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Identical Particles

Leibnitz and Indistinguishability

My friend Prof. A. Polito (IF-UnB) works on the nature of space in
Leibnitz. I learned from him about a key principle due to Leibnitz.

Identity of indiscernibles: two things are identical if and only if
they have the very same (intrinsic) properties regardless of their
distinct positions in space.

I think this principle seems to lead to:

the conceptual distinction between internal (intrinsic) versus
external (extrinsic) properties;

the principle of symmetry; in particular, gauge symmetry.

A. Polito, C. Polito, “Relações entre f́ısica e filosofia: estudo do problema da natureza do espaço em Leibniz”,

http://www.sbf1.sbfisica.org.br/eventos/snef/xx/programa/resumo.asp?insId=175&traId=1
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Identical Particles

The Gibbs Paradox

Statement:

The mixing of two identical gases does not produce entropy:
∆S = 0.

The difference between the entropy of two separated distinct
gases and the entropy of the mixing of these gases is

∆S = SA + SB − SAB
= −NA logNA −NB logNB + (NA +NB) log(NA +NB).

If A = B, then ∆S = 2NA ln 2.

E. T. Jaynes, in Maximum Entropy and Bayesian Methods, Kluwer Academic, Dordrecht (1992). N. G. van

Kampen, in Essays in Theoretical Physics: in honour of Dirk ter Haar, (1984). J. Leinaas and J. Myrheim, Il Nuovo

Cimento B Series 11, 37 (1977).
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Identical Particles

The Gibbs Paradox

Another statement:

For ideal gases, E = 3
2NT + cte., PV = NT , then from

T∆S = ∆E + P∆V one gets

S(P, T ) =
5

2
N log T −N logP + C(N).

The function C(N) does not depend on P, T . But the way it
is usually fixed as a full-constant leads to wrong results if not
used consistently.

The resolution of the paradox: the counting of identical particle
microstates is different from the counting of distinct particle
microstates. A factor of N ! from the group of permutations SN
has to be accounted for.
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Identical Particles

Configuration Space

Set Rk, k ≥ 3.

Let N ≥ 2 identical spinless particles.

Let xj ∈ Rk denote the position of the j-th particle.

A configuration of such N -particle system is given by the
unordered set

q̃ = {x1, x2, ..., xN} = {x2, x1, ..., xN} ∈ Q̃

If two particles cannot occupy the same position in space, then we
must remove the diagonal ∆ = {xi = xj |i 6= j}. The configuration

space is Q = Q̃\∆. Complicated topology.

J. Leinaas and J. Myrheim, Il Nuovo Cimento B Series 11, 37 (1977). A. P. Balachandran, G. Marmo, B. S.

Skagerstam, A. Stern, Classical Topology and Quantum States. World Scientific (1991).
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Identical Particles

Configuration Space: Topology

The fundamental group of Q is π1(Q) = SN , the group of
permutation of N objects. This leads to fermion and boson
statistics.

A transposition in sij ∈ SN may be represented by a loop γij(t) in

Q̃ that permutes particle xi and xj .

Note that if R2, then π1(Q) = BN , the group of braids. This leads
to anyons or fractional statistics.
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Identical Particles

Hilbert Space

To quantize a system of identical particles, we would like to
consider a Hilbert space on top of Q. This is hard to directly
construct.

The best strategy is to consider a Hilbert space H on top of a
simply-connected space Q ⊇ Q.

Decompose H into irreducible representations of π1(Q) = SN

H =
⊕
l

H(l). (1)

Note the strong analogy to working with gauge symmetry.
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Identical Particles

Spin-Statistics and Spin-Locality

O. Greenberg distinguishes between Spin-Statistics and
Spin-Locality.

Statistics: a field operator φ̂ may be decomposed as

φ̂(x) =
∑
k

ϕk(x)âk or φ̂(x) =
∑
k

ψk(x)b̂k,

i.e., in terms of either bosons [âk, âj ] = 0 or fermions

{b̂k, b̂j} = 0.

