Improving Measurement Precision with Weak Measurements

Yaron Kedem

Quantum Engineering of States and Devices 04/09/2014

Outline

- Overview of weak measurements
 - Signal to noise ratio in weak measurements
 - Using noise to increase the signal to noise

- Time and frequency as a meter for weak measurements
- New derivation for imaginary weak values

Weak Measurements

- Three-step procedure:
 - 1. System preparation (preselection): 2. Weak coupling to a meter: H = g(t)PC3. Postselection on the system:
- The final state of the meter is given by the weak value:

$$C_w = \frac{\langle \phi | C | \psi \rangle}{\langle \phi | \psi \rangle}$$

 $|\psi\rangle$

 $\langle \phi |$

• For example:

 $\delta Q = q \operatorname{Re} C_w$ $\delta P = 2g \operatorname{Var}(P) \operatorname{Im} C_w$

The Von Neumann Scheme

 $H = k\delta \left(t - t_0 \right) \hat{C}\hat{P}$

The Von Neumann Scheme

The Von Neumann Scheme

Weak Measurements

How does it happen?

Slightly more rigorous derivation

 $|\psi\rangle |\Psi_{in}(Q)\rangle$

The meter's final state is its initial state after it was operated on by the evolution operator:

$$\langle \phi | e^{-ik\hat{C}\hat{P}} | \psi \rangle \simeq \langle \phi | \psi \rangle e^{-ikC_w\hat{P}}$$

For example, a Gaussian meter:

Weak Measurements of Light Chirality with a Plasmonic Slit

Y. Gorodetski,¹ K. Y. Bliokh,^{2,3} B. Stein,¹ C. Genet,¹ N. Shitrit,⁴ V. Kleiner,⁴ E. Hasman,⁴ and T. W. Ebbesen¹

SNR in weak measurements

Technical "x" noise

"Mathematical" derivation

$$Prob\left(|\phi\rangle|p\right) = \left|\langle\phi|e^{-ikp\hat{C}}|\psi\rangle\right|^2 = \left|\langle\phi|\psi\rangle\right|^2 (1 + 2k\mathrm{I}mC_w p) + O(kp)^2$$
$$f(p) \to \tilde{f}(p) \simeq f(p)\left(1 + 2k\mathrm{I}mC_w p\right)$$

$$\langle p \rangle_F = \int dp \tilde{f}(p) p \simeq \frac{\int dp f(p) (1 + 2k \mathrm{Im} C_w p) p}{\int dp f(p) (1 + 2k \mathrm{Im} C_w p)} \simeq \langle p \rangle_I + 2k \mathrm{Im} C_w \left(\langle p^2 \rangle_I - \langle p \rangle_I^2 \right)$$

 $\delta p = 2k \mathrm{I} m C_w (\Delta p)^2$

Y. K. PRA 85, 060102 (2012)

Conclusions

- The concept of Weak Value offers intuition regarding
- a measurement process
- A clear view of an experimental setup can help
- overcoming technical difficulties
- Uncertainty can be seen as a resource in some scenarios
- Results derived from the basic structure of QM are applicable in many contexts

Can time be a meter?

PRL 105, 010405 (2010)

PHYSICAL REVIEW LETTERS

week ending 2 JULY 2010

Measuring Small Longitudinal Phase Shifts: Weak Measurements or Standard Interferometry?

Can time be a meter?

Alternative derivation

Consider the simple(st?) Hamiltonian:

$$H = g(t)C, \ \int g(t)dt = k \quad \Rightarrow \ U = e^{-ikC}$$

Starting with $|\Psi
angle$, the probability to find $|\Phi
angle$, in the end is

$$P\left(\left|\Phi\right\rangle\left|k\right\rangle = \left|\left\langle\Phi\right|e^{-ikC}\left|\Psi\right\rangle\right|^{2} = \left|\left\langle\Phi\right|\Psi\right\rangle\right|^{2}\left(1 + 2k\mathrm{I}mC_{w}\right) + O(k^{2})$$

If k had an initial distribution f(k), after a postselection to $|\Phi\rangle$, it is distributed as $f(k) P(|\Phi\rangle|_k) = f(k) (1 + 2k) = 0$

$$f_{\Phi}(k) = \frac{f(k) P(|\Phi\rangle|k)}{P(|\Phi\rangle)} \simeq \frac{f(k) (1 + 2k \mathrm{Im}C_w)}{1 + 2\langle k \rangle \mathrm{Im}C_w}$$

