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@ Conventional Strong Field phenomena (brief description)
e The physical picture: the three-step model
e Typical numbers: the laser-ionized electron does not feel
the spatial variation of the field

@ Laser-matter processes driven by temporal and spatial
synthesized laser fields

e The (recent) past: the experiments, motivation

e The (recent) past and present: the models (quantal,
semiclassical and classical) & selected results

e The present: conclusions

@ The (near) future: outlook, perspectives & work in progress

Marcelo Ciappina Stockholm, 02.06.15



Conventional Strong Field phenomena

Brief description

Above threshold ionization (ATI)

Atomic or molecular bound electrons absorb
many more photons than the minimum

required to reach the continuum @ Emission of t‘he electron excess energy in
L the form of high-order harmonics of the
@ Excess energy converted to kinetic energy fundamental laser field (HHG) (typically XUV
@ Production of direct and rescattered photons)
electrons @ HHG spectra features: decay, plateau and

@ Use as a pulse characterization cutoff

Kol @ Utilization as a source of attosecond pulses
i~ and molecular imaging tool

norm. HHG yiokd

sxbiym

™ 4 w0 2 40 w0 2 4 o

160
eleciron eneray [oV]

oy
X0V phten energy (]

Typical photoelectron spectra (experiment) Typical HHG spectra in atoms (experiment)

Main theoretical assumption: the laser electric field is spatially
homogeneous where the electron dynamics takes place

G. G. Paulus, et al., Phys. Rev. Lett. 91, 253004 (2003); B. E. Schmidt, et al., J. Phys. B. 45,
074008 (2012)
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Conventional Strong Field phenomena

The physical picture
The three-step model (it is simple and it works!!!!) |
%3 o S ' / 4——*‘\4‘-——"
N ‘ :
a ] a]

(a) tunnel ionization; (b) the electron is pulled away from the atom; (c) the
electron is driven back; (d) it can recollide’ during a small fraction of time
(sub-fs) and convert its kinetic energy in a high energy and ’ultrashort’ photon
(or it can rescatters, double ionize, etc.); (e) the quantum mechanical picture
(split of the wavefunction in a bound and a continuum part, overlap after).

P. B. Corkum, Phys. Rev. Lett. 71, 1994 (1993); M. Lewenstein, et al., Phys. Rev. A 49, 2117
(1994); P. B. Corkum & F. Krausz, Nat. Phys. 3, 381 (2007)
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Conventional Strong Field phenomena

Typical numbers

Classical electron excursion in an oscillating electric field
(quiver radius) o = E2 Jw? = I/w?

@ 1~ 10" wicm? @ 1~ 10" wicm? @ 1~ 10" Wiem?
= a ~ £0.28 nm = a~ £1.5nm = a ~ +4.1 nm

@ I~ 10" wiem? @ 1~ 10" W/icm? @ |~ 10" W/iem?
= a ~ £0.87 nm = a~ £4.5nm = a~ +13nm

Ta

P__'__,__...y Detector

Scheme of a typical high-order harmonic experiment using gas jets. The
waist of the gaussian laser pulse is several tenths of ums (for 800 nm).

C. Hernandez Garcia, et al. Phys. Rev. A 82, 033432 (2010)

Marcelo Ciappina Stockholm, 02.06.15



The (recent) past

Motivation, the experiments |

HHG in gases driven by HHG in gases driven by
plasmonic fields | (2008) plasmonic fields Il (2011)

ol 4551 une 2008 4101038/ natre07012

LETTERS P PUBLSHED ONLBE: 16 OCTORER 201 DO 0038 ABHOTON 1258
N N " Plasmonic generation of ultrashort
High-harmonic generation by resonant plasmon extreme-ultraviolet light pulses
field enhancement

In-Yong Park", Seungchul Kim", Joonhee Cho", Dong-Hyub Lee!, Young-Jin Kir, Matthias F. Kiing?,

Seungchul Kim'*, Jonghan Jin'*, Young-Jin Kin', In-Yong Park', Yunseok Kim' & Seung-Woo Kim' Mark 1. Stockman® and Seung-Woo Kim'*
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S. Kim, et al., Nature 453, 757 (2008); I-Y. Park, et al., Nat. Phot. 5, 677 (2011)
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The (recent) past
Motivation, the experiments Il

Electron emission in

nanotips | (2011)

LETTER

Attosecond control of electrons emitted from a
nanoscale metaltp

s

Electron emission in
nanospheres (2011)

