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Interacting lattice bosons: clean system
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two ground states SF and MI

Greiner et al., Nature (‘02)   
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I MI: integer filling, insulating, gaped
I SF: any filling fraction, gapless

two ways from MI to SF
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Interacting lattice bosons: disorder present
Fascinating interplay between disorder, interactions and SF

I two kinds of disorder: hopping disorder and site disorder
I we focus on site disorder: no explicit particle-hole

symmetry

H = −t
∑
〈ij〉

(b+
i bj + b+

j bi) +
U
2

N∑
i=1

ni(ni − 1)−
N∑

i=1

µini,

Bounded disorder

µ µ+Λµ−Λ

2Λ

1

p

µi

I Quantum Glass: insulating but Gapless;

QG
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Current prevailing notion: always compressible in 2D with
random potentials→ BG



Previous studies of the site-disordered BH model

T = 0 phase diagram: in the presence of disorder, QG always
intervenes SF and MI ?
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Recent progresses: theorem of inclusion
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ρ = 1 2D BHM with site disorder
The phase diagram is well established, the properties of QG
state for 2D BHM with site disorder are not well understood
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two types of glass states are known;
• the compressible Bose glass (BG)
• the incompressible Mott glass (MG)

Commonly believed:

• MG only at commensurate filling with particle-hole symmetry

• BG in the 2D site-disordered BHM, always compressible

pollet et al PRL 2009,Gurarie et al PRB 2009,Söyler, PRL 2011.



Standard Scenario
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The ”finger region” is a Griffiths phase: rare large regions of
phase A (SF) inside phase B (MI) lead to singularities.
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Griffiths arguments: Fisher 89,Freericks 96

I MI-QG boundary based on Λ = ∆M/2
I Λ > ∆M/2, arbitrarily large SF puddles can appear
I Λ < Λc, SF puddles NOT percolating, insulating
I Fundamentally different from the MI:

gapless due to arbitrarily large SF region



Standard scenario
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The ”finger region” is a Griffiths phase: rare large regions of
phase A (SF) inside phase B (MI) lead to singularities.
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• fluctuations of the overall chemical potential
within the SF domains lead to near
degeneracies of different particle-number
sectors→ nonzero compressibility BG
Pollet et al, PRL, 2009; Gurare et al PRB, 2009



ρ = 1 2D BHM with site disorder, QMC study
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L = 16, β = 8
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QG for 4.2 < Λ < 7.8
Using SSE QMC, we study

I compressibility κ: particle-number fluctuations
I superfluid stiffness ρs: winding number fluctuations

Parameters:

I Adjust µ to ensure ρ = 〈n〉/N = 1

I Fix (a) U/t = 22 (b) U/t = 60

I Average over up to hundreds of realizations



Our MC results
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L = 16, β = 8
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QG for 4.2 < Λ < 7.8• ρs:
I sharp increase at Λ ≈ 8, enter SF
I decreases to zero at Λ ≈ 30, enter QG.
• κ

I substantial in SF and QG re-entered at large Λ.
I However, it is very small before entering the SF phase, not

only in the Mott phase but also in QG



QMC simulations : κ− T behavior
• Quantum Glass region

κ ∼ exp(−b/Tα) + c, α < 1, c = 0

• comparing to MI: the above form with α = 1 and b = ∆

L = 32,U/t = 22
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I κ in QG (MG) follows the
exponential form

κ ∼ exp(−b/Tα)

α ≈ 0.77 for Λ = 6
α ≈ 0.53 for Λ = 7

I MI points (Λ = 0 and 3):
κ ∝ e−∆/T

I SF point (Λ = 9):
κ(T) converges rapidly to a
non-zero value



Temperature behavior of κ

• χ in random quantum spin systems, corresponding to κ,
vanishes as T → 0 due to spin-inversion symmetry,
corresponding to particle-hole symmetry for bosons
Roscilde, PRL 2007, Ma 2014

• Such an incompressible and insulating QG is termed an
MG and has also been shown to exist in variants of the 2D
random BHM where particle-hole symmetry is explicitly
built in Altman PRB, 2010, Iyer PRB 2012

• In the presence of random potentials there is no explicit
particle-hole symmetry. But, in principle there could be
emergent particle-hole symmetry, as in the clean BHM at
the tips of the Mott lobes
• κ = 0 may not hold strictly, the physics behind is similar to

a true Mott Glass.



