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Interacting lattice bosons: clean system
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two ground states SF and Ml

~ Greiner et al., Nature (102)

» MI: integer filling, insulating, gaped
» SF: any filling fraction, gapless




Interacting lattice bosons: disorder present
Fascinating interplay between disorder, interactions and SF
» two kinds of disorder: hopping disorder and site disorder

» we focus on site disorder: no explicit particle-hole
symmetry
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» Quantum Glass: insulating but Gapless;
Current prevailing notion: always compressible in 2D with

random potentials — BG



Previous studies of the site-disordered BH model

T = 0 phase diagram: in the presence of disorder, QG always
intervenes SF and MI ?
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Fisher et al, PRB, 1989

(a) Soyler '11; Prokof’ev, '04; Pollet, '09; Herbut, '97; '98; Weichman, 96, '08; Svistunov, '96;

(b) Singh; '92; Pazmandi; '98; Pai, '96;

(c) Scalettar, '91; Krauth, '91; Kisker; '97; Sen, '01; Lee, '01; Wu, '08; Bissbort, '09



: theorem of inclusion
With disorder

Recent progresses

Without gisorder
W

QG always between SF and MI, 2D

Sb I(‘H)
un
QG always between SF and MI, 3D
Pollet et al, PRL, 2009; Soyler et al, 2011; Rieger, meanfield phase diagram, NJP, 2013



p = 1 2D BHM with site disorder

The phase diagram is well established, the properties of QG
state for 2D BHM with site disorder are not well understood
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two types of glass states are known;
e the compressible Bose glass (BG)
e the incompressible Mott glass (MG)
Commonly believed:

e MG only at commensurate filling with particle-hole symmetry
e BG in the 2D site-disordered BHM, always compressible

pollet et al PRL 2009,Gurarie et al PRB 2009,Soyler, PRL 2011.



Standard Scenario
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The "finger region” is a Griffiths phase: rare large regions of
phase A (SF) inside phase B (MI) lead to singularities.

Griffiths arguments: Fisner 89 Freericks 96
B » MI-QG boundary based on A = Ay/2
‘. /& N > A > Awm/2, arbitrarily large SF puddles can appear
! : > A < A, SF puddles NOT percolating, insulating

&, » Fundamentally different from the MI:
gapless due to arbitrarily large SF region




Standard scenario
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The “finger region” is a Griffiths phase: rare large regions of
phase A (SF) inside phase B (MI) lead to singularities.

;e - e fluctuations of the overall chemical potential
/& within the SF domains lead to near
I SN SN degeneracies of different particle-number
N fus sectors — nonzero compressibility BG

Pollet et al, PRL, 2009; Gurare et al PRB, 2009



p = 1 2D BHM with site disorder, QMC study
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Using SSE QMC, we study

» compressibility x: particle-number fluctuations
» superfluid stiffness p,: winding number fluctuations

Parameters:
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> Adjust i to ensure p = (n)/N =1
» Fix (a) U/t =22 (b) U/t =60
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QG for4.2 A< A<78

» Average over up to hundreds of realizations



Our MC results
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QG for4.2 A< A<78

® ps.
» sharp increase at A ~ 8, enter SF
» decreases to zero at A ~ 30, enter QG.
e K
» substantial in SF and QG re-entered at large A.

» However, it is very small before entering the SF phase, not
only in the Mott phase but also in QG



QMC simulations : kK — T behavior

e Quantum Glass region
Kk ~exp(—=b/T) + c, a<l,ce=0

e comparing to MI: the above formwitha =1and b= A

» « in QG (MG) follows the
L=32,U/t=22 exponential form

Kk ~exp(—b/T?)
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» Ml points (A = 0 and 3):
K X e_A/T

» SF point (A =9):
k(T) converges rapidly to a
non-zero value




Temperature behavior of «

e Y in random quantum spin systems, corresponding to «,
vanishes as T — 0 due to spin-inversion symmetry,
corresponding to particle-hole symmetry for bosons

Roscilde, PRL 2007, Ma 2014

e Such an incompressible and insulating QG is termed an
MG and has also been shown to exist in variants of the 2D
random BHM where particle-hole symmetry is explicitly
built in Atman PR, 2010, lyer PRB 2012

¢ In the presence of random potentials there is no explicit
particle-hole symmetry. But, in principle there could be
emergent particle-hole symmetry, as in the clean BHM at
the tips of the Mott lobes

e x = 0 may not hold strictly, the physics behind is similar to
a true Mott Glass.



