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What do we mean by the long wavelength limit ?

Objectives of this contribution

To analyse the interaction of a one active electron system with an ultra-short
laser pulse composed of 2 optical cycle, a fixed peak intensity of 1014 W/cm?
and a frequency << ionisation potential

mm) |ONISATION PROCESS + SUBSEQUENT DYNAMICS

] ]

Dipole approximation OK Non dipole corrections become important

Ponderomotive potential U = E2/4w? allows to quantify non dipole couplings

* Magnetic field is important when the displacement B = Up/2cw of the electron in
the laser field propagation direction is about 1 a.u.

 Radiation pressure produces a momentum in the laser field propagation
direction given by U /c.

* Relativistic effects occur when U,= mc2.

Our study of the complex electron dynamics in presence of the electric, magnetic and
Coulomb fields is based on the Pauli equation



High order Pauli equation
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DIRAC EQUATION

Non-relativistic limit

PAULI EQUATION

Foldy — Wouthuysen
transformation

Pauli equation contains terms that

Hinschberger & Hervieux (PLA 376, 2012) + Meyap Soh couple successive time derivatives of

the external fields to the spin
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For a plane wave modulated by a square envelope,
each order is higher than the previous one. The re-
summation of all orders gives a result proportional to:
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Note that Pauli equation is not valid in
Attosecond temporal

regime that regime !!
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Experimental evidences
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: magnetic displacement

effect on the electron
momentum distribution
projected on the axis of
propagation.

Ludwig et al.,
PRL 113, 243001 (2014)

: radiation pressure due

to an intense circularly
polarized field.

Smeenk et al.,
PRL 106, 193002 (2011)

effect of magnetic field
in the interaction of
multi-charged neon at
very high intensity

Palaniyappan et al.,
PRL 94, 243003 (2005)



Low energy behaviour of the ATI spectra

Interaction of atomic hydrogen with an ultra-short laser pulse

sine square pulse envelope

Normalized electric field

-1 -0.5

. 0 0.5
Time (optical cycle)

Numerical treatment of TDSE

Spectral method

* real coulomb sturmian functions

Linear polarization

Dipole approximation
Velocity gauge

Pulse duration = 2 cycles
Peak intensity = 1014 W/cm?

0.8 UM <A<3.6 um

* complex coulomb sturmian functions (equivalent to a global complex rotation)

* B-splines



Time propagation

e Arnoldi algorithm
* Crank-Nicolson algorithm
e two-stage diagonally implicit Runge-Kutta method of second order

Useful (complex) norm for controlling accuracy of time propagation scheme

‘(Y)(t)>:T|CI>(—t)> ) the norm <€I5(t)‘d)(t)> is conserved in time

Properties of the time
reversal operator

<E>(oo)| CI>(oo)> = <15‘ CI>(oo)> F— <E)(O)‘ (I)(O)> = <1s‘(l)(oo)> = amplitude to stay in 1s state

symmetric
pulse ‘

No need to propagate until the end of the pulse
Few comments about the numerical calculations
* Energy spectra are calculated by projecting on Coulomb functions ‘P‘;’(F,I?) or pseudo-states
* Size of sturmian bases: 6000 functions/angular momentum ¢ with ¢, =160

e Size of the grid for B-splines : about 1000 a.u.
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» There are 3 frequency regimes :

0.01<w<0.1

- very weak ionisation probability
- stabilization with increasing intensity ?

0l1<wx<l1

regime of intermediate resonances
w>1

pulse too short -> no ionisation
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» In the low frequency regime, the ionization vyield
becomes constant.

» Dimitrovski et al. showed that in the case of a half cycle
pulse, such “asymptote” exists and can be determined
from the tunnelling probability expressed in terms of the
width of the ground state for static field.

» At high frequencies, lowest order perturbation theory is

valid.
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Atomic Hydrogen

0.1F wavelength = 2um T
pulse duration = 2 optical period
0.08f peak intensity = 10" Watt/cm? T
carrier phase = 0°
0.06f i

energy distribution along

/ the polarization axis, 6=n
0.04, .

Energy distribution (a.u.)