Locality: for space-like distance (x− y)2 < 0, a field may be

local iff [φ(x), φ(y)] = 0,

anti-local iff {φ(x), φ(y)} = 0.

O. Greenberg, Phys. Lett. B416 144-149 (1998). G. Lüders and B. Zumino, Phys.Rev. 110 1450-1453 (1958). I.

Duck and E. C. G. Sudarshan, Am. J. Phys. 66, 284 (1998).
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Identical Particles

Spin-Statistics and Spin-Locality

O. Greenberg expands an example due to Res Jost. He takes a
neutral scalar field φ.

If φ is expanded in terms of fermion operators, then the
corresponding observables are non-local.

Observe that even anti-commutators of such fields are
non-local {φ(x), φ(y)} = ∆(1)(x− y).

The field φ still satisfies the CPT-theorem.

If φ is anti-local, like in Lüders-Zumino proof of spin-statistics
theorem, then φ ≡ 0.
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Identical Particles

Entanglement Entropy

In 1986, Bombelli, Koul, Lee and Sorkin proposed and solved the
following problem modeled after a black hole:

Consider a (scalar) field on a space-like hypersurface Σ. Integrate
out the fields on a region R ⊂ Σ. What is the entropy emerging
out from this process?

Solution: S ∝ Volume of ∂R.

Incidentally, Srednicki solved the same problem later in 1993.

L. Bombelli, R. Koul, J. Lee and R. Sorkin, Phys. Rev., 1986, D34, 373-383. M. Srednicki, Phys. Rev. Lett., 1993,

71, 666-669.
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Identical Particles

Entanglement Entropy (Formal)

Consider H = HR ⊗HL. From a state vector |ψ〉 ∈ H, we form
the (pure) density matrix ρ : H → H as

ρ = |ψ〉〈ψ|.

The reduced density matrix is defined by the partial trace

ρR = TrL ρ.

The entanglement (a.k.a. von Neumann) entropy is

S = −Tr ρR log ρR.

If S 6= 0, ρR is a mixed state, that is, ρR cannot be represented as
a state vector in HR.
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Identical Particles

Extension to Space-time Region

Recently, R. Sorkin found a formula for entanglement entropy
associated with a space-time region R of some manifold M .

From the eigenvalues of the operator iL = ∆−1W on R, with

W (x, x′): Wightman function;

i∆(x, x′) = W (x, x′)−W (x′, x) = 2 ImW(x, x′),

He obtained:
S = Tr L log |L| ≡

∑
λ

λ log λ. (2)

R. Sorkin, arXiv:1205.2953. R. Sorkin et al., arXiv:1207.7101.

Cf. Peschel, I. “Calculation of reduced density matrices from correlation functions” J.Phys.A: Math.Gen., 2003,

36,, L205
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Identical Particles

Black Holes

In physics of black holes, we have

Bekenstein-Hawking entropy associated with a black hole
S = Ah/4;

in some cases, we have a counting formula, BUT we do not
know what are being counted.

Problems:

What should be counted? In which conditions?

Why should we care to count something into an entropy
formula?

What does we learn from such counting?
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Comments on the Literature

General Comments

Y. S. Li, B. Zeng, X. S. Liu and G. L. Long, Phys. Rev. A 64 054302 (2001). J. Schliemann, J. I. Cirac,

M. Kus, M. Lewenstein and D. Loss, Phys. Rev. A 64 022303 (2001). K. Eckert, J. Schliemann, D.

Brussand M. Lewenstein, Annals of Physics 299 88-127 (2002).: Initial papers.

P. Zanardi, Phys. Rev. A65 042101 (2002).: Towards fermionic lattices and entanglement relativity.

F. Benatti, R. Floreanini, K. Titimbo, arXiv:1403.3178.: First (particle-based) versus Second

(mode-based) quantization. Use of statistics notions as in O. Greenberg (they seem unaware of this fact,

though.).

