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A + ϒHn  ±  ϒIR  ⟶  A+  +  e-

A + ϒHn ⟶  A+  +  e-
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A + ϒHn  ±  ϒIR  ⟶  A+  +  e-
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What if one paths is resonant?
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RABBIT with a
resonant bound state

He + ϒ2n+1  ⟶  He+  +  e-  + ϒIR

He*(1s3p) + ϒIR  ⟶  He+  +  e-
1 { He + ϒ2n-1  ⟶  He* (1s3p)
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RABBIT with a resonant autoionizing state
N2 + ϒHn  ±  ϒIR  ⟶  N2+(X)  +  e-

J. Caillat et al., PRL 106, 093002 (2011) Resonant contribution still largely dominant
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XUV absorption with synchrotron radiation

He + � ! He+(1s) + e�



RABITT with an intermediate 
autoionizing state

He + �! �! He⇤⇤ He⇤⇤ + � �! He+(1s) + e�

He + �! �! He+(1s) + e� He+(1s) + e� + � �! He+(1s) + e�

1. What should we expect 
when both the bound and 
the continuum part of an 
intermediate resonant state 
contribute to the transition?

2. How does a finite duration 
of the pulse, comparable with 
the resonance lifetime, 
affects the measurement?

3. How is the electron 
dynamics to be interpreted?



Sideband signal resonant RABBIT

�f is the detuning of the observation energy Ef with respect to ESB2n , the sideband
nominal position,

�f = Ef � ESB2n , ESB2n = Ei + !H2n+1 � !IR = Ei + !H2n�1 + !IR, (25)

and w(z) is the Faddeeva function of complex argument,

w(z) = e�z
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Finally, z±a and z±f are dimensionless complex numbers that measure the detuning
between an e↵ective complex XUV frequency !̃±, defined as

!̃± = !H2n±1 +
�f
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⌧
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and either the (complex) resonance excitation energy !ãi (!ãi = Ẽa � Ei) or the
final excitation energy !fi, respectively,

z±a =
�tp
2
(!̃± � !ãi), z±f =

�tp
2
(!̃± � !fi). (28)

The energy resolved intensity of the sideband as a function of the pump probe time
delay, ISB(Ef ;!IR, ⌧), is now easily computed from the parametrized expression of

the transition amplitudes (22) as (we set A± = A(2)±
fH i for brevity)

ISB(Ef ;!IR, ⌧) =
��A+(!IR, ⌧)

��2+
��A�(!IR, ⌧)

��2+ 2<e ⇥A+⇤(!IR, ⌧)A�(!IR, ⌧)
⇤
(29)

The local phase of the sideband rapid modulation, which is our ultimate observ-
able, is simply the argument of the interference term A+⇤(!IR, ⌧)A�(!IR, ⌧). This
phase di↵ers from the standard RABITT term 2!IR⌧ by a quantity �'(Ef ;!IR, ⌧)
which depends on the exact energy at which the sideband is observed, on the laser
frequency and on the pump-probe time delay, and has the following expression

�'(!IR, ⌧) = � arg
�
w⇤(z�f )

⇥
B w(z+a )� w(z+f )

⇤ 
, (30)

where B = [�Ea� 2�1�a/(Ef �Ea)](i� q0a). In linear approximation, we can write

�'(!IR, ⌧) ' �'0(!IR) + ⌧�!0(!IR), (31)

with
�'0(!IR) = �'(!IR, 0), �!0(!IR) = @⌧�'(!IR, ⌧)

���
⌧=0

. (32)

The latter expressions highlight one of the most striking features predicted by the
model, namely, that the intermediate resonance does not just a↵ect the local phase
of the sideband, it alters the RABITT frequency itself. A finite frequency detuning
is present even without intermediate resonance, when the overlap duration �t is
not much larger than the period of the carrier laser. Such detuning, however,
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There certainly is a shift. Yet, something is not quite right …
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(!̃± � !ãi), z±f =

�tp
2
(!̃± � !fi). (28)

The energy resolved intensity of the sideband as a function of the pump probe time
delay, ISB(Ef ;!IR, ⌧), is now easily computed from the parametrized expression of

the transition amplitudes (22) as (we set A± = A(2)±
fH i for brevity)

ISB(Ef ;!IR, ⌧) =
��A+(!IR, ⌧)

��2+
��A�(!IR, ⌧)

��2+ 2<e ⇥A+⇤(!IR, ⌧)A�(!IR, ⌧)
⇤
(29)

The local phase of the sideband rapid modulation, which is our ultimate observ-
able, is simply the argument of the interference term A+⇤(!IR, ⌧)A�(!IR, ⌧). This
phase di↵ers from the standard RABITT term 2!IR⌧ by a quantity �'(Ef ;!IR, ⌧)
which depends on the exact energy at which the sideband is observed, on the laser
frequency and on the pump-probe time delay, and has the following expression

�'(!IR, ⌧) = � arg
�
w⇤(z�f )

⇥
B w(z+a )� w(z+f )