Percolation scenario

Consider an ensemble of SF domains below the percolation
threshold

> Finite-size (s) gap « %, a unknown
exponent.

» Given T = -1 all domains of sizes

° s < m gaped, NO contribution to »

» Only domains of sizes s > m

© contribute to »

o Prob. of a site belong to an SF
domain with s > m is oc exp(—bm°),
¢ unknown exponent.

thus
K o exp(—bT /%) = exp(—bT ™)



How about the degeneracy of different

particle-number sectors?
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e The percolation scenario neglects the arbitrarily close
degeneracy of different particle-number sectors due to
fluctuations of the average chemical potential of the
domains, which lead to (7 = 0) > 0 in the standard BG

scenario

e How can these degeneracies be avoided?



Avoided degeneracy
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study isolated domains embedded in Mott background

» finite-size effects: particle-number degeneracies only occur
when the domains are very large with the critical size diverging
at the Mott phase boundary

» All domains below the critical size have vanishing compressibility
and should not be regarded as superfluid

» rare large domains should also have an altered spectral structure
due to quantum-criticality when the SF boundary is approached.

» both small and large typical domains (the latter of which are
fractals) may not contribute to the T = 0 compressibility.



BG and Crossover between MG and BG
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e compressible BG in the re-entrance region
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e dramatic variation in the compressibility along a vertical line at
U = 60. « increases rapidly with A between 28 to 31, Mott
boundary at A ~ 24 enhancement is more than four orders of

magnitude

a sharp cross over, not a phase transition
a change from a MG: typical non-Mott domains are not superfluid to a
BG: the domains are superfluid but do not form a coherent global

state.




Critical behavior at SF-MG transition (7" = 0)

e Scaling at the quantum transition

At point
BG

K(A) o< (A — Ag)Y?—9)
SF o
G if z = 2 as often argued (ssyler, PRL, 2013),
ﬂ/ then x # 0 at A. and inside glass
un closing to A..
if z< 2then x =0 at A,.

e A key question then is whether z =2 or z < 2 In the former

case divergent SF clusters in the Ml background close to

the percolation point would be compressible, while in the

latter case they should be incompressible.

e There are arguments for z = 2 but no rigorous proofs.

e Some works on models related to BHM have z < 2
Meier, PRL 2012; Priyadarshee, PRL 2006;
some suggest z = 2, but with large error, also consistent
With z < 2 Krauth, PRL 1991, Alet, PRE, 2003; Prokof'ev, PRL 2004



Critical behavior at SF-MG transition (7" = 0)

e Determine the dynamic exponent z according to FSS
ru(A, L) oc LT9(A — A,), ps(A, L) oc LT5(A — AL),

ku(A, L) and py(A, L) are calculated at 8 =~ L=.
e Comparing three conjectured z = 2,1.75 and 1.5
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Critical behavior at SF-MG transition (7" = 0)

» it has been implicitly assumed that any non-singular
contributions to « can be neglected.

» If regular contributions arise from SF domains larger than a
critical size, then we would expect these contributions to
increase with L, leads to an apparent enhancement of z.

We find a reduction from z = 2, non-singular background
contributions are not responsible for this effect and z < 2
should be a robust result.

» consistent with the drop of x at SF-MG from right, while at
SF-BG there are no strong variations, suggesting z = 2



Summary

>

Based on plausible arguments and unbiased QMC results:
there is an novel QG state with extremely small x decaying
exponentially with temperature for commensurate filling
and moderate disorder strength in 2D.

Percolation scenario: finite-size gap of SF domains
explains the exponentially decay of

Finite-size effects also make particle-number degeneracies
avoided

A dynamic exponent z < 2 provides an explanation for an
anomalously small, or possibly vanishing, 7 =0
compressibility in the finger region

The sharp cross-over from anomalously small to normal
compressibility away from the SF phase at larger U also
shows that there are two distinct types of glass phases
The scenario in this work applies only to integer filling

fractions
Thank You
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