The new average of k is given by

$$\delta k \simeq 2 \mathrm{I} m C_w \mathrm{Var}\left(k\right)$$

$$\langle k \rangle_{\Phi} \simeq \frac{\langle k \rangle + 2 \langle k^2 \rangle \mathrm{Im} C_w}{1 + 2 \langle k \rangle \mathrm{Im} C_w} \simeq \langle k \rangle + 2 \mathrm{Im} C_w \left(\langle k^2 \rangle - \langle k \rangle^2 \right)$$

Applying to experiments

PRL 111, 023604 (2013)

PHYSICAL REVIEW LETTERS

week ending 12 JULY 2013

Demonstration of Weak Measurement Based on Atomic Spontaneous Emission

Itay Shomroni, Orel Bechler, Serge Rosenblum, and Barak Dayan* Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel (Received 22 October 2012; published 12 July 2013)

Applying to experiments

August 15, 2013 / Vol. 38, No. 16 / OPTICS LETTERS 2949

Weak-values technique for velocity measurements

Gerardo I. Viza,1,* Julián Martínez-Rincón,1 Gregory A. Howland,1 Hadas Frostig,2 Itay Shomroni,3 Barak Dayan,3 and John C. Howell^{1,2}

¹Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA ²Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel ³Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel *Corresponding author: gerviza@pas.rochester.edu

the light rror

$$\delta k \simeq 2 \mathrm{I} m C_w \mathrm{Var}\left(k\right)$$

$$\Rightarrow \delta t \simeq 2 \mathrm{I} m C_w v \frac{2\pi}{\lambda} \mathrm{Var}\left(t\right)$$

Applying to experiments

PRL 111, 033604 (2013)

PHYSICAL REVIEW LETTERS

week ending 19 JULY 2013

Phase Estimation with Weak Measurement Using a White Light Source

Xiao-Ye Xu,¹ Yaron Kedem,² Kai Sun,¹ Lev Vaidman,² Chuan-Feng Li,^{1,*} and Guang-Can Guo¹ ¹Key Laboratory of Quantum Information, University of Science and Technology of China, CAS, Hefei 230026, People's Republic of China ²Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv 69978, Israel (Received 13 November 2012; published 17 July 2013)

Phase Estimation with Weak Measurement Using a White Light Source (LED)

Two problems: 1. Linear polarizers \rightarrow real weak value 2. The average frequency is large

$$\frac{\omega_0}{2\pi} \sim 400 \text{ THz}, \quad \tau \sim 1 \text{ as } (10^{-18} \text{s}) \qquad \Rightarrow \ \omega_0 \tau \sim \frac{1}{500}$$
$$|C_w| \sim 1000 \quad \Rightarrow \omega_0 \tau |C_w| > 1$$

One solution: we separate the known average and the uncertainty. The average produce an imaginary part and the uncertainty is smaller than the average

$$U = e^{-ig\hat{C}\hat{P}} = e^{-ig\hat{C}(\hat{P} - P_0)}e^{-ig\hat{C}P_0} \qquad \qquad |\psi\rangle \to |\psi'\rangle = e^{-ig\hat{C}P_0}|\psi\rangle$$

$$C_w = \frac{\langle \phi | C | \psi' \rangle}{\langle \phi | \psi' \rangle} = \frac{\langle \phi | C e^{-ig\hat{C}P_0} | \psi \rangle}{\langle \phi | e^{-ig\hat{C}P_0} | \psi \rangle} \simeq \frac{1}{2\langle \phi | \psi \rangle - igP_0}$$

Phase Estimation with Weak Measurement Using a White Light Source (LED)

$$C_{w} \simeq \frac{1}{2\langle \phi | \psi \rangle - igP_{0}} = \frac{1}{\beta - i\alpha}$$

$$\Longrightarrow \quad \text{Im} C_{w} \simeq \frac{\alpha}{\beta^{2} + \alpha^{2}}$$

$$\delta\omega \simeq 2\text{I}mC_{w}\tau \text{Var}(\omega)$$

$$\Longrightarrow \quad \delta\lambda \simeq 2\frac{\text{Var}(\lambda)}{\lambda_{0}} \frac{\alpha^{2}}{\beta^{2} + \alpha^{2}}$$

Phase

Phase Estimation with Weak Measurement Using a White Light Source (LED)

$$\delta \lambda \simeq 2 \frac{\operatorname{Var}(\lambda)}{\lambda_0} \frac{\alpha^2}{\beta^2 + \alpha^2}$$

Dispersion have (almost) no Spectral Shift (nm) effect

Spectral filter decrease the shift drastically

Long stability time

New concept, New technique

Weak measurements with real weak value

Interferometry

Weak measurements with imaginary weak value

Conclusions

- An alternative derivation for the effect of an imaginary weak value
- The new formalism does not require the meter to be a quantum variable
- A method based on this effect is described by a new measurement model
- Possible applications for a wide range of tasks

Any Questions?