⇤ 
, (30)

where B = [�Ea� 2�1�a/(Ef �Ea)](i� q0a). In linear approximation, we can write

�'(!IR, ⌧) ' �'0(!IR) + ⌧�!0(!IR), (31)

with
�'0(!IR) = �'(!IR, 0), �!0(!IR) = @⌧�'(!IR, ⌧)

���
⌧=0

. (32)

The latter expressions highlight one of the most striking features predicted by the
model, namely, that the intermediate resonance does not just a↵ect the local phase
of the sideband, it alters the RABITT frequency itself. A finite frequency detuning
is present even without intermediate resonance, when the overlap duration �t is
not much larger than the period of the carrier laser. Such detuning, however,

6

The “shift” increases with the time delay

The RABBIT frequency itself is altered

Sideband signal resonant RABBIT
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Time-resolved resonant two-photon model

Á. Jiménez Galán, L. Argenti, F. Martín, PRL 113, 263001 (2014)
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Time-resolved resonant two-photon model

is much larger than the natural widths �a of the intermediate 1Po doubly-excited
states, !IR � �a (stated otherwise, the period of the IR laser TIR is much smaller
than the lifetime ⌧a of a doubly-excited states, TIR ⌧ ⌧a), it is possible to simplify
the model further, without compromising its accuracy. In the following, we will
summarise the major aspects of the latter simplified version for the two-photon
transition amplitude from the ground state of helium to a state in the continuum
in the special case of a final S symmetry. The extension of the formulas for a final
S symmetry to the remaining case of a final D symmetry is straightforward.

Let us examine first the simple case in which the final continuum does not
feature any resonance. To evaluate the expression for the two-photon amplitude
predicted by our model in this case, we have to specify the pulse parameters,
the parameters of the intermediate resonance a, as well as the radiative coupling
between all the states involved: from the ground state i to either the P continuum or
the localized part of the resonance, from the P continuum to the the S continuum,
and from the localized part of the resonance to the S continuum. It is convenient,
at this point, to introduce a few derived quantities that will permit us to cast the
final expressions in a more concise form,
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One can recognize, in the second line, the parameters of Fano’s model. As antici-
pated in the previous section, in the relevant cases examined in this work, |✏fa| � 1.
In fact, the more stringent assumption |✏fa| � q0a holds as well. On the basis of
the latter, we can obtain the following expression for the two dominant transition
amplitudes (12,13), here denoted as the + (absorption of an XUV photon from the
upper harmonics, followed by the emission of one IR photon) and � (absorption
of an XUV photon from the lower harmonics, followed by the absorption of an IR
photon) paths,
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The latter expressions highlight one of the most striking features predicted by the
model, namely, that the intermediate resonance does not just a↵ect the local phase
of the sideband, it alters the RABITT frequency itself. A finite frequency detuning
is present even without intermediate resonance, when the overlap duration �t is
not much larger than the period of the carrier laser. Such detuning, however,
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final excitation energy !fi, respectively,

z±a =
�tp
2
(!̃± � !ãi), z±f =
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not much larger than the period of the carrier laser. Such detuning, however,
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nominal position,
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Finally, z±a and z±f are dimensionless complex numbers that measure the detuning
between an e↵ective complex XUV frequency !̃±, defined as
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and either the (complex) resonance excitation energy !ãi (!ãi = Ẽa � Ei) or the
final excitation energy !fi, respectively,

z±a =
�tp
2
(!̃± � !ãi), z±f =

�tp
2
(!̃± � !fi). (28)

The energy resolved intensity of the sideband as a function of the pump probe time
delay, ISB(Ef ;!IR, ⌧), is now easily computed from the parametrized expression of

the transition amplitudes (22) as (we set A± = A(2)±
fH i for brevity)

ISB(Ef ;!IR, ⌧) =
��A+(!IR, ⌧)
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The local phase of the sideband rapid modulation, which is our ultimate observ-
able, is simply the argument of the interference term A+⇤(!IR, ⌧)A�(!IR, ⌧). This
phase di↵ers from the standard RABITT term 2!IR⌧ by a quantity �'(Ef ;!IR, ⌧)
which depends on the exact energy at which the sideband is observed, on the laser
frequency and on the pump-probe time delay, and has the following expression

�'(!IR, ⌧) = � arg
�
w⇤(z�f )

⇥
B w(z+a )� w(z+f )

⇤ 
, (30)

where B = [�Ea� 2�1�a/(Ef �Ea)](i� q0a). In linear approximation, we can write

�'(!IR, ⌧) ' �'0(!IR) + ⌧�!0(!IR), (31)

with
�'0(!IR) = �'(!IR, 0), �!0(!IR) = @⌧�'(!IR, ⌧)
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. (32)

The latter expressions highlight one of the most striking features predicted by the
model, namely, that the intermediate resonance does not just a↵ect the local phase
of the sideband, it alters the RABITT frequency itself. A finite frequency detuning
is present even without intermediate resonance, when the overlap duration �t is
not much larger than the period of the carrier laser. Such detuning, however,
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waves. Indeed, since plane waves are eigenstates of the transition operator in velocity gauge,
the only non-vanishing dipole transition matrix element is the one between two identical
plane waves,

h~k|~̂p|~k0i = ~~kh~k|~k0i = ~~k�(3)(~k � ~

k

0) = ~~k�(2)(k̂ � k̂

0)�(E � E

0)/
p
2E. (1)