>~ energy distribution along
energy spectrum the polarization axis, 6=0°
0.02F \integrated over the angle
O [ 1
0 10 20 30 40 50

Electron energy (eV)

» The increasing distance in energy between the peaks results from the
interference between an emitted wave packet and a returning wave
packet emitted one cycle before (Arbo et al.)

» Important dissymmetry between backward and forward spectra (LES)
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» The interference pattern is more pronounced = result of the field time behaviour
» The amplitude of the peaks is significantly reduced with respect to the $=0° case



Population in sphere = gauge independent quantity ! i ' - . .

Population inside a sphere of radius R

1 T T
R=5 a.u. 0.9999-
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A ’,' \ ! > e -250 -200 -150 -100 -50
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wavelength = 2um
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0.985 —200 100 __ 0 100 200 pet
Time (a.u.)
. . 0'99410 5I0 1 (I)O 1;0 2(I)0 2;0
» Around t=-100 a.u., polarization of the electron Time (a.u.)

cloud + slight ionisation in the backward direction.
Polarization follows the field and involves p-states.
» Around t=-50 a.u. a significant ionization starts
when the electric field is zero (A(t) is maximum).
Electron are emitted in the forward direction.
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J(z.p, )= | pIE, ] (zpt)dp

0
with:  J =J —A(t)|'P(F, )]

jL =Im(¥ (7,t)VP(F,t))

» At t=50 and z=60 a.u., emission of
electrons in the forward direction
along the polarization axis (all curves
are on top of each other).

» At t=150 and z=60 a.u., most of the
electrons are coming back except for
the fastest (direct electrons)

» At t=200 and z=-60 a.u., electrons are
leaving in the backward direction
after one forward rescattering by the
Coulomb potential
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» At t=50 a.u. and z=60 a.u., the

current at p=30 a.u. is 5 orders of
magnitude smaller than the current
along the axis (p=0).

Between z=60 a.u. et z=-60 a.u.,
the dispersion of the wave packet
in a direction perpendicular to the
polarization axis is small because of
the focusing effect of the Coulomb
potential (Rutherford cross section
diverges in the forward of
backward direction).



¢-contribution to the ionized wave packet

Atomic Hydrogen

wavelength =2
pulse duration = 2 optical cycle

peak intensity = 10 14 Watt/cm?

carrier phase = 0°

Angular momentum gquantum number ¢

2 4 6 8 10 12 14
Electron energy (eV)

» For threshold electrons, ¢ .. corresponds exactly to the number of photons to be

7 “max

absorbed to go from the 1s state to the threshold (without considering U )



wavelength = 2um
pulse duration = 2 optical period

=0

peak intensity = 10" Watt/cm?
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Momentum distribution at A(t)
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» The momentum distribution along the polarization axis is consistent with
the spectrum along this axis.

» The rich structure observed for positive p, characterizes direct electrons
involving the ionisation process only.



The simple man’s theory

Main idea

Un electron is set free at time t,,, in x(t;,,)=0 with no velocity. From thereon, it is driven by

the field along the polarization axis (1D) without interacting with the ionic potential anymore.

Basic classical equations :
X(t)=x(t._)+A(t)-Alt )
t

x(t)=x(t, )+ [ Alt')dt'-Alt, )t—t, )

Look for re-collision time t,

t
x(t)= | At)dt' —Aft, )t —t, )=0
t.
Definitions

. 1 2
Returning energy : E, = E(A(tr)_A(tion))

1
Forward energy = energy at the end of pulse if scattering in forward direction: Ef = EAz(tion)

1 2
Backward energy = energy at the end of the pulse if backscattering occurs : E, = E(ZA(t,)—A(t,o,,))



-E(t) (a.u.)

Return Energy
Forward scattering energy

; 0.1
Backward scattering energy .
0.06 - 4153 Atomic Hydrogen
1 —~0.08t wavelength = 0.8u
0.04 - 1.02 — ‘:é pulse duration = 2 optical period
| > - peak intensity = 10'* Watt/cm?
0.02 0.51 \(_6’ .% 0.06 carrier phase = 0°
) 2 o
Q 7 energy distribution along
0.00 - 0.00 o= — the polarization axis, 6=n
o0 :0.04
1 E o
E energy spectrum
-0.02 051 ¢= I.ICJ integrated over the energy distribution along
| wl 0.02r angles the polarization axis, 6=0
-0.04 - . 1-1.02
pulse duration = 2 cycle Q . .
0 5 10 15 20
0064 wavelength=0.8 um H-1.53 Electron energy (eV)
T T T I T I T 1 T I T I T I
0 31 62 93 124 155 186 217
t,, (a.u.)