_ ARTICLES

o
physics

Controlled near-field enhanced electron
from dielectric h with
I field:

Electron emission in

nanotips Il (2012)

LETTER

= -
—

Field-driven photoemission from nanostructures
qllem,hea lhe quner motion

ol m

v

M. Kriger, et al., Nature 453, 78 (2011); S. Zherebstov, et al., Nat. Phys. 7, 656 (2011); G. Herink,

et al., Nature 483, 190 (2012)
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The (recent) past and present
Theoretical models

We treat spatially inhomogeneous field by modifying the
laser-electron coupling in the conventional theoretical models ’

Quantal Semiclassical Classical

@ The Time Dependent
Schrédinger Equation
(TDSE) 1D & 3D

@ Numerical solution in a
grid with absorbing
boundaries

@ ATl yield and HHG
spectra obtained
postprocessing the time
propagated wavefunction

@ Advantages & Drawbacks
of each flavor

The Strong Field
Approximation (SFA) or
Lewenstein model

The laser field does not
affect the bound electron

The residual Coulomb
field does not affect the
continuum electron

Interpretation of ATl and
HHG in terms of quantum
orbits

@ Newton-Lorentz equation
(1D)

@ Simple man’s model
prescriptions

@ Extraction of the
ionization and
recombination times

@ Electron kinetic energy
calculations

@ Excellent prediction of
ATl yield (energy) and
HHG spectra (harmonic
order) limits

The three approaches give supplementary information ]

M. F. Ciappina, et al. Rep. Prog. Phys (in progress) (2015)
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Quantum models |
TDSE-1D

The Time Dependent Schrédinger Equation in reduced
dimensions (TDSE-1D)

OV(Xt) 1 P
=2 = (_*7 + Vatom(x) + Vlaser(xa t))\U(X, t)

where Vatom (X) = —1/+/X2 + &2 is the soft core potential (the ionization potential is adjustable

varying a) and Viagser (X, t) = —E(x, t)x with E(x, t) = Eofy(t)(1 + €9(x)) sin wt the potential (in

the dipole approximation) due to the laser electric field including a general function g(x) for the

spatial variation and a (small) parameter e that controls the inhomogeneity strength.

@ Numerical solution in a grid using the Crank-Nicolson algorithm with absorbing boundary
conditions (masks)

HHG spectra calculated using the time propagated electron wavefunction via the dipole
acceleration

ATl yield calculated using the time propagated electron wavefunction via energy window
techniques

Advantages: low computational cost, allow general functional forms for g(x), excellent
agreement with the classical predicted limits

Drawbacks: finer details of HHG of ATl are missing, only allow energy analysis (ATI)

Marcelo Ciappina Stockholm, 02



Quantum models Il
TDSE-3D

The Time Dependent Schrédinger Equation (TDSE-3D) in the
Single Active Electron (SAE) approximation

. OV(7,t = =
1% = (_%VZ e Vatom(r) F Vlaser(ra t))\II(r, t)
where Vatom (r) is the atomic potential (chosen to match the ionization potential and excited states
of the atom under study) and Vjase: (7, t) = —E(7, t) - T the potential due to the laser electric in the
dipole approximation. We have only implemented the case for linear polarization and spatially linear
nonhomogeneous fields.
@ The electron wave function W(7, t) is written in terms of angular momenta /

@ For each / (typically several hundreds) we have a set of coupled partial differential equations
for the radial variable r

@ Numerical solution in the radial grid using the Crank-Nicolson algorithm with absorbing
boundary conditions (masks)

@ HHG spectra calculated using the time propagated electron wavefunction via the dipole
acceleration & ATl yield calculated using the time propagated electron wavefunction via
energy window techniques

@ Advantages: excellent resolution for both the HHG spectra and ATl yield; it allows angular
distributions calculations (ATI); real nonhomogeneous fields can be incorporated; modeling
of complex atoms with high precision

@ Drawbacks: high computational cost (in particular for longer laser pulses and longer
wavelengths), up to date only spatially linear nonhomogeneous fields have been studied
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Semiclassical models
The Strong Field Approximation (SFA) or Lewenstein model