F. Benatti, R. Floreanini and U. Marzolino, Benatti, Phys. Rev. A, 2014, 89, arXiv: 1403.1144. N.

Killoran, M. Cramer and M. B. Plenio, Phys. Rev. Lett. 112, 150501 (2014).: Is entanglement of

identical particles useful? Experimental proposes. Quantum metrology.

Dyakonov, M. Quantum computing: a view from the enemy camp, Optics and Spectroscopy 95 261-267

(2003), cond-mat/0110326.: It will be impossible to construct a quantum computer. It requires the

control of 105 particles.

15 / 45
Indistinguishability

N



1 Identical Particles

2 Statement of the Problem

3 Entanglement for Identical Particles

4 Examples

16 / 45
Indistinguishability

N



Statement of the Problem

Fermions in a Double-Well

Imagine a double-well or two quantum-dots. At each well L or R
one finds electrons (qubits) with either spin + or spin −. The
1-particle Hilbert space is spanned by

{|L,+〉, |L,−〉, |R,+〉, |R,−〉} .

Suppose initially one electron at each well.

Problem: trace out d.o.f. associated to R-well. Equivalently,
allow only observables associated to L-well.

What is the entropy emerging out of this process?

J. Schliemann, J. I. Cirac, M. Kus, M. Lewenstein and D. Loss, Phys. Rev. A 64 022303 (2001). P. Zanardi, Phys.

Rev. A65 042101 (2002). F. Benatti, R. Floreanini, K. Titimbo, arXiv:1403.3178.
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Statement of the Problem

Identical Fermions

Wave-functions do not overlap.

Wave-functions overlap. Use Slater determinant.

K. Eckert, J. Schliemann, D. Brussand M. Lewenstein, Annals of Physics 299 88-127 (2002).
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Statement of the Problem

Identical Fermion

In a N -tuple-well system, with N > 2, filled with fermions, a new
question arises.

Can we trace out some wells respecting (fermion) statistics?

Most attempts based on extension of Schmidt decomposition, e.g.
Slater-Schmidt decomposition. M. C. Tichy et al., J. Phys. B, 44, 192001 (2011). K.

Eckert, J. Schliemann, D. Bruss, and M. Lewenstein, Annals of Physics 299, 88 (2002).

Main problems:

Non-natural values for entropy: e.g. S 6= 0 for separable cases.

Non-universal criteria: different criteria for different statistics.

Focus on bosons and fermions: e.g. no anyons.
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Statement of the Problem

Identical Bosons

Imagine a two-photons system in a Bell-like state

|ψ〉 =
1√
2

(
|h〉 ⊗ |v〉+ |v〉 ⊗ |h〉

)
, (3)

with |h〉 and |v〉 standing for horizontal and vertical polarization.

If the photons are distinguishable (e.g. different momenta
though same frequency), then the Bell-like state is entangled.

If the photons are indistinguishable, the Bell-like state seems
to be separable.

Y. S. Li, B. Zeng, X. S. Liu and G. L. Long, Phys. Rev. A 64 054302 (2001).
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Entanglement for Identical Particles

Restriction to Subalgebra

Partial trace fails to respect in a natural way correlations due to
the indistinguishability (or identity) of particles.

There is an equivalent operation generalizing the notion of partial
trace. Moreover it allows the treatment of entanglement of
identical or non-identical particles on an equal footing:

Restriction of a state to a subalgebra.