> Electrons that are emitted at t,,, = 62 a.u. and that are re-scattered in the forward
direction come out with an energy of about 0.08 a.u. Their return energy is about
0.6 a.u. which is consistent with 3.2 U, >< an analysis that does not take the pulse
envelop into account and which predicts that in the case of a soft collision, the
peak close to zero energy cannot be observed in the case of two cycle pulses.

» The returning energy is proportional to A?



0.12 - - - -
, _ , Atomic Hydrogen
pulse duration = 2 optical period
"3.\ 0.1r peak intensity = 10'* Watt/cm?
. ior phase = 0°
S carrier phase =0 ) = 2u
g 0.08f U™ =1.35 a.u.
— p
= A=0.8u . ~ 60 photons
o max o™ =102 a.u.
"= 0.06} Up = 0,22 a.u.
K ~ 4 photons
'S o™ = 163 a.u. E=0.55eV
% 0.04f y=1.07
O E=22¢eV
c
<0.02 \ :
O 1 - 1 1
140 150 160 170 180
0 (degree)
» The width at half maximum scales as 1/A the momentum transfer in the

direction perpendicular to the polarization axis decreases as A increases.



The strong field approximation revisited

The SFA and its variants exist for about 50 years

Keldysh published his first paper in 1964 !

The SFA is very popular

» It establishes a bridge between the classical and quantum descriptions of strong field
processes

» Itis consistent with the “simple man’s theory”

» It provides a clear physical interpretation of the HOHG spectra and qualitatively explains
most of their main features

The main idea

SFA’s assumption consists basically in considering the binding potential dominant
until ionization whereas the laser field takes over after the ionization has occurred.

The generalized SFA treats the effects of the possible electron re-scatterings from
its parent ion core in a systematic perturbation series.



Basic equations
Definitions : %,ﬁ(t):—b'(t)éz, E(t)=b"(t)é, with b(0)=b'(0)=b"(0)=b(T)=b'(T)=b"(T)=0

The wave packet satisfies the following TDSE :

- in the velocity gauge

{i£+1A +£—ib'(t)(§ -V ):|CI) (r,t)=0, O (r,0)=0 (r)
o 2 " r A g °

- in the length gauge

[%%Aré—b"(éz-F)}Df(f,tbo, @, (7,0)=9,(F)

The exact wave packets satisfy :

(I)é(F,t)Ze_ib'(t)(ézﬂ_ig(t)q)v(F,t), c(t)= %J‘dé (bl(g))z



Gauge invariant Born series (in the Coulomb potential)

Start from TDSE (velocity gauge) :

[ii+1A —ib'(t)(e. -V )}CI) (F,t)=—£CI) (r,t), @ (r,0)=0(r)
at 2 r z r v r v v

> =y _ S liBT-i(p®/2)t+ib(t)(€,P)]
Solution of the I.h.s. of this equation = Volkov wave : X, (r,p,t)=e

-] —

b .. . . . |
r,p,t r,p,t
(Zn)glv( p,t)x (r',p,t')

Introduce the Green function : G (F,t;F',t')= —i9(t—t')J.

The general solution of the TDSE equation writes :

t .
d 1
®, (7 t)=i dF'GV(F,t;F',O)goo(F’)—Zjdtjr—rle(F,t;F',t')(I)V(F',t')
0

Initial wave packet dispersing
with or without electric field



dp
(27)

The zero order term writes : (I)LO)(F,t) = Q(t)f =X, (r,0,t)p,(p)

This term is the starting zero order term for the Born series. The second term writes :

it'(p*—p*)/2-ib(t')é,(p—B")

2 3xV(F,ﬁ,t)jdt'j dp_ e

47riZJ 3 Sa—
(27) , 7 (2m) 1p—p'l

®,(p’)

» This Born series is gauge invariant term by term
» This Born series is valid for any arbitrary initial wave packet

» At time t=0, the initial wave packet coincides with the initial atomic state.
At times t>0, it will inevitably disperse contrary to any stationary state.