Strong Field Approximation (SFA) prescriptions
@ The laser field does not affect the bound electron
@ The residual Coulomb field does not affect the continuum

electron
SFA for HHG SFA for ATI
@ Key ingredient: dipole transition matrix @ Transition amplitudes for both the direct
(the HHG is the Fourier transform) and rescattered processes
@ Three step: ionization, classical motion & @ ATl yield calculated as a coherent sum of
recombination direct and rescattered contributions
@ Saddle points treatment: Quantum Orbits @ Saddle points treatment: Quantum Orbits
interpretation interpretation
@ Non-homogeneous fields modifications @ Non-homogeneous fields modifications
(linear case) (linear case)
@ Classical action @ Classical action
@ Saddle points electron momentum @ Saddle points electron momentum
@ Saddle points equations @ Saddle points equations

Marcelo Ciappina Stockholm, 02.06.15



Classical approaches
Newton & simple man’s model

Newton-Lorentz equation (1D)

X(t) =-V Vlaser(xa t)
with Viaser (X, ) = XE(X, t), E(x, t) being the laser electric field.
Note that E(x, t) is now function of both time and space
@ Simple man’s model prescriptions
e Initial conditions: x(f;) = 0 & x(¢;) = 0 (t; — ionization time)
Recollision condition x(t,) = 0 (t- — recollision time)
The excess of energy is converted at recollision
If the electron recombines and emits radiation — HHG
HHG cutoff prediction n, = (3.17U, + Ip)/w (experimentally
confirmed)
o If the electron never return, 2U, cutoff in ATl yield (direct
electron, experimentally confirmed)
o If the electron elastically rescatters, 10U, cutoff in ATl yield
(rescattered electron, experimentally confirmed)
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Selected Results |
HHG driven inhomogeneous fields & electron confinement

g L
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(linear) field
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Enhanced laser field
Input pulse

Sketch of the HHG driven
by plasmonic fields

Time-frequency analysis
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Selected Results Il

ATI driven by linear nonhomogeneous fields

@ Photolee

ATI for a model atom (TDSE-1D)
Electron energy spectra

ATI for H (TDSE-3D)
Two-dimensional photoelectron spectra
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Selected

REEC

HHG driven by plasmonic ’real’ fields

S500nm

Sketch and TEM image

of the bow-tie nanostructure
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field enhancement
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Selected Results IV

HHG driven by temporal and spatial synthesized laser fields

Temporal synthesized field
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Laser amplitude (a.u)
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classical simulations )
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Selected Results V

HHG and ATI driven by plasmonic near-fields

laser pulse

Metal
nanoparticle

Sketch of
the setup
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ATI for a model atom HHG for a model atom
(TDSE-1D) (TDSE-1D)
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Selected Results VI

HHG driven by metal nanotip photoemission

TDSE-1D model (used for ATI)
Potential barrier (metal
surface)

Image charge

Actual metal tip parameters
Inclusion of a DC field

Harmonic onder

HHG spectra for a metal
Au nanotip
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Summary of results |

Chronological
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Summary of results Il

Chronological
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The present
Conclusions

@ Theoretical modeling of novel laser-matter processes:
quantal, semiclassical & classical

@ Reliability of the theoretical approaches and their
predictions

@ Prospect of table-top high repetition rates and strong laser
sources using plasmonic fields: looking for experimental
alternatives
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The (near) future
Perspectives & challenges |

@ Extension of the theoretical approaches to more complex
nonhomogeneous fields & macroscopic effects modeling
(problem of incoherent radiation)

@ Exploring (theoretical & experimentally) strong field related
phenomena (above threshold photoemission, HHG in
solids, electron emission and radiation from thin films, etc.)

@ Attosecond physics at nanometric scale (attosecond
streaking of plasmonic fields, tailoring electron trajectories,
molecular dynamics)
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The (near) future
Perspectives & challenges Il

@ Application of Quantum Optimal Control Theory (QOCT)
tools to plasmonic fields. Is it possible? Yes (theoretically)

@ Experimental implementation: tailoring nanostructures,
studies of damage thresholds & new materials. Goal:
production of high energy XUV/EUV photons without
amplification stage

Sketch of HHG enhancement using a plasmonic structure
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The (near) future
Work in progress: understanding the electron trajectories

|W(x, t)|> 1D-TDSE Homogeneous |W(x, t)|> 1D-TDSE Exp decay

2 4
t (opt. cye.)

Electron trajectories (homog.) Electron trajectories (exp)

t (opt.cycles)
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Thank You

Thank you
for your attention !
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Q&A

(Questions & Answers)

Marcelo Ciappina Stockholm, 02.06.15



