The magnetism of Yb₂Ti₂O₇

Lieh-Jeng Chang

Department of Physics, National Cheng Kung University Taiwan

Novel Directions in Frustration and Critical Magnetism Nordita, Stockholm

16th July 2014

Works are supported by National Science Council, Taiwan (NSC 101-2112-M-006-010-MY3) and NSRRC neutron traveling budgets

Contents

Introductions

Frustrated materials

Quantum spin ice Yb₂Ti₂O₇

Our experimental results on Yb₂Ti₂O₇

polarized neutron studies

MuSR

magnetization

Sample dependent

· 我 切 方, 婚 National Cheng Kung University

Frustration parameter

Frustration parameter, $f = |\theta_{cw}| / T_N$

When f >> 1, strongly frustrated magnets

※ 決わら National Chang Kung University

Some candidates

Pyrochlore lattice:

A. Sachdev, Physics 2, 90 (2009)

K. Matan et al., PRB **83**, 214406 (2011)

Triangular lattice:

 $\begin{array}{l} Ba_{3}CuSb_{2}O_{9}\\ \kappa\text{-}(BEDT\text{-}TTF)_{2}Cu_{2}(CN)_{3}\\ EtMe_{3}Sb[Pd(dmit)_{2}]_{2}\end{array}$

Kagome lattice:

 $ZnCu_{3}(OH)_{6}Cl_{2}$ $Cu_{3}V_{2}O_{7}(OH)_{6}\cdot 2H_{2}O$ $BaCu_{3}V_{2}O_{3}(OH)_{2}$

 $\begin{array}{c} Na_{2}IrO_{3}\\ Na_{4}Ir_{3}O_{8}\\ Pr_{2}Zr_{2}O_{7}\\ \textbf{Yb}_{2}Ti_{2}O_{7} \end{array}$

Magnetic pyrochlore oxides A₂B₂O₇

 読めみ 感 National Cherry Kung Universit

J. S. Gardner, M. J. P. Gingras, and J. E. Greedan, Rev. Mod. Phys. 82, 53 (2010).

Ho₂Ti₂O₇, Dy₂Ti₂O₇ Spin ice - Ising

Tb₂Ti₂O₇ (Quantum) spin liquid

L. Savary and L Balents, Phys. Rev. Lett 108, 037202 (2012).

Yb₂Ti₂O₇ - a pyrochlore with long-range FM order

Yb³⁺ ions with an effective spin- $\frac{1}{2}$.

Magnetic susceptibility follows Curie-Weiss law with $\theta = +0.4$ K.

Heat capacity suggests $Yb_2Ti_2O_7$ orders (ferromagnetically) at 0.214 K.

Entropy of 0.671*R* recovered by 6 K.

cf. Full *R*ln2 entropy associated for effective spin- $\frac{1}{2}$ of 0.693*R* – simple!

H. W. J. Blöte, R. F. Wielinga and W. J. Huiskamp, Physica 43, 549 (1969).

No long-range order in polycrystalline Yb₂Ti₂O₇

Neutron diffraction, muon spin relaxation, and ¹⁷⁰Yb Mössbauer.

First-order transition in spindynamics at 0.24 K.

BUT

No long-range order.

J. A. Hodges et al. Phys. Rev. Lett. 88 077204 (2002).

* 成功方學

FIG. 3. Spin-flip (open circles) and non-spin-flip (closed circles) scattering at the (111) Bragg position. Above 240 mK there is only a small amount feed through due to incomplete polarization. At 90 mK, a peak is clearly seen in the spin-flip data.

J. S. Gardner et al., PRB 70 180404(R) (2004)

No neutron depolarization

Yb₂Ti₂O₇

Fig. 3. Profiles of the ω-scans for 004 and 222 reflections taken at 0.03 K and 0.30 K. Solid and Broken lines are guides for the eye.

