermion dend =

(

γℓ
A1 + i γr

AN

)

/2, and on terms involving

fend, f
†
end with fend =

(

γr
B1 + i γℓ

BN

)

/2, which can be
obtained by perturbation theory from the first term of
the first line. In addition, residual interactions, not in-
cluded in Heff , can account for finite size effects. In
particular an extra coupling zαΓ ∝ e−N (α = ℓ, r) arises
from realistic long range interactions between the edge
MFs at each chain, when the simple t = |∆|[1] limitation
is relaxed.
We are led to the minimal 4X4 Hamiltonian in the

Majorana representation, just involving the four relevant
MFs:

HM = iΓ

⎛

⎜

⎜

⎝

0 sin ϕ
2 zℓ 0

− sin ϕ
2 0 0 zr

−zℓ 0 0 u′

0 −zr −u′ 0

⎞

⎟

⎟

⎠

, (11)

in the basis
[

γℓ
A1, γ

r
AN , γℓ

BN , γr
B1

]

, with u′ = ut/Γ.
Ring cut at the bottom point : u = 0.

When the control parameter u is set to zero, the ring is
cut at the bottom point D and the system is equivalent
to a linear topological π junction with phase difference ϕ
and open ends. In this case, if the finite size couplings zα
are neglected (see Fig. 2 left panel), there is a crossing at
zero energy and zero flux due to the MFs at the U point,
signalling a change of parity in the GS when the flux
changes sign. Together with it, two dispersionless zero

energy modes appear, corresponding to the dangling MFs
at the open ends, However, the system is expected to be
unstable with respect to finite size interactions described
by the zα couplings. Indeed as soon as one turns zα on, a
gap opens and the zero energy MBS disappears (see Fig.
2 b).
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the magnetic flux for an open ring (u′ = 0). Left panel) Finite
size corrections not included zl = zr = 0. Right panel) When
finite size corrections are included zl = zr = 0.2 there is a
splitting of the zero energy Andreev Bound State.

π−ring configuration: u ̸= 0.
In the ring configuration (u ̸= 0), the situation is quite
different (see Fig. 3). The zero energy MBS is always
present, no matter how strong the finite size effects zα
are. In the non-symmetric case (zℓ ̸= zr), the location
of the crossing occurs at non zero flux. With increasing
of u′, the flux of the crossing point drifts towards ϕ = 0
(see Fig. 3 bottom panels). For the physically relevant
case u′ >> zℓ, zr, just the crossing Andreev bound states
survive at low energy and the dispersion turns out to
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Pictorially, this kind of hybridization can be represented
as in Fig.1. Blue (red) circles represent B (A)-type MFs.
The yellow ellipses denote effective strong coupling be-
tween nearest neighbor MFs. Were Eq.(8) the full Hamil-
tonian, the ℓ and r chains would dimerize with opposite
phases. In addition, four unpaired MFs appear in Fig.1:
two (the red/A ones) located at U and two (the blu/B

ones) at D.
To account for the extra interactions Γ and ut, fol-

lowing Ref. [25] we refermionize the Hamiltonian by in-
cluding HU + HD and by rearranging the MFs at the
boundaries. Three effective Dirac Fermions, dA, dB, dend
are required, located at the U weak link, and three more
ones, fA, fB, fend, at the D boundary, according to[26]:
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,
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where

ϕ = φℓ1 − φrN =
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∮

A⃗ · dℓ⃗ . (10)

is the phase difference at the U weak link. The to-
tal energy only depends on the flux threading the ring,
Φ =

∮

A⃗ · dℓ⃗, in units of φo. This Bogolubov-de-Gennes
(BdG) Hamiltonian Heff changes sign under the opera-
tion Ξ of exchanging particles with holes and conserves

the Fermionic parity P = (−1)
∑

i f
†
i fi+d†

idi . It can be
shown that the low energy spectrum only depends on
the first term in the second line, which involves the Dirac
fermion dend =

(

γℓ
A1 + i γr

AN

)

/2, and on terms involving

fend, f
†
end with fend =

(

γr
B1 + i γℓ

BN

)

/2, which can be
obtained by perturbation theory from the first term of
the first line. In addition, residual interactions, not in-
cluded in Heff , can account for finite size effects. In
particular an extra coupling zαΓ ∝ e−N (α = ℓ, r) arises
from realistic long range interactions between the edge
MFs at each chain, when the simple t = |∆|[1] limitation
is relaxed.
We are led to the minimal 4X4 Hamiltonian in the

Majorana representation, just involving the four relevant
MFs:

HM = iΓ

⎛

⎜
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0 sin ϕ
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in the basis
[

γℓ
A1, γ
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AN , γℓ

BN , γr
B1

]

, with u′ = ut/Γ.
Ring cut at the bottom point : u = 0.