Percolation scenario

Consider an ensemble of SF domains below the percolation
threshold

MI

SF

I Finite-size (s) gap ∝ 1
sa , a unknown

exponent.
I Given T = 1

ma , all domains of sizes
s < m gaped, NO contribution to κ

I Only domains of sizes s > m
contribute to κ
Prob. of a site belong to an SF
domain with s > m is ∝ exp(−bmc),
c unknown exponent.

thus
κ ∝ exp(−bT−c/a) = exp(−bT−α)



How about the degeneracy of different
particle-number sectors?
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• The percolation scenario neglects the arbitrarily close
degeneracy of different particle-number sectors due to
fluctuations of the average chemical potential of the
domains, which lead to κ(T = 0) > 0 in the standard BG
scenario

• How can these degeneracies be avoided?



Avoided degeneracy
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study isolated domains embedded in Mott background

I finite-size effects: particle-number degeneracies only occur
when the domains are very large with the critical size diverging
at the Mott phase boundary

I All domains below the critical size have vanishing compressibility
and should not be regarded as superfluid

I rare large domains should also have an altered spectral structure
due to quantum-criticality when the SF boundary is approached.

I both small and large typical domains (the latter of which are
fractals) may not contribute to the T = 0 compressibility.



BG and Crossover between MG and BG
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• compressible BG in the re-entrance region

• dramatic variation in the compressibility along a vertical line at
U = 60. κ increases rapidly with Λ between 28 to 31, Mott
boundary at Λ ≈ 24 enhancement is more than four orders of
magnitude

a sharp cross over, not a phase transition
a change from a MG: typical non-Mott domains are not superfluid to a
BG: the domains are superfluid but do not form a coherent global
state.



Critical behavior at SF-MG transition (T = 0)
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• Scaling at the quantum transition
point

κ(Λ) ∝ (Λ− Λc)
ν(2−z)

if z = 2 as often argued (Söyler, PRL, 2013),
then κ 6= 0 at Λc and inside glass
closing to Λc.
if z < 2 then κ = 0 at Λc.

• A key question then is whether z = 2 or z < 2 In the former
case divergent SF clusters in the MI background close to
the percolation point would be compressible, while in the
latter case they should be incompressible.

• There are arguments for z = 2 but no rigorous proofs.
• Some works on models related to BHM have z < 2

Meier, PRL 2012; Priyadarshee, PRL 2006;

some suggest z = 2, but with large error, also consistent
with z < 2 Krauth, PRL 1991, Alet, PRE, 2003; Prokof’ev, PRL 2004



Critical behavior at SF-MG transition (T = 0)

• Determine the dynamic exponent z according to FSS

κu(Λ,L) ∝ Lz−d(Λ− Λc), ρs(Λ,L) ∝ L−z(Λ− Λc),

κu(Λ,L) and ρs(Λ,L) are calculated at β ≈ Lz.

• Comparing three conjectured z = 2, 1.75 and 1.5
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• At T = 0, κ ∼ (Λ− Λc)
ν(2−z), z ≈ 1.75, continuous



Critical behavior at SF-MG transition (T = 0)

I it has been implicitly assumed that any non-singular
contributions to κ can be neglected.

I If regular contributions arise from SF domains larger than a
critical size, then we would expect these contributions to
increase with L, leads to an apparent enhancement of z.
We find a reduction from z = 2, non-singular background
contributions are not responsible for this effect and z < 2
should be a robust result.

I consistent with the drop of κ at SF-MG from right, while at
SF-BG there are no strong variations, suggesting z = 2



Summary
I Based on plausible arguments and unbiased QMC results:

there is an novel QG state with extremely small κ decaying
exponentially with temperature for commensurate filling
and moderate disorder strength in 2D.

I Percolation scenario: finite-size gap of SF domains
explains the exponentially decay of κ

I Finite-size effects also make particle-number degeneracies
avoided

I A dynamic exponent z < 2 provides an explanation for an
anomalously small, or possibly vanishing, T = 0
compressibility in the finger region

I The sharp cross-over from anomalously small to normal
compressibility away from the SF phase at larger U also
shows that there are two distinct types of glass phases

I The scenario in this work applies only to integer filling
fractions

Thank You
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