A. P. Balachandran, T. R. Govindarajan, AQ and A. Reyes-Lega, Phys. Rev. Lett. 110 080503 (2013),

arXiv:1205.2882. A. P. Balachandran, T. R. Govindarajan, AQ and A. Reyes-Lega, Phys.Rev. A88 022301 (2013),

arXiv:1301.1300..
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Entanglement for Identical Particles

State on a Algebra of Observables

Instead of density matrix ρ : H → H, we regard a state as a linear
functional on the algebra of observables A. Indeed, from the
expectation value 〈O〉 of the observable O

ωρ (O) ≡ 〈O〉 = Tr ρO, (4)

we abstract the notion of

a state on an algebra of observable A

as a linear funcional
ω : A → C,

such that ω(1) = 1 and ω (O∗O) ≥ 0, for any O ∈ A.
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Entanglement for Identical Particles

Restriction to Subalgebra

The initial data to describe a quantum system is therefore

(A, ω) .

Consider a subalgebra A0 ⊂ A. Instead of partial trace, consider

ω0 ≡ ω|A0 , (5)

that is, the restriction of state ω on A to the subalgebra A0.

Therefore,

entanglement of a subalgebra A0 ⊂ A with the
algebra A for a state ω.

Cf. with entanglement relativity due to P. Zanardi. P. Zanardi, Phys. Rev.

Lett. 87 077901 (2001). P. Zanardi, Phys. Rev. A 65 042101 (2002).
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GNS Construction

GNS Construction: Hilbert Space

Gelfan’d-Naimark-Segal (GNS) construction gives a Hilbert space
Hω out of (A, ω) where A is represented on.

1 Inner product in A out of ω: 〈α|β〉 ≡ ω(α∗β).

2 It may exist null states: N = {0 6= n ∈ A | 〈n|n〉 = 0}.

3 Removal of null states: Hω = A/N , that is, set of classes of
equivalence

α̃ = α+N .

4 Action of observable α ∈ A on Hω: α|β̃〉 = |α̃β〉.
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GNS Construction

Density Matrix

The vector |1̃〉, where 1̃ = 1+N , is dubbed cyclic vector.

A dense subset of Hω may be generated by the action of all α ∈ A.

Also, from the density matrix

ρω = |1̃〉〈1̃|, (6)

we obtain
ω(α) = Tr (ρωα) . (7)

The Hilbert space Hω may be reducible w.r.t. A, so that
Hω =

⊕
iHi. Thus, there exist projectors P i, such that

|1̃〉 =
∑
i

P i|1̃〉 =
∑
i

|P̃ i〉 (8)
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GNS Construction

Density Matrix

A density matrix associated to state ω writes

ρω =
∑
i

|P̃ i〉〈P̃ i| =
∑
i

ρi, (9)

with corresponding entropy

S(ρω) = −Tr ρω log ρω. (10)

Equivalently, set normalized rank-1 density matrices

ρ̂i =
1

λi
ρi, λi = ω(P i), (11)

so that
S(ρω) = −

∑
i

λi log λi. (12)

27 / 45
Indistinguishability

N



GNS Construction

M2(C): 2× 2 Matrices

A general element a ∈M2(C) expands as

a =
∑
i,j=1,2

aij |i〉〈j| ≡
∑
ij

aijeij =

(
a11 a12
a21 a22

)
. (13)

Set a state on the algebra M2(C) as

ωλ(a) = λa11 + (1− λ)a22, 0 ≤ λ ≤ 1. (14)

Observe,

ωλ(1) = 1 (15)

ωλ(a†a) =
∑
k

(
λ|ak1|2 + (1− λ)|ak2|2

)
≥ 0. (16)
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GNS Construction

M2(C). The λ = 0 case.

1 Inner product in A out of ω: 〈a|b〉 = ω0(a
†b) =

∑
k āk2bk2,

a, b ∈ A ≡ C4.

2 Null states: solutions 0 6= a ∈ A of ω0(a
†a) = 0 are spanned

by ak1. Thus,

(
a11 0
a21 0

)
∈ Nω0 ≡ C2.

3 The GNS Hilbert space Hω0 = A/Nω0 ≡ C2 spanned by
vectors

|ẽk2〉 = |ek2 +Nω0〉.