When the control parameter u is set to zero, the ring is
cut at the bottom point D and the system is equivalent
to a linear topological π junction with phase difference ϕ
and open ends. In this case, if the finite size couplings zα
are neglected (see Fig. 2 left panel), there is a crossing at
zero energy and zero flux due to the MFs at the U point,
signalling a change of parity in the GS when the flux
changes sign. Together with it, two dispersionless zero

energy modes appear, corresponding to the dangling MFs
at the open ends, However, the system is expected to be
unstable with respect to finite size interactions described
by the zα couplings. Indeed as soon as one turns zα on, a
gap opens and the zero energy MBS disappears (see Fig.
2 b).
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size corrections not included zl = zr = 0. Right panel) When
finite size corrections are included zl = zr = 0.2 there is a
splitting of the zero energy Andreev Bound State.

π−ring configuration: u ̸= 0.
In the ring configuration (u ̸= 0), the situation is quite
different (see Fig. 3). The zero energy MBS is always
present, no matter how strong the finite size effects zα
are. In the non-symmetric case (zℓ ̸= zr), the location
of the crossing occurs at non zero flux. With increasing
of u′, the flux of the crossing point drifts towards ϕ = 0
(see Fig. 3 bottom panels). For the physically relevant
case u′ >> zℓ, zr, just the crossing Andreev bound states
survive at low energy and the dispersion turns out to

4

be approximately symmetric. The dispersion of the two
crossing low lying energies tends to

E± ∼ Γ sin
(ϕ

2

)

⟨2nend − 1⟩P = ±Γ sin
(ϕ

2

)

. (12)

With the labeling of the average ⟨...⟩P we denote the
fermionic parity of the GS. The minimum is for ϕ ≈ ±π
(i.e. flux±φ0/2), depending on the occupancy observable
nend = d†enddend of the MBS located at the Josephson
Junction.
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FIG. 3: (color online) Andreev Bound States as a function
of the flux for the π ring. Left panels) No asymmetry z =
zℓ = zr. Right panels) Asymmetrical case: zℓ ̸= zr. An
approximately symmetric spectrum is recovered for sizable
u′, independently of the values of the asymmetry parameters
zα. In the closed ring geometry the zero energy Majorana
Bound State is always present.

Model free energy and stationary conditions of the
rf−SQUID.

We have shown that, in the topologically non trivial
π−ring structure, an unpaired zero energy MBS exists
and it is robust with respect to pertubations. This shows
up as a crossing of the particle and hole excitation dis-
persions at flux close to zero. Our π−ring modelizes a
topologically non trivial rf−SQUID device and we now
argue that the MBS characterizes in a measurable way
the stationary conditions of the device.
If the ring has a small diameter, so that its self-

inductance L cannot be disregarded, the free energy is
a function of the circulating current and of an external
flux φext which may be intentionally added. Its simplest
form, arising from Eq.12 is:

FP (I,φext) =
1

2
LI2−

φ0Ic
2π

sin

(

π

φ0
(φext + LI)

)

⟨2nend−1⟩P .

(13)
The free energy FP (I,φext = 0) at zero external flux is
plotted in Fig. 4a). The first and second minimum, be-
longing to the same P , differ in phase by ≈ 2π. Fig.4b

reports the change in shape of the free energy for one
single P , at different applied fluxes φext.
The similarity with the conventional YBCO FπR is

only superficial. At first sight Fig. 4b could report the
free energy plot of a conventional FπR . By fine-tuning
the external flux the two energy minima can be made de-
generate. If P is strictly conserved, this would be the end
of the story and no difference would arise. However, in
the topologically non trivial case, there is a correspond-
ing set of curves belonging to the other P . A switching
between the two different minima e.g. at φext = 0 (see
Fig. 4a) not only requires a flux quantum entering or
exiting the ring but a simultaneous change of P .
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A tool to fix the parity could be a side quantum point
contact (QPC) controlling the charge tunneling. Addi-
tion of an electron on the ring would suddenly require the
switching of the whole device between the two possible
GSs, corresponding to a jump in the trapped sponta-
neous flux. By contrast, a conventional FπR is expected
to be widely insensitive to the in-out tunneling of in-
duced charges. Operating with a side gate on the QPC
allows to distinguish a topological non trivial ring from
a conventional one.
However, in real life, the job of fixing Pappears to be

rather hard. The ring is not expected to be isolated:
background impurities could provide charge noise, by re-
leasing or capturing charges. For a system open to the
environment, the energy spectrum of the isolated ring
looses meaning and a description of the state of affairs
in terms of the statistical density matrix ρ̂(t) is required.
The latter accounts for the transitions, with absorption
and emission of the energy between the two parities and
with simultaneous switching of the flux. Under these
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chains, in terms of Majorana Fermions is:

HL =
N−1
∑

j=1

−i
t

2
γL
Bjγ

L
Aj+1 , (59)

HR =
N−1
∑

j=1

i
t

2
γR
Ajγ

R
Bj+1 . (60)

In addition we have to consider the inter chains couplings at the top and the bottom of the ring. The josephson
coupling is realized, as shown in the previous sections by

Htop = −Γ
(

c†L1cRN + h.c.
)

, (61)

while the hopping coupling (bottom of the chain) is realized by

Hbottom = −
t

2

(

c†LNcR1 + h.c.
)

. (62)

The next step is expressing the dirac fermions c in terms of Majorana Fermions γ and then again, as done in the
previous Section, finding effective Dirac Fermions describing the whole device in a simplified way. We will, now, deal
with Htop and will report only the final result for Hbottom. It is possible to introduce three new Dirac Fermions

dend =
1

2
(γLA1 + iγRAN ) , (63)

d1 =
1

2
(γLA2 + iγLB1) , (64)

fN−1 =
1

2
(γRBN + iγRAN−1) , (65)
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rf−SQUID.