Let us call this the on-shell approximation. Notice that the on-shell approximation applies
when estimating the two-photon transition matrix element from a bound state |gi to the
continuum,
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It does not imply, however, any net absorption or emission of photons between free-electron
states, which is and remains a prohibited process. The on-shell approximation is quite
accurate also for the Coulomb or shifted Coulomb waves that are encountered in atomic
ionization. For example, Fig.3 in this report shows the continuum-continuum transition
matrix elements in the hydrogen atom from three selected initial scattering states with ` = 0
and energies Es =1, 2, 3 a.u., to ` = 1 scattering states as a function of the energy Ep of the
final states. It is clear that the transition amplitudes are strongly peaked at Ep = Es (notice
the logarithmic scale). As a consequence, the non-resonant two-photon transition matrix
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Figure 3: Absolute value, in atomic units, of the reduced velocity-gauge hydrogen dipole matrix element
h 

EpkOv

1k Es i from three s scattering states (E = 1, 2, 3 a.u.) to several p scattering states computed:
with the exact analytical formula (thick solid line) as well as numerically (thin solid line). For more details,
see [C. Marante, L. Argenti and F. Mart́ın, Phys. Rev. A, 90, 012506 (2014)]

element encountered in our manuscript, hEs|OG

+
0 (Eg + !2n±1)O|gi, can be approximated

as

hEs|OG

+
0 (Eg + !2n±1)O|gi ' ± 1

!IR

 

Z Es+�

Es��
d✏ hEs|O|✏pi

!

hEp|O|gi. (3)

This last expression shows that the two-photon transition matrix element is inversely pro-

portional to the energy of the last-exchanged IR photon: the transition is stronger if the
frequency of the IR photons is smaller, provided that the two-photon resonant condition is
met (see Fig.2c in this report).

In the case of finite XUV and IR pulses, the resonant condition can be satisfied for a whole
range of frequencies. Let us consider, as a representative case for a whole sideband, the
amplitude at its nominal center, E = Eg+2n!IR. Fig.4 in this report illustrates schematically
what happens: the lower frequency components of the IR field weigh more, because the
intermediate energy Eg + !XUV is closer to the final energy. Since the frequencies that
eventually give rise to the sideband beating are given by the sum of the energies of the two
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Approx. the same for all sidebands
Á. Jiménez Galán, F. Martín, L. Argenti, manuscript in preparation (2015)

C. Marante, L. Argenti and F. Martín, Phys. Rev. A 90, 012506 (2014)



�f is the detuning of the observation energy Ef with respect to ESB2n , the sideband
nominal position,

�f = Ef � ESB2n , ESB2n = Ei + !H2n+1 � !IR = Ei + !H2n�1 + !IR, (25)

and w(z) is the Faddeeva function of complex argument,
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Finally, z±a and z±f are dimensionless complex numbers that measure the detuning
between an e↵ective complex XUV frequency !̃±, defined as
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and either the (complex) resonance excitation energy !ãi (!ãi = Ẽa � Ei) or the
final excitation energy !fi, respectively,

z±a =
�tp
2
(!̃± � !ãi), z±f =

�tp
2
(!̃± � !fi). (28)

The energy resolved intensity of the sideband as a function of the pump probe time
delay, ISB(Ef ;!IR, ⌧), is now easily computed from the parametrized expression of

the transition amplitudes (22) as (we set A± = A(2)±
fH i for brevity)

ISB(Ef ;!IR, ⌧) =
��A+(!IR, ⌧)

��2+
��A�(!IR, ⌧)

��2+ 2<e ⇥A+⇤(!IR, ⌧)A�(!IR, ⌧)
⇤
(29)

The local phase of the sideband rapid modulation, which is our ultimate observ-
able, is simply the argument of the interference term A+⇤(!IR, ⌧)A�(!IR, ⌧). This
phase di↵ers from the standard RABITT term 2!IR⌧ by a quantity �'(Ef ;!IR, ⌧)
which depends on the exact energy at which the sideband is observed, on the laser
frequency and on the pump-probe time delay, and has the following expression

�'(!IR, ⌧) = � arg
�
w⇤(z�f )

⇥
B w(z+a )� w(z+f )

⇤ 
, (30)

where B = [�Ea� 2�1�a/(Ef �Ea)](i� q0a). In linear approximation, we can write

�'(!IR, ⌧) ' �'0(!IR) + ⌧�!0(!IR), (31)

with
�'0(!IR) = �'(!IR, 0), �!0(!IR) = @⌧�'(!IR, ⌧)

���
⌧=0

. (32)