4 Action of A on Hω0 : a|̃b〉 = |ãb〉.

5 |1〉 = |ẽ22〉. The GNS Hilbert space is irreducible w.r.t. A.
The density matrix is ρω0 = |ẽ22〉〈ẽ22|. It has entropy zero.
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GNS Construction

M2(C). The λ 6= 0, 1 case.

1 Inner product on A out of ω: for a, b ∈ A,

〈a|b〉 = ωλ(a†b) =
∑
k

(λāk1bk1 + (1− λ)āk2bk2) .

2 There is no non-trivial null states.

3 The GNS Hilbert space is Hωλ
= A ≡ C4.

4 The action of a ∈ A on |b〉 ∈ Hωλ
is a|b〉 = |ab〉. Now, there

exist subspaces Hi ≡ C2, i = 1, 2, such that

a · Hi ⊆ Hi ∀a ∈ A,

Hωλ
= H1 ⊕H2.
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Entanglement for Identical Particles

Entanglement Entropy

The Hilbert space Hω may be reducible w.r.t. representations of
A0:

Hω =
⊕
i

Hi. (17)

Set Pi : Hω → Hi as orthogonal projectors. Then

|1̃A〉 =
∑
i

Pi|1̃A〉, (18)

µi = ||Pi|1̃A〉||. (19)

The entanglement entropy is

S(ω,A0) = −
∑
i

µ2i logµ2i . (20)
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Entanglement for Identical Particles

Identical Particles

One-particle Hilbert space: H(1) = Cd. The group U(d)
acts naturally on Cd.

Algebra of observables: Md(C) ∼= CU(d).

k-particle Hilbert space: H(k) =
⊗k

A,SH(1).

For g ∈ U(d), the Coproduct ∆(g) = g ⊗ g allows one to
represent one-particle observables in the k-particle sector.
Furthermore, it takes care of statistics.

Cf. Addition of angular momentum.

Anyons or other statistics can be considered, as well. A. P.

Balachandran, T. R. Govindarajan, AQ and A. Reyes-Lega, Phys.Rev. A88 022301 (2013),

arXiv:1301.1300.
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Entanglement for Identical Particles

Identical Particles

There are two main types of subalgebras we may be interested in a
many-particles system:

1 The subalgebra of one-particle observables.

2 A subalgebra of partial one-particle observables. For instance,
only spin or only position degrees of freedom.
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Examples

Two-fermions, H(1) = C3

Basis of H(1) = C3: {|ei〉, i = 1, 2, 3}.

Basis of H(2) = C3 ∧ C3:
{
|f i〉 = εijk|ej ∧ ek〉, i = 1, 2, 3

}
.

2-particle algebra of observables: A(2) ∼= M3(C). Indeed,
A(1) = U(3) and 3⊗ 3 = 6⊕ 3̄.
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Examples

Two-fermions, H(1) = C3;
Case 1: A0 = A(1) ⊂ A(2)

For any |ψ〉 ∈ H(2), the pure state ωψ = |ψ〉〈ψ| restricted to
A0 = A(1) ⊂ A(2) gives zero entropy.

Indeed, the U(3) representation 3̄ is irreducible.

However the entropy computed by partial trace is equal to log 2 for
any |ψ〉! G. Ghirardi and L. Marinatto, Phys. Rev. A, 70, 012109 (2004).
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Examples

Two-fermions, H(1) = C3;
Case 2: Partial Observations

A0 ⊂ A(2) generated by

M ij = |f i〉〈f j |, i, j = 1, 2, and 13×3.

(Pure) states on A(2):

ωθ = |ψθ〉〈ψθ|, with (21)

|ψθ〉 = cos θ|f1〉+ sin θ|f2〉. (22)
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Examples

Two-fermions, H(1) = C3;
Case 2: Partial Observations

We obtain the following results:

1 0 < θ < π
2 : The null vector space is trivial and

S(θ) = − cos2 θ log cos2 θ − sin2 θ log sin2 θ (23)

2 θ = 0: Null vector space is non-trivial, dimH = 2 and entropy
is zero.