Y. Yasui et al., JPSJ 72 3014 (2003)

ferromagnetic

No $Yb_2Ti_2O_7$ powder shows LRO. Only Yasui's crystal shows LRO

No long-range order in single-crystal Yb₂Ti₂O₇

Neutron scattering suggests strong quasi-two-dimensional (2D) spin correlations at low T.

Correlations give way to long-range order under the application of modest (0.5 T) magnetic fields along [110].

Transition at 210 mK involves a crossover from 2D correlated state to a short-ranged 3D correlated state.

K. A. Ross, J. P. C. Ruff, C. P. Adams, J. S. Gardner, H. A. Dabkowska, Y. Qiu, J. R. D. Copley, and B. D. Gaulin, Phys. Rev. Lett. **103**, 227202 (2009).

Quantum spin ice approach

The Yb³⁺ 4f magnetic moment at a site *r* is described with the pseudospin-1/2 operator $\hat{S}_{r} = (\hat{S}_{r}^{x}, \hat{S}_{r}^{y}, \hat{S}_{r}^{z})$ $m_{r} = \mu_{B} \left(g_{\perp}(\hat{S}_{r}^{x}x_{r} + \hat{S}_{r}^{y}y_{r}) + g^{\parallel}\hat{S}_{r}^{z}z_{r} \right)$

the *g*-tensor components $g^{\perp} = 4.18$ and $g^{\parallel} = 1.77$

成功力學

where the *z* direction is taken along the <111> direction

$$H_{D} = \frac{\mu_{0}}{4\pi} \sum_{\langle \boldsymbol{r}, \boldsymbol{r} \rangle} \left[\frac{\boldsymbol{m}_{\boldsymbol{r}} \cdot \boldsymbol{m}_{\boldsymbol{r}}}{(\Delta r)} - 3 \frac{(\boldsymbol{m}_{\boldsymbol{r}} \cdot \Delta \boldsymbol{r})(\Delta \boldsymbol{r} \cdot \boldsymbol{m}_{\boldsymbol{r}})}{(\Delta r)^{5}} \right],$$

$$Spin ice + Quantum fluctuations = Quantum spin Ice$$

$$H_{se} = J \sum_{\langle \boldsymbol{r}, \boldsymbol{r} \rangle}^{n.n.} \left[\hat{S}_{\boldsymbol{r}}^{z} \hat{S}_{\boldsymbol{r}}^{z} + \frac{\delta}{2} \left(\hat{S}_{\boldsymbol{r}}^{+} \hat{S}_{\boldsymbol{r}}^{-} + h.c. \right) + \frac{q}{2} \left(e^{2i\phi_{\boldsymbol{r},\boldsymbol{r}}} \hat{S}_{\boldsymbol{r}}^{+} \hat{S}_{\boldsymbol{r}}^{+} + h.c. \right) + \frac{K}{2} \left(e^{i\phi_{\boldsymbol{r},\boldsymbol{r}}} \left(\hat{S}_{\boldsymbol{r}}^{z} \hat{S}_{\boldsymbol{r}}^{+} + \hat{S}_{\boldsymbol{r}}^{+} \hat{S}_{\boldsymbol{r}}^{z} \right) + h.c. \right) \right].$$
S. Onoda

Contents

Introductions

Frustrated materials

Quantum spin ice Yb₂Ti₂O₇

Our experimental results on Yb₂Ti₂O₇

polarized neutron studies

MuSR

magnetization

Sample dependent

◎ 成切方學

Single crystals were grown from IR furnace (Y. Yasui, Meiji U.)