» The dispersion of the initial wave packet is not fully compensated at each
order



Strong field approximations

To avoid the problem of the dispersion of the initial wave packet, it is necessary to
introduce an ansatz for @ (7,t) and® (7,t). In fact, the gauge invariance constraint allows
one to defining various families of ansatz.

15t example of family

Et

Ansatz for velocity-gauge : @ (r,t)= e @, (r)+F (r,t)

1 Z —ig t [ =
with : ii—l——A —ib'(t)(é -V )+—= |F (F,t)=ib'(t)e (e -V ), (r)
at 2 r Z r r v z r

Ansatz for length-gauge : CI)((F,t)ze_ibl(t)@’?)_g(t)_igotQDO(7)+F( (r,t)

with : [i%+ %Ar —b"(t)(€ -V )+ E}@(F,t) =ib'(t)e”" & 8 .V Yo (F)
r



2nd example of family Keldysh formula

Ansatz for length-gauge : @ (r,t)= e_igothO(F) + F(I(I_",t)

with : {iithA —b"(t)(e -F)+£}Fl'(F,t):b”(t)e (e -r)op,(r)
at 2 r z r 4 z 0

Ansatz for velocity-gauge :

e {i%%—%Ar —ib'(t)(éz .Vr)_|_£:|FVI(F’t):bn(t)eib‘(t)(éz-F)Jrig(t)isot(é’z 'F)CDO(F)
r

» In a given family, each function F satisfies a non homogeneous TDSE that can be
solved iteratively thereby leading to a Born series (in the Coulomb potential) for

each F and hence for each® .

» Within a given family, all terms of the Born series for each ® are gauge invariant. In
a given gauge, each term of the Born series for @ belonging to different families,
differ but the sum of all terms of these Born series remains gauge invariant.



SFA - velocity gauge (15t family)
Ansatz: @ (F,t)=e ¢ (F)+F (F,t) with F(F,0)=0
J 1

Equation for zero order F(F,t): {i§+5Ar —ib'(t)(€, -Vr)}FV(O)(F,t):ib'(t)e'i%t(éz -V ), (F)

Equation for nt order F"(7,t) : |:i%+%Ar —ib'(t)(€, .Vr)}/:v(")(F,t):—EFv‘”1’(F,t)
r

> F°A7,t) can be calculated analytically
> Fv‘”)(F,t) for n > 0 can be obtained numerically convergence study
» comparison with TDSE results imposes a proper normalization of @ (r,t)

» Spectrum is obtained by projecting on Coulomb functions or plane waves
after subtraction of the initial state contribution
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1s-state population as a function of time : P_(t)=

Atomic Hydrogen
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» SFA leads to full ionisation at the beginning of the pulse



1s-state population at the end of the pulse as a function of the frequency

1 1 1 1 LI
Atomic Hydrogen
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» Inthe low frequency regime, SFA leads to a full ionisation >< TDSE



Unormalized spectra

Energy distribution along polarization axis (a.u)
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High order SFA (preliminary results)
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Development of a separable potential
model to treat one-electron processes

Main objective
To simplify the numerical solution of the TDSE in very demanding physical situations

o the long wavelength limit
o complex atomic and molecular targets
o fields of arbitrary polarization

Ideally, this model should

allow a treatment that avoids a partial wave analysis of the solution wave packet
provide information on the dynamics

allow one to test the approximation schemes such as SFA

Apply within the mean field approximation to complex atomic or molecular

systems
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Preliminary remark

In the case of coulomb systems it is more natural to work in the velocity gauge and
therefore in momentum space. This is a consequence of Ehrenfest’s theorem :

engngse: S ()= L[, ) =~(7) e

From the point of view of the forces acting on the electron, the
role of the Coulomb potential is decoupled from the electric field

VEIOCity SeHBE: £<p> - %<|:p'Hvelocity :|> . —<Vr\/>

The time evolution of the canonical momentum p results only
from the gradient of the Coulomb potential.

