Theoretical analysis of high-order interference in energetic ion-molecule collisions

Hicham AGUENY

University of Bergen

UFR de Physique du Rayonnement et des Interactions Laser-Matière, Université Moulay Ismail, Morocco

Laboratoire de Chimie Physique – Matière et Rayonnement, Université Pierre et Marie Curie, France

Departement of Physics and Technology, University of Bergen, Norway

Young's double-slit

Fano Interference

 $\sigma = \sum_{l} \sigma_{l} = \sigma_{H}(Z^{*}) [1 + (\sin kR)/kR]/(1+S)$

Cohen and Fano Phys. Rev. 150, 30 (1966)

Interference effects in electron emisssion Kr³³⁺ -H₂

High-order interference mechanisms

Interference effects in electron emisssion Kr³³⁺ -H₂

Difficulty to observe double-scattering effects

A critical parameter for the second and higher order mechanisms to be pronounced is the internuclear distance R_{ab} : for H₂ (R_{ab} =1.4 au) λ_{dB} : 1.3-6 au

R_{eq} << ****_____

The situation could be repaired by analyzing oscillations at higher electron energies: 2nd order process vanish

Remaining alternative is to consider molecules with large internuclear distance

Heavy diatomic molecules

<u>M. Aymar et al. J. Phys. B 36, 4799 (2003)</u>

Non-perturbative approach

$$\begin{split} \blacksquare \underline{\mathbf{1D-1e-TDSE}} \qquad & [\mathcal{H}_e(t) - i\frac{\partial}{\partial t}]\psi(t) = 0 \\ \hline \mathcal{H}_e(t) = -\frac{1}{2}\nabla^2 + V_a(x) + V_b(x) + V_p(t) \\ \downarrow \\ \hline V_i(x) = -\frac{1 + (Z_i - 1)e^{-a_1x_i} + a_2x_ie^{-a_3x_i}}{\sqrt{x_i^2 + \alpha^2}} x_i = |x - R_i|, \ i = a, b \\ \hline V_p(t) = -\frac{Z_p}{\sqrt{|x - R(t)|^2 + \beta^2}} \end{split}$$

Non-perturbative approach

Time-propagation

(Predictor-corrector)

$$\psi(t) = \sum_{i} c_i(t) f_i(x)$$

<u>To check</u> Finite-difference & Crank-Nicolson

Analysis

Ionization wave-function

$$|\phi_{ioniz}(x)\rangle = [1 - \sum_{i \text{ bound}} |\Psi_i(x)\rangle \langle \Psi_i(x)|] |\psi(t \to \infty)\rangle$$

Momentum distribution

$$|\phi_{ioni}(p_x)|^2 = |\mathcal{F}(\phi_{ioni}(x))|^2$$

Coherent Electron Emission Beyond Young-type Interference: H⁺- Rb₂⁺

Coherent Electron Emission Beyond Young-type Interference: H⁺- Rb₂⁺

Coherent Electron Emission Beyond Young-type Interference: H⁺- Rb₂⁺

Second-order Born Approximation

2nd order scattering amplitude

Second Born Approximation

2nd order scattering amplitude

 $\vec{\mathbf{k}}_1$

$$a^{(2)}(\vec{k}_f) = \int d^3k_1 [a^{(2),+}(\vec{k}_1, \vec{k}_f) + a^{(2),-}(\vec{k}_1, \vec{k}_f)]$$

To evaluate the amplitude:

Vs=Va+Vb: screened Coulomb (e-T)
V: constant (e-P)
Initial state: LCAO
Final and intermediate wavefunctions: Plane waves

$$a^{(2),\pm}(\vec{k}_1,\vec{k}_f) \sim \int_{-\infty}^{\infty} dt_2 e^{i\Delta E_2 t_2} \langle \psi_{k_f}(\vec{r}_2,\vec{k}_f) | V_s(r_2) | \psi_{k_1}^{\pm}(\vec{r}_2,\vec{k}_1) \rangle$$

$$\langle \int_{-\infty}^{t_2} dt_1 e^{i\Delta E_1 t_1} \langle \psi_{k_1}^{\pm}(\vec{r}_1, \vec{k}_1) | V(r_1, t_1) | \psi_i(r_1, \vec{R}_{ab}) \rangle$$

Second Born Approximation

2nd order scattering probability

$$|a^{(2)}|^2 \sim |a^{(2),+}|^2 + |a^{(2),-}|^2 + 2Re(a^{(2),+,*}a^{(2),-})$$

$$|a^{(2)}(k_1,k_f)|^2 \sim |a|^2 \Big[3 + 3\cos(k_f R_{ab}) + 4\cos(k_1 R_{ab}) + 6\cos(k_f R_{ab})\cos(k_1 R_{ab}) + \cos(2k_1 R_{ab}) + \cos(k_f R_{ab})\cos(k_1 R_{ab}) + \cos(2k_1 R_{ab}) \Big].$$

Coherent Electron Emission Beyond Young-type Interference: Internuclear distance effect

The key ingredient of the present work is the relative magnitude between the de Broglie's wavelength of the ejected electrons and the molecular interatomic distance.

Perspectives

Extension to full dimensions

Triatomic systems

Application to new materials (graphen)

Extension to Laser-diatomic molecules

Slow ion-atom collisions: electron transfer processes!!!! (via the formation of the transient molecule by the passing projectile and the atomic target) capture into highly excited states.