The latter expressions highlight one of the most striking features predicted by the
model, namely, that the intermediate resonance does not just a↵ect the local phase
of the sideband, it alters the RABITT frequency itself. A finite frequency detuning
is present even without intermediate resonance, when the overlap duration �t is
not much larger than the period of the carrier laser. Such detuning, however,
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final excitation energy !fi, respectively,
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The energy resolved intensity of the sideband as a function of the pump probe time
delay, ISB(Ef ;!IR, ⌧), is now easily computed from the parametrized expression of

the transition amplitudes (22) as (we set A± = A(2)±
fH i for brevity)
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⇤
(29)

The local phase of the sideband rapid modulation, which is our ultimate observ-
able, is simply the argument of the interference term A+⇤(!IR, ⌧)A�(!IR, ⌧). This
phase di↵ers from the standard RABITT term 2!IR⌧ by a quantity �'(Ef ;!IR, ⌧)
which depends on the exact energy at which the sideband is observed, on the laser
frequency and on the pump-probe time delay, and has the following expression

�'(!IR, ⌧) = � arg
�
w⇤(z�f )

⇥
B w(z+a )� w(z+f )
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, (30)

where B = [�Ea� 2�1�a/(Ef �Ea)](i� q0a). In linear approximation, we can write

�'(!IR, ⌧) ' �'0(!IR) + ⌧�!0(!IR), (31)

with
�'0(!IR) = �'(!IR, 0), �!0(!IR) = @⌧�'(!IR, ⌧)
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The latter expressions highlight one of the most striking features predicted by the
model, namely, that the intermediate resonance does not just a↵ect the local phase
of the sideband, it alters the RABITT frequency itself. A finite frequency detuning
is present even without intermediate resonance, when the overlap duration �t is
not much larger than the period of the carrier laser. Such detuning, however,
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Resonant phase-shift of sideband beating

Figure 5: Trajectory of the function (x � z)�1 in the complex plane for z = �i/2, x 2 [�3, x0]. The
(negative) angle ' formed with the positive real semi-axis increases from ' = �⇡ to ' = 0 as x goes from
�1 to +1.

argument ' of the resonant complex amplitude increases by ⇡, as expected,
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To account for the finite duration of the pulses, we must take the convolution of the stationary
amplitude (or, rather, of the product of the amplitudes from the lower and upper harmonics,
but we can assume that one of the two paths is non-resonant and virtually constant), with the
appropriate spectral weight. Notice that doing so is not the same as taking the convolution
of the phase itself, because the argument �(z) of a complex number z is not a linear function
of z. In the present case, nevertheless, the argument of the convoluted amplitude would still
experience a jump of ⇡.

The picture changes radically, however, when a direct-ionization term,Mdir(E) = hE|OG

+
0 (Eg+

!XUV)O|gidir, contributes to the transition amplitude,

hE|OG

+
0 (Eg + !XUV)O|gi ' hE|O|aiha|O|gi

!XUV � Eag + i�a/2
+Mdir(E). (11)

The contribution of the direct ionization to the transition amplitude generally changes
little in an energy interval of the order of the resonance width, and may be assumed to
be approximately a (complex) constant Mdir(Ea). Furthermore, if the larger contribution
to the direct-ionization term comes from the continuum (see discussion in the answer to
question 5), the two-photon matrix element is essentially real: negative (positive) if the
final IR photon is absorbed (emitted). The trajectory of the transition matrix element in
the complex plane, therefore, is still a circle, but translated with respect to the origin by
Mdir(Ea) (see Fig. 2 and 3).

As Figures 2 and 3 show, the overall phase jump is 0, ⇡ or 2⇡ depending on whether the
origin falls outside, on the border of, or inside the circle. The overall jump, in other terms, is
a topological index. If finite pulses are used, the amplitude must be convoluted. In general,
this results in a contraction of the circle closer to the limiting point for x ! ±1, i.e., closer
to the direct-ionization transition amplitude (see Figs.2b,d).

The ideal picture sketched above remains indicative even in the more realistic case were the
direct contribution changes with the energy, and the energy range itself is limited. Indeed,
while the transition amplitude may describe a distorted arc, instead of a complete circle, if
the resonant amplitude is much stronger than the direct one, the trajectory in the complex
plane is still very similar to the ideal one starting right at the origin, and the excursion of
the phase is ' ⇡, as in Fig.2a,b. On the other hand, if the direct-ionization amplitude is
not negligible, the drift it undergoes across the energy range is generally small with respect
to its absolute value. So, it is still very unlikely that the total amplitude will encircle the
origin, and the overall phase excursion will remain close to zero, as in Fig.2c,d.

This intuitive geometrical interpretation of the role of resonances is very appropriate for
a general audience, since it permits to grasp the idea at the basis of the model without
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Resonant phase-shift of sideband beating

Notice that the finite duration of the pulses induces a redshift �!(!IR) of the sideband
beating even in absence of intermediate resonances. The reason is that Mdir

fi

(!) is
inversely proportional to the energy of the last exchanged IR photon, thus amplifying
the low-frequency components in the beating.