DNS@FRM-II, Germany Diffuse Neutron Scattering

◎ 成切方學

Top view

· New monochromator:

improved focussing

improvement in the resolution

· New disc chopper:

by factor of 2 New polarizer

12 new polarization analyzers

3 new position sensitive detectors:

rge solid angle: 0.28 sr → 1.9 sr

00x pixel power

with $\boldsymbol{Z} = (1, -1, 0)/\sqrt{2}$ for the NSF channel and $f_{\boldsymbol{Q},i,j}^{\mu\nu} = \frac{1}{4|\boldsymbol{Q}|^4} \left[\boldsymbol{Q} \times (g_\mu \boldsymbol{e}_i^\mu \times \boldsymbol{Q}) \right] \cdot \left[\boldsymbol{Q} \times (g_\nu \boldsymbol{e}_j^\nu \times \boldsymbol{Q}) \right]$

for the total. The SF channel is obtained as the difference between the above two.

L. J. Chang/ S. Onoda et al., Nat. Commun. 3, 992 (2012)

Peak (111) intensities

· 成功方學

L. J. Chang/ S. Onoda et al., Nat. Commun. 3, 992 (2012)

Pinch point cut

L. J. Chang/ S. Onoda et al., Nat. Commun. 3, 992 (2012)

Phase diagram

Nearly collinear ferromagnet (~1 degree canting), M//[100]

Magnetic Coulomb liquid Vb2Ti2O7 (Ho/Dy)2Ti2O7 Monopole condensates 0 S L. J. Chang/ S. Onoda *et al.*, Nat. Commun. 3, 992 (2012)

MuSR experiments @ µSR, ISIS

Zero-field μSR – powder sample

A(t) normalized by A(t = 0, T = 0.6 K).

Powder

At 0.5 K, exponential decay of A(t) - indicates Yb spins are fluctuating, yielding a slow relaxation of the muon spins.

At 0.25 K, [slightly below T_C determined from the C(T)], steep drop in A($t < 0.5 \mu$ s), followed by a slow relaxation.

Initial drop indicates muon spins are depolarized more quickly in the pulse duration of 70 ns.

Strong evidence Yb moments are static or quasistatic within μ SR time window (10 ps to 1 μ s).

Zero-field μSR – single crystal sample

Single crystal

At high T (4.0, 0.4, and 0.3 K) relaxation of muon spins is slightly slower than in powder.

At T = 0.25 K, we again observe a rapid initial drop in the asymmetry followed by a slow relaxation.

Size of the initial decrease in asymmetry is reduced from that of the powder.

Zero-field μ SR - A(t)

 μ SR time spectra can be analysed using:

$$A(t) = A_1 \exp(-\lambda_1 t) + A_2 \exp(-\lambda_2 t)$$

fast slow

L.-J. Chang et al., Phys. Rev. B 89, 184416 (2014).

Zero-field μ SR - A(t)

 μ SR time spectra can be analysed using:

 $A(t) = A_1 \exp(-\lambda_1 t) + A_2 \exp(-\lambda_2 t).$ fast slow $A_2(t = 0) \text{ is nearly } T \text{ independent at high } T.$

Below ~0.3 K, $A_2(t = 0)$ falls to an almost constant value of $\frac{1}{4}$ and $\frac{1}{2}$ its high-*T* value for powder and single crystal respectively.

=> volume fraction of static or quasi-static moments is ~80 - 100%.

Zero-field μ **SR** - $\lambda(t)$

Relaxation rate λ_2 same at ~1 K, reaching a maximum at ~0.25 K.

 λ_2 for powder enhanced by a factor of 2, compared with single-crystal.

Peak in λ_2 indicates that the time scale of magnetic fluctuations increases and crosses μ SR time window, (10 ps to 1 μ s), around this *T*.

LF-field µSR

 λ_2 decreases monotonically with increasing longitudinal field both well below and well above T_C .

At 0.7 K, A(t) still shows a single slow exponential time decay even in a magnetic field of 0.25 T.

Some of the magnetic excitations lie in the μ SR time window in this *T* and field range.

LF-field µSR

Below T_C (~0.1 K) A(t) shifts upward with increasing field, with no crossing.

Shift accompanied by recovery in asymmetry.

Initial drop in asymmetry disappears at 0.25 T - approx. order of T_C .

LF-field µSR

Below T_C (~0.1 K) A(t) shifts upward with increasing field, with no crossing.