In the limit where (vv)—o , the canonical momentum becomes a constant of
motion which reduces to the drift velocity (in a.u.) of the ionized electron.




General formulation in the case of atomic hydrogen

In momentum space and in the velocity gauge, the TDSE writes:

9 P N e
{Iat = Alt)e, p)}b(p,t) J oy /PP 2')

Replace the non-local potential by a sum of N symmetric separable potentials
supporting N bound states of the atom:

V(ip—p')=— — (P)V |
PP Ip pI nzfvp P

The TDSE becomes:

{%-——Aa)(e p)}p(p,t) +Zv (p)f(d;)' v, (P)P(Pt) =



d p° | S P v
{Iat ; Alt)(e, p)}cb(p,thg,vn(p)j(zﬂf v (p')®(p',t) =0

Fo(t)

The solution writes:

q)(p,t):exp(—i%tH b(t) pz]{d)(p,OHZvn(p)Jdé ﬁ(é)exp(i%é—ib(é)pz]]

t
b(t)=—JA(T)dT Initial state of the atom in the p-space
0

The F,(t) components are solution of a system of coupled Volterra integral equations of the
second kind:

F(t)=F (t)+ [ K(t,t') F(t') ot



o The 4D TDSE reduces to a system of N 1D Volterra equations
o This approach is equivalent to solve the TDSE in an infinite box

Determination of the symmetric separable potentials

The sum of the N symmetric separable potentials supports N bound states of the atom

The wave functions associated to these bound states (in the p-space) are exact and
satisfy the stationary Schrodinger equation:

£ ——p )+Z

(27r ,,(p )o.(p) |v,(p)=0

aj,

O+AV =0 V=-A"'D

If A exists



How to solve this equation ?

Write : F — A AT with J.(zﬂ:)

If the new atomic potential supports two bound states :

2 2
Ialll +|012| _Fll

2 2
|021| +|azzl _Fzz
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Infinite number of solutions

Examples : A ' is triangular

1,
gj—Ep P

need a prescription

wrong choice because the new potential may change sign

A" is symmetric

Best (empirical) choice but not sufficient to guarantee that the solution is
unique. Conditions must be imposed on various parameters.



Since the wave functions associated to the bound states are exact, a wrong choice
of the separable potentials leads to a bad description of the continuum.

lllustration in the case where the atomic potential is the Coulomb potential

1. One-state (1s) model (the solution is unique)

8\

(p* +1)°

Momentum space wave function: @, (P)=

wlz

Separable potential : v(p,p')=v15(p)v;(p') with Vls(p):

p°+1
Momentum space Configuration space
~ 167 ¢ d’p' D(p' ~ 1e™ -
Vo)=L [ £8P V[w)=—=E[r w(r)S
p-+1° (2x) p“+1 Inverse Fourier T r r'
transform
2. Two-state (1s and 2s) model (the solution is not unique)
Separable potentials:  V(p,p') = vls(p)vls(p )+ VZS(p)VZS(p )
_ 1, 1,
: Vls(p)_all 815_Ep ¢1S(p)+0612 Sls_Ep g025(p)
V=-A"O
_ 1, 1,
V25(p)_a21 815—5[1 (pls(p)+a22 825_5'0 (sz(p)




Gauge invariance

The present formulation is not gauge invariant. How to make it gauge invariant ?

1. Write the TDSE in configuration space in the absence of the field.

[i%—p?z}lv)(r,tHnzN;&n(r)JdSr'&:(r');I;(r',t): 0

2. The non-local potential may be expressed as a local potential that is a
function of r and p.

Zﬁn(r)jd3r'§:(r')&>(r',t)

= iéjn(r)!dg’r'é‘:(r') &™) ?| (r,t)

Translation
operator

=V(r,p)®(r,t)



3. Introduce the electromagnetic field by applying the minimal substitution
p ->p + A both in the kinetic energy operator and the potential.

[ia (p+A) }D(r )+ V(e,p+A)D(r t) =0
ot 2

-i_p_z_ . gy g i Ar d3rl * —iA-r‘N 1 —
{Iat > Alt)(e, p)}b(r,t)+n2;§n(r)e J(Zn)3 S (r)e ™" @(r',t)

Do we need to impose the gauge invariance or to choose a particular gauge in
which the physics is well described (while making some approximation) ? The
debates are not over ...