Finally, the presence of an intermediate resonance does not necessarily increase the frequency
change. Indeed, while the non-resonant contribution always gives rise to a decrease in fre-
quency, as we explained above, the resonance may increase as well as decrease the beating
frequency. The reason why this happens is that, if the duration of the pump and probe
pulses is not much longer than the lifetime of the resonance, a stationary condition is never
achieved. Hence, the population of the intermediate resonant state keeps increasing across
the passage of the XUV train. In turn, the later the IR probe comes, the higher the pro-
portion of the resonance component. Since the background and the resonant beating are in
general out of phase, the overall e↵ect is a phase drift as a function of ⌧ , which corresponds
to a shift in the beating frequency.
Furthermore, the resonant sideband beating will be red- or blue-shifted also in the case in
which the harmonic is detuned with respect to the resonance energy. For example, if the
upper harmonics is centered above the resonance, the distance between the center of the
sideband and the resonance is smaller than !IR. Therefore, on average, the resonant jump
downward will also be shorter than !IR. As a consequence, the interference with the upward
amplitude from the lower harmonic will be red-shifted.

6. Why is the phase shift across the resonance quite di↵erent from a (convoluted) arctan variation

function? Could the authors give physical explanation of the behavior of the phase variation ? How

does the pulse duration/intensity of the IR change it ?

As the referee says, and as we mention in the supplementary material, if the background
continuum is “dark”, i.e., if it is not radiatively coupled to the ground state |gi, and the
only other relevant contribution to the two-photon transition, by virtue of it being almost
resonant, comes from an intermediate autoionizing state |ai, then the transition matrix
element hE|OG

+
0 (Eg + !XUV)O|gi can be approximated as

hE|OG

+
0 (Eg + !XUV)O|gi ' hE|O|ai ha|O|gi

!XUV � (Ea � Eg � i�a/2)
, (7)

where Ea and �a are the resonance position and width, respectively, Eg is the ground-state

energy and O is the dipole transition operator (e.g., O = ✏̂ · PNe

i=1 ~pi in velocity gauge).
Let’s examine the structure of this function of the XUV frequency that depends paramet-
rically on the complex number Eag � i�a/2. If we put aside for a moment the fixed factor
hE|O|ai ha|O|gi, this comes down to study the elementary function

1

x� z

, z = zR + izI , x, zR 2 R, zI 2 R�
, (8)

(zR = Eag, zI = ��a/2). It is easy to see that this function maps the (�1,1) real axis to
a circle in the complex plane, centered at i/(2zI) and with radius 1/(2|zI |). Indeed,
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The circle is followed counterclockwise from 0� to 0+ (see Fig. 1). As a consequence, the
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To account for the finite duration of the pulses, we must take the convolution of the stationary
amplitude (or, rather, of the product of the amplitudes from the lower and upper harmonics,
but we can assume that one of the two paths is non-resonant and virtually constant), with the
appropriate spectral weight. Notice that doing so is not the same as taking the convolution
of the phase itself, because the argument �(z) of a complex number z is not a linear function
of z. In the present case, nevertheless, the argument of the convoluted amplitude would still
experience a jump of ⇡.

The picture changes radically, however, when a direct-ionization term,Mdir(E) = hE|OG

+
0 (Eg+

!XUV)O|gidir, contributes to the transition amplitude,

hE|OG

+
0 (Eg + !XUV)O|gi ' hE|O|aiha|O|gi

!XUV � Eag + i�a/2
+Mdir(E). (11)

The contribution of the direct ionization to the transition amplitude generally changes
little in an energy interval of the order of the resonance width, and may be assumed to
be approximately a (complex) constant Mdir(Ea). Furthermore, if the larger contribution
to the direct-ionization term comes from the continuum (see discussion in the answer to
question 5), the two-photon matrix element is essentially real: negative (positive) if the
final IR photon is absorbed (emitted). The trajectory of the transition matrix element in
the complex plane, therefore, is still a circle, but translated with respect to the origin by
Mdir(Ea) (see Fig. 2 and 3).

As Figures 2 and 3 show, the overall phase jump is 0, ⇡ or 2⇡ depending on whether the
origin falls outside, on the border of, or inside the circle. The overall jump, in other terms, is
a topological index. If finite pulses are used, the amplitude must be convoluted. In general,
this results in a contraction of the circle closer to the limiting point for x ! ±1, i.e., closer
to the direct-ionization transition amplitude (see Figs.2b,d).

The ideal picture sketched above remains indicative even in the more realistic case were the
direct contribution changes with the energy, and the energy range itself is limited. Indeed,
while the transition amplitude may describe a distorted arc, instead of a complete circle, if
the resonant amplitude is much stronger than the direct one, the trajectory in the complex
plane is still very similar to the ideal one starting right at the origin, and the excursion of
the phase is ' ⇡, as in Fig.2a,b. On the other hand, if the direct-ionization amplitude is
not negligible, the drift it undergoes across the energy range is generally small with respect
to its absolute value. So, it is still very unlikely that the total amplitude will encircle the
origin, and the overall phase excursion will remain close to zero, as in Fig.2c,d.

This intuitive geometrical interpretation of the role of resonances is very appropriate for
a general audience, since it permits to grasp the idea at the basis of the model without
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Notice that the finite duration of the pulses induces a redshift �!(!IR) of the sideband
beating even in absence of intermediate resonances. The reason is that Mdir

fi

(!) is
inversely proportional to the energy of the last exchanged IR photon, thus amplifying
the low-frequency components in the beating.