3 θ = π
2 : Null vector space is non-trivial, dimH = 1 and

entropy is zero.
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Examples

Double-Well, H(1) = C4

H(1) for a fermion with two external d.o.f. (position) and two
internal d.o.f. (spin):

aσ, a
†
σ : “left” with spin σ = +,− (24)

bσ, b
†
σ : “right” with spin σ = +,− (25)

H(2) spanned by a†+a
†
−|Ω〉, b

†
+b
†
−|Ω〉, a

†
σb
†
ρ|Ω〉, where |Ω〉 is

the vacuum.

2-particles algebra of observables A = M6(C).
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Examples

Double-Well, H(1) = C4

Consider the family of (pure) states ωθ = |ψθ〉〈ψθ| on A with

|ψθ〉 =
(

cos θ a†+b
†
− + sin θ a†−b

†
+

)
|Ω〉 (26)

Subalgebra A0: one-particle observations at the left position.
It is generated by

1A,

n+− = a†+a+a
†
−a−,

Na = a†+a+ + a†−a−,

Ti =
1

2
a†σ (σi)

σσ′
aσ′

40 / 45
Indistinguishability

N



Examples

Two Fermions, H(1) = C4

We obtain the following results:

1 0 < θ < π
2 : non-trivial null vector space, dimHθ = 4 and

S(θ) = − cos2 θ log cos2 θ − sin2 θ log sin2 θ.

2 θ = 0: non-trivial null vector space, dimHθ = 2, entropy is
zero.

3 θ = π
2 : non-trivial null vector space, dimHθ = 2, entropy is

zero.

The last two cases should be contrasted with S = log 2 found in
the literature. M. C. Tichy et al., J. Phys. B, 44, 192001 (2011).
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Examples

Two Bosons, H(1) = C3

Basis of H(1) = C3: {|ei〉, i = 1, 2, 3}.

Basis of H(2) = C3 ∨ C3:

|ei ∨ ej〉 =


1√
2

(
|ei〉 ⊗ |ej〉+ |ej〉 ⊗ |ei〉

)
, i 6= j,

|ei〉 ⊗ |ei〉

2-particle algebra of observables: A(2) ∼= M6(C). Indeed,
A(1) = U(3) and 3⊗ 3 = 6⊕ 3̄.

A pure state on A(2):

|θ, ϕ〉 = sin θ cosϕ |e1∨e2〉+sin θ sinϕ |e1∨e3〉+cos θ |e3∨e3〉

42 / 45
Indistinguishability

N



Examples

Two Bosons, H(1) = C3

A0 are generated by |ei〉〈ej |, with i = 1, 2 and 16. This is
equivalent to restriction to one-particle observables associated
with only |e1〉 and |e2〉. The observables are equivalent to
U(2) (or better SU(2)).

We may split the H = C6 into invariant subspaces w.r.t.
SU(2) as C6 = C3⊕C2⊕C, or equivalently (1)⊕ (1/2)⊕ (0).

For (θ, ϕ) 6= (0, 0), the GNS construction leads to a cyclic

state |1̃A〉 = |ẽ1 ∨ e1〉+ |ẽ1 ∨ e3〉+ |ẽ3 ∨ e3〉, with entropy

S(θ, ϕ) = −2 cos2 θ log cos θ

− 2 sin2 θ
[
cos2 ϕ log(sin θ cosϕ) + sinϕ log(sin θ sinϕ)

]
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As Bal says:

Think quantumly,
Act Planckly!
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Muito obrigado!

Tack s̊a mycket!

45 / 45
Indistinguishability

N


	Identical Particles
	Statement of the Problem
	Entanglement for Identical Particles
	Examples