Shift accompanied by recovery in asymmetry.

Initial drop in asymmetry disappears at 0.25 T - approx. order of T_C .

Muon spectroscopy \Rightarrow static or quasi-static momen 3. Full entropy from heat capacity \Rightarrow long-range orde

Other µSR studies

First-order transition in spin fluctuation rate.

J. A. Hodges *et al.* Phys. Rev. Lett. 88, 077204 (2002).
P. Dalmas de Réotier *et al.* Physica B 374-375, 145 (2006).

Other **µSR** studies

No difference in A(t) data between high T (1 K) and base T (16 mK) for single crystal or powder.

No long-range magnetic order.

BUT

Also no change in fluctuation rate.

R. M. D. D' Ortenzio et al. Phys Rev B 88, 134428 (2013).

Discussions on the MuSR results

We had carried out MuSR experiments on powder sample, "long-ranged order" crystal, and a crystal without HC peak.

- Emergence of static (<1 MHz) internal magnetic moments observed for powder and "long-ranged order" crystal.
- Temperature vs relaxation rate of the crystal without HC peak is close to that reported in the D. M. D'Ortenzio paper. → magnetic interaction is weaker in this sample (small fraction of the crystal contributed to magnetic order)
- The initial drop in the asymmetry on our single-crystal is similar to that on the powder worked by Hodges et al. (Volume fraction of the static moments is ~80% in our single crystal.)

Magnetisation - M(T)

Powder and single crystal samples.

Low-*T*, SQUID magnetometers.

Crushed powder with Cu paste.

M/*H* vs *T* for *H*//[100] and [110]; *H* = 5 Oe.

At high *T*, Curie - Weiss law.

At low *T*, abrupt rise limited by the demagnetisation factor of the samples.

E. Lhotel et al., Phys. Rev. B 89, 224419 (2014).

Magnetisation - first order transition

Strong relaxation.

Equilibrium is only reached after ~600 seconds.

Small hysteresis indicates 1storder transition.

Increase in M(T) appears below maximum in C(T).

Magnetisation - first order transition

Zero-field cooled, field-cooled magnetisation show irreversibility.

Domains in FM ordered state.

ZFC-FC suppressed and transition broadened and shifted to higher *T* in fields up to 500 Oe.

Hysteresis in M(H) for powder; $H_c \approx 10$ Oe @ 80 mK. $H_c \approx 5$ Oe @ 200 mK.

Results qualitatively similar in single crystal.

E. Lhotel et al., Phys. Rev. B 89, 224419 (2014).

AC susceptibility

 χ' (*T*) sharp peak at transition (243 mK).

Peak in $\chi'(T)$ coincides with onset of signal in $\chi''(T)$.

No frequency dependence.

Small *T* hysteresis in χ' and χ' .

E. Lhotel et al., Phys. Rev. B 89, 224419 (2014).

Contents

Introductions

Frustrated materials

Quantum spin ice Yb₂Ti₂O₇

Our experimental results on Yb₂Ti₂O₇

polarized neutron studies

MuSR

magnetization

Sample dependent

Sample dependent

黨 成功方學

L. J. Chang et al., PRB 89, 184416 (2014)

Sample dependent

L. J. Chang/ S. Onoda et al., Nat. Commun 3, 992 (2012).

K.A. Ross *et al.*, proposed "stuffed" Yb₂(Ti_{2-x}Yb_x)O_{7-x/2} with x = 0.046PRB 86, 174424 (2012)

• $Yb_2Ti_2O_7$, a quantum spin ice, first CEF ~ 620 K

T > ~0.24 K: Rod-structure, quantum spin ice (Pinch points (magnetic Coulomb phase))

• $T < \sim 0.24 \text{ K}$:

Confirmed ferromagnetic order in crystals and powder: Neutron scattering, MuSR, DC magnetization (*L. J. Chang et al.*, *E. Lhotel et al.*)