Finally, the presence of an intermediate resonance does not necessarily increase the frequency
change. Indeed, while the non-resonant contribution always gives rise to a decrease in fre-
quency, as we explained above, the resonance may increase as well as decrease the beating
frequency. The reason why this happens is that, if the duration of the pump and probe
pulses is not much longer than the lifetime of the resonance, a stationary condition is never
achieved. Hence, the population of the intermediate resonant state keeps increasing across
the passage of the XUV train. In turn, the later the IR probe comes, the higher the pro-
portion of the resonance component. Since the background and the resonant beating are in
general out of phase, the overall e↵ect is a phase drift as a function of ⌧ , which corresponds
to a shift in the beating frequency.
Furthermore, the resonant sideband beating will be red- or blue-shifted also in the case in
which the harmonic is detuned with respect to the resonance energy. For example, if the
upper harmonics is centered above the resonance, the distance between the center of the
sideband and the resonance is smaller than !IR. Therefore, on average, the resonant jump
downward will also be shorter than !IR. As a consequence, the interference with the upward
amplitude from the lower harmonic will be red-shifted.

6. Why is the phase shift across the resonance quite di↵erent from a (convoluted) arctan variation

function? Could the authors give physical explanation of the behavior of the phase variation ? How

does the pulse duration/intensity of the IR change it ?

As the referee says, and as we mention in the supplementary material, if the background
continuum is “dark”, i.e., if it is not radiatively coupled to the ground state |gi, and the
only other relevant contribution to the two-photon transition, by virtue of it being almost
resonant, comes from an intermediate autoionizing state |ai, then the transition matrix
element hE|OG

+
0 (Eg + !XUV)O|gi can be approximated as

hE|OG

+
0 (Eg + !XUV)O|gi ' hE|O|ai ha|O|gi

!XUV � (Ea � Eg � i�a/2)
, (7)

where Ea and �a are the resonance position and width, respectively, Eg is the ground-state

energy and O is the dipole transition operator (e.g., O = ✏̂ · PNe

i=1 ~pi in velocity gauge).
Let’s examine the structure of this function of the XUV frequency that depends paramet-
rically on the complex number Eag � i�a/2. If we put aside for a moment the fixed factor
hE|O|ai ha|O|gi, this comes down to study the elementary function
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(zR = Eag, zI = ��a/2). It is easy to see that this function maps the (�1,1) real axis to
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The circle is followed counterclockwise from 0� to 0+ (see Fig. 1). As a consequence, the

Answer to the 1st Referee 7 LS14544

Notice that the finite duration of the pulses induces a redshift �!(!IR) of the sideband
beating even in absence of intermediate resonances. The reason is that Mdir

fi

(!) is
inversely proportional to the energy of the last exchanged IR photon, thus amplifying
the low-frequency components in the beating.

Finally, the presence of an intermediate resonance does not necessarily increase the frequency
change. Indeed, while the non-resonant contribution always gives rise to a decrease in fre-
quency, as we explained above, the resonance may increase as well as decrease the beating
frequency. The reason why this happens is that, if the duration of the pump and probe
pulses is not much longer than the lifetime of the resonance, a stationary condition is never
achieved. Hence, the population of the intermediate resonant state keeps increasing across
the passage of the XUV train. In turn, the later the IR probe comes, the higher the pro-
portion of the resonance component. Since the background and the resonant beating are in
general out of phase, the overall e↵ect is a phase drift as a function of ⌧ , which corresponds
to a shift in the beating frequency.
Furthermore, the resonant sideband beating will be red- or blue-shifted also in the case in
which the harmonic is detuned with respect to the resonance energy. For example, if the
upper harmonics is centered above the resonance, the distance between the center of the
sideband and the resonance is smaller than !IR. Therefore, on average, the resonant jump
downward will also be shorter than !IR. As a consequence, the interference with the upward
amplitude from the lower harmonic will be red-shifted.

6. Why is the phase shift across the resonance quite di↵erent from a (convoluted) arctan variation

function? Could the authors give physical explanation of the behavior of the phase variation ? How

does the pulse duration/intensity of the IR change it ?

As the referee says, and as we mention in the supplementary material, if the background
continuum is “dark”, i.e., if it is not radiatively coupled to the ground state |gi, and the
only other relevant contribution to the two-photon transition, by virtue of it being almost
resonant, comes from an intermediate autoionizing state |ai, then the transition matrix
element hE|OG