We have shown that, in the topologically non trivial
π−ring structure, an unpaired zero energy MBS exists
and it is robust with respect to pertubations. This shows
up as a crossing of the particle and hole excitation dis-
persions at flux close to zero. Our π−ring modelizes a
topologically non trivial rf−SQUID device and we now
argue that the MBS characterizes in a measurable way
the stationary conditions of the device.
If the ring has a small diameter, so that its self-

inductance L cannot be disregarded, the free energy is
a function of the circulating current and of an external
flux φext which may be intentionally added. Its simplest
form, arising from Eq.12 is:
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The free energy FP (I,φext = 0) at zero external flux is
plotted in Fig. 4a). The first and second minimum, be-
longing to the same P , differ in phase by ≈ 2π. Fig.4b

reports the change in shape of the free energy for one
single P , at different applied fluxes φext.
The similarity with the conventional YBCO FπR is

only superficial. At first sight Fig. 4b could report the
free energy plot of a conventional FπR . By fine-tuning
the external flux the two energy minima can be made de-
generate. If P is strictly conserved, this would be the end
of the story and no difference would arise. However, in
the topologically non trivial case, there is a correspond-
ing set of curves belonging to the other P . A switching
between the two different minima e.g. at φext = 0 (see
Fig. 4a) not only requires a flux quantum entering or
exiting the ring but a simultaneous change of P .
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A tool to fix the parity could be a side quantum point
contact (QPC) controlling the charge tunneling. Addi-
tion of an electron on the ring would suddenly require the
switching of the whole device between the two possible
GSs, corresponding to a jump in the trapped sponta-
neous flux. By contrast, a conventional FπR is expected
to be widely insensitive to the in-out tunneling of in-
duced charges. Operating with a side gate on the QPC
allows to distinguish a topological non trivial ring from
a conventional one.
However, in real life, the job of fixing Pappears to be

rather hard. The ring is not expected to be isolated:
background impurities could provide charge noise, by re-
leasing or capturing charges. For a system open to the
environment, the energy spectrum of the isolated ring
looses meaning and a description of the state of affairs
in terms of the statistical density matrix ρ̂(t) is required.
The latter accounts for the transitions, with absorption
and emission of the energy between the two parities and
with simultaneous switching of the flux. Under these
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We have shown that, in the topologically non trivial
π−ring structure, an unpaired zero energy MBS exists
and it is robust with respect to pertubations. This shows
up as a crossing of the particle and hole excitation dis-
persions at flux close to zero. Our π−ring modelizes a
topologically non trivial rf−SQUID device and we now
argue that the MBS characterizes in a measurable way
the stationary conditions of the device.
If the ring has a small diameter, so that its self-

inductance L cannot be disregarded, the free energy is
a function of the circulating current and of an external
flux φext which may be intentionally added. Its simplest
form, arising from Eq.12 is:
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The free energy FP (I,φext = 0) at zero external flux is
plotted in Fig. 4a). The first and second minimum, be-
longing to the same P , differ in phase by ≈ 2π. Fig.4b

reports the change in shape of the free energy for one
single P , at different applied fluxes φext.
The similarity with the conventional YBCO FπR is

only superficial. At first sight Fig. 4b could report the
free energy plot of a conventional FπR . By fine-tuning
the external flux the two energy minima can be made de-
generate. If P is strictly conserved, this would be the end
of the story and no difference would arise. However, in
the topologically non trivial case, there is a correspond-
ing set of curves belonging to the other P . A switching
between the two different minima e.g. at φext = 0 (see
Fig. 4a) not only requires a flux quantum entering or
exiting the ring but a simultaneous change of P .
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A tool to fix the parity could be a side quantum point
contact (QPC) controlling the charge tunneling. Addi-
tion of an electron on the ring would suddenly require the
switching of the whole device between the two possible
GSs, corresponding to a jump in the trapped sponta-
neous flux. By contrast, a conventional FπR is expected
to be widely insensitive to the in-out tunneling of in-
duced charges. Operating with a side gate on the QPC
allows to distinguish a topological non trivial ring from
a conventional one.
However, in real life, the job of fixing Pappears to be

rather hard. The ring is not expected to be isolated:
background impurities could provide charge noise, by re-
leasing or capturing charges. For a system open to the
environment, the energy spectrum of the isolated ring
looses meaning and a description of the state of affairs
in terms of the statistical density matrix ρ̂(t) is required.
The latter accounts for the transitions, with absorption
and emission of the energy between the two parities and
with simultaneous switching of the flux. Under these
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