The continuum states
The continuum state wave functions with an asymptotic outgoing (+) or ingoing (-)
spherical wave behaviour are solution of the following stationary Schrodinger equation:

2

LA e (£) k_ (£)
<z> (p.k) p)j “p)(p (P)="-6"pK

x5 (k)



Solution of the equation:
N

(£) k
[(kiie)z_pZ]nz:}Vn(P)Z,, (k)

0% (p k)= S(p—K)-

Substitute ¢™(p,k) in the expression of x.'(k) to get these coefficients x'”(k)

Validity of the model

The present formulation is not gauge invariant but gives results that are qualitatively
and quantitatively in very good agreement with those obtained by solving the TDSE in

situations where the dynamics implies a small number of bound states.

» For w >, and U, < w (perturbative regime) the one-bound state model
provides accurate vyields.

» At the 1s-2p resonance frequency, the model reproduces well the Rabi
oscillations of the populations and the corresponding Autler-Townes

doublets in the electron energy spectrum.
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The spectrum is correct over 10 orders of magnitude. The extra peaks in each Autler-

Townes doublet are due to np states with n>2. The discrepancies for energies > 2.5
a.u. result from the approximate description of the continuum.



» In the low frequency limit, the ATl spectra exhibits all typical characteristics of
the strong field spectra.
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What do we learn about the dynamics with a one-bound state model ?

Preliminary remark

(VVv)=0 <p> ~ constant

(Ve s =0 (P,), = A



log| ®(t,p,)|?

Time (optical cycle)

> lonisation starts at p,=-A(t.,,) where t

on

I = 2.5 x 101 Watt/cm?

peak
Pulse duration = 8 cycle

Photon energy = 0.057 a.u.

» The oscillating part

corresponds to the
probability density
associated to the 1s state. It
oscillates in phase
opposition to the vector
potential.

The horizontal stripes
(p,=constant) corresponds
to Volkov states (in fact
linear superposition of
Volkov states and the 1s
state)

=2 optical cycle but the stripes start one cycle

further m==) the ATI peaks result from the interference between wave packets emitted
during two successive cycles. The stripes = interference fringes.

» Electrons are emitted around the maximum of A(t) so when the electric field is minimum.



Two-cycle pulse (carrier phase =0°)
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Generalization of the model to complex
systems exposed to ultra-short pulses

Main idea

To build separable potentials from the wave functions associated to the
essential states or calculated in the mean field approximation

lllustration : molecular system

Quantum chemistry DFT

N
Molecular orbitals (I)y(r,R):Zci(y) l//i(r,R)

i=1

_ I..m_n _ _pl?
v, (tR)=2.d,N, (0, )x'y"2" exp(—a, [r—R[)



Procedure

F.T. - N .
® (r.R) @, (p.R)=D.c,(y)V,(B.R)

To build the nonlocal and separable molecular potentials from the molecular
orbitals in momentum space as in the case of atomic hydrogen.

V(p,p'R)== v (BRI, (0'R)

To solve the TDSE
{iaﬁ—p—z—A(t)(ez -p)F(p;R,miv,,(p;R) 22 R Y
t 2 (27)
Initial condition: Fn(Rl t)

®D(p;R,t =0)= Dromo(p;R)

F(R,t)=F (R,t)+ [K(R;t,7) FR,7)d7



Conclusions and perspectives

= |nthe long wavelength regime considered here, our results indicate that:

o theionisation rate tends to a constant

the low energy structures in the ATl spectra results from a hard collision

o therich structure present in the momentum distribution near zero seems to
result from the ionisation process itself (direct electrons)

o the polarization of the electron cloud that involves p-states has to be
described properly; it prevents the atom from ionizing too quickly

o there is an obvious analogy with ion-atom collisions

@)

= |tis possible to define various families of strong field approximations by
introducing some ansatz. In one given family, there is full gauge invariance
but not between different families.

= All SFA schemes overestimate systematically the ionization yield in the long
wavelength regime because the polarization of the target is only taken into
account through continuum p-states.

= The separable potential model clearly confirms the crucial role of the
polarization of the target in the long wavelength regime.