+
0 (Eg + !XUV)O|gi can be approximated as

hE|OG

+
0 (Eg + !XUV)O|gi ' hE|O|ai ha|O|gi

!XUV � (Ea � Eg � i�a/2)
, (7)

where Ea and �a are the resonance position and width, respectively, Eg is the ground-state

energy and O is the dipole transition operator (e.g., O = ✏̂ · PNe

i=1 ~pi in velocity gauge).
Let’s examine the structure of this function of the XUV frequency that depends paramet-
rically on the complex number Eag � i�a/2. If we put aside for a moment the fixed factor
hE|O|ai ha|O|gi, this comes down to study the elementary function
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(zR = Eag, zI = ��a/2). It is easy to see that this function maps the (�1,1) real axis to
a circle in the complex plane, centered at i/(2zI) and with radius 1/(2|zI |). Indeed,
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quency, as we explained above, the resonance may increase as well as decrease the beating
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portion of the resonance component. Since the background and the resonant beating are in
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sideband and the resonance is smaller than !IR. Therefore, on average, the resonant jump
downward will also be shorter than !IR. As a consequence, the interference with the upward
amplitude from the lower harmonic will be red-shifted.
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function? Could the authors give physical explanation of the behavior of the phase variation ? How

does the pulse duration/intensity of the IR change it ?
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continuum is “dark”, i.e., if it is not radiatively coupled to the ground state |gi, and the
only other relevant contribution to the two-photon transition, by virtue of it being almost
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where Ea and �a are the resonance position and width, respectively, Eg is the ground-state

energy and O is the dipole transition operator (e.g., O = ✏̂ · PNe

i=1 ~pi in velocity gauge).
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Figure 5: Trajectory of the function (x � z)�1 in the complex plane for z = �i/2, x 2 [�3, x0]. The
(negative) angle ' formed with the positive real semi-axis increases from ' = �⇡ to ' = 0 as x goes from
�1 to +1.
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To account for the finite duration of the pulses, we must take the convolution of the stationary
amplitude (or, rather, of the product of the amplitudes from the lower and upper harmonics,
but we can assume that one of the two paths is non-resonant and virtually constant), with the
appropriate spectral weight. Notice that doing so is not the same as taking the convolution
of the phase itself, because the argument �(z) of a complex number z is not a linear function
of z. In the present case, nevertheless, the argument of the convoluted amplitude would still
experience a jump of ⇡.

The picture changes radically, however, when a direct-ionization term,Mdir(E) = hE|OG

+
0 (Eg+

!XUV)O|gidir, contributes to the transition amplitude,

hE|OG

+
0 (Eg + !XUV)O|gi ' hE|O|aiha|O|gi

!XUV � Eag + i�a/2
+Mdir(E). (11)

The contribution of the direct ionization to the transition amplitude generally changes
little in an energy interval of the order of the resonance width, and may be assumed to
be approximately a (complex) constant Mdir(Ea). Furthermore, if the larger contribution
to the direct-ionization term comes from the continuum (see discussion in the answer to
question 5), the two-photon matrix element is essentially real: negative (positive) if the
final IR photon is absorbed (emitted). The trajectory of the transition matrix element in
the complex plane, therefore, is still a circle, but translated with respect to the origin by
Mdir(Ea) (see Fig. 2 and 3).

As Figures 2 and 3 show, the overall phase jump is 0, ⇡ or 2⇡ depending on whether the
origin falls outside, on the border of, or inside the circle. The overall jump, in other terms, is
a topological index. If finite pulses are used, the amplitude must be convoluted. In general,
this results in a contraction of the circle closer to the limiting point for x ! ±1, i.e., closer
to the direct-ionization transition amplitude (see Figs.2b,d).

The ideal picture sketched above remains indicative even in the more realistic case were the
direct contribution changes with the energy, and the energy range itself is limited. Indeed,
while the transition amplitude may describe a distorted arc, instead of a complete circle, if
the resonant amplitude is much stronger than the direct one, the trajectory in the complex
plane is still very similar to the ideal one starting right at the origin, and the excursion of
the phase is ' ⇡, as in Fig.2a,b. On the other hand, if the direct-ionization amplitude is
not negligible, the drift it undergoes across the energy range is generally small with respect
to its absolute value. So, it is still very unlikely that the total amplitude will encircle the
origin, and the overall phase excursion will remain close to zero, as in Fig.2c,d.

This intuitive geometrical interpretation of the role of resonances is very appropriate for
a general audience, since it permits to grasp the idea at the basis of the model without
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Resonant phase-shift of sideband beating

Notice that the finite duration of the pulses induces a redshift �!(!IR) of the sideband
beating even in absence of intermediate resonances. The reason is that Mdir

fi

(!) is
inversely proportional to the energy of the last exchanged IR photon, thus amplifying
the low-frequency components in the beating.

Finally, the presence of an intermediate resonance does not necessarily increase the frequency
change. Indeed, while the non-resonant contribution always gives rise to a decrease in fre-
quency, as we explained above, the resonance may increase as well as decrease the beating
frequency. The reason why this happens is that, if the duration of the pump and probe
pulses is not much longer than the lifetime of the resonance, a stationary condition is never
achieved. Hence, the population of the intermediate resonant state keeps increasing across
the passage of the XUV train. In turn, the later the IR probe comes, the higher the pro-
portion of the resonance component. Since the background and the resonant beating are in
general out of phase, the overall e↵ect is a phase drift as a function of ⌧ , which corresponds
to a shift in the beating frequency.
Furthermore, the resonant sideband beating will be red- or blue-shifted also in the case in
which the harmonic is detuned with respect to the resonance energy. For example, if the
upper harmonics is centered above the resonance, the distance between the center of the
sideband and the resonance is smaller than !IR. Therefore, on average, the resonant jump
downward will also be shorter than !IR. As a consequence, the interference with the upward
amplitude from the lower harmonic will be red-shifted.

6. Why is the phase shift across the resonance quite di↵erent from a (convoluted) arctan variation

function? Could the authors give physical explanation of the behavior of the phase variation ? How

does the pulse duration/intensity of the IR change it ?

As the referee says, and as we mention in the supplementary material, if the background
continuum is “dark”, i.e., if it is not radiatively coupled to the ground state |gi, and the
only other relevant contribution to the two-photon transition, by virtue of it being almost
resonant, comes from an intermediate autoionizing state |ai, then the transition matrix
element hE|OG

+
0 (Eg + !XUV)O|gi can be approximated as

hE|OG

+
0 (Eg + !XUV)O|gi ' hE|O|ai ha|O|gi

!XUV � (Ea � Eg � i�a/2)
, (7)

where Ea and �a are the resonance position and width, respectively, Eg is the ground-state

energy and O is the dipole transition operator (e.g., O = ✏̂ · PNe

i=1 ~pi in velocity gauge).
Let’s examine the structure of this function of the XUV frequency that depends paramet-
rically on the complex number Eag � i�a/2. If we put aside for a moment the fixed factor
hE|O|ai ha|O|gi, this comes down to study the elementary function
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, z = zR + izI , x, zR 2 R, zI 2 R�
, (8)

(zR = Eag, zI = ��a/2). It is easy to see that this function maps the (�1,1) real axis to
a circle in the complex plane, centered at i/(2zI) and with radius 1/(2|zI |). Indeed,
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Notice that the finite duration of the pulses induces a redshift �!(!IR) of the sideband
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inversely proportional to the energy of the last exchanged IR photon, thus amplifying
the low-frequency components in the beating.

Finally, the presence of an intermediate resonance does not necessarily increase the frequency
change. Indeed, while the non-resonant contribution always gives rise to a decrease in fre-
quency, as we explained above, the resonance may increase as well as decrease the beating
frequency. The reason why this happens is that, if the duration of the pump and probe
pulses is not much longer than the lifetime of the resonance, a stationary condition is never
achieved. Hence, the population of the intermediate resonant state keeps increasing across
the passage of the XUV train. In turn, the later the IR probe comes, the higher the pro-
portion of the resonance component. Since the background and the resonant beating are in
general out of phase, the overall e↵ect is a phase drift as a function of ⌧ , which corresponds
to a shift in the beating frequency.
Furthermore, the resonant sideband beating will be red- or blue-shifted also in the case in
which the harmonic is detuned with respect to the resonance energy. For example, if the
upper harmonics is centered above the resonance, the distance between the center of the
sideband and the resonance is smaller than !IR. Therefore, on average, the resonant jump
downward will also be shorter than !IR. As a consequence, the interference with the upward
amplitude from the lower harmonic will be red-shifted.

6. Why is the phase shift across the resonance quite di↵erent from a (convoluted) arctan variation

function? Could the authors give physical explanation of the behavior of the phase variation ? How

does the pulse duration/intensity of the IR change it ?

As the referee says, and as we mention in the supplementary material, if the background
continuum is “dark”, i.e., if it is not radiatively coupled to the ground state |gi, and the
only other relevant contribution to the two-photon transition, by virtue of it being almost
resonant, comes from an intermediate autoionizing state |ai, then the transition matrix
element hE|OG

+
0 (Eg + !XUV)O|gi can be approximated as

hE|OG

+
0 (Eg + !XUV)O|gi ' hE|O|ai ha|O|gi

!XUV � (Ea � Eg � i�a/2)
, (7)

where Ea and �a are the resonance position and width, respectively, Eg is the ground-state

energy and O is the dipole transition operator (e.g., O = ✏̂ · PNe

i=1 ~pi in velocity gauge).
Let’s examine the structure of this function of the XUV frequency that depends paramet-
rically on the complex number Eag � i�a/2. If we put aside for a moment the fixed factor
hE|O|ai ha|O|gi, this comes down to study the elementary function
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Notice that the finite duration of the pulses induces a redshift �!(!IR) of the sideband
beating even in absence of intermediate resonances. The reason is that Mdir

fi

(!) is
inversely proportional to the energy of the last exchanged IR photon, thus amplifying
the low-frequency components in the beating.

Finally, the presence of an intermediate resonance does not necessarily increase the frequency
change. Indeed, while the non-resonant contribution always gives rise to a decrease in fre-
quency, as we explained above, the resonance may increase as well as decrease the beating
frequency. The reason why this happens is that, if the duration of the pump and probe
pulses is not much longer than the lifetime of the resonance, a stationary condition is never
achieved. Hence, the population of the intermediate resonant state keeps increasing across
the passage of the XUV train. In turn, the later the IR probe comes, the higher the pro-
portion of the resonance component. Since the background and the resonant beating are in
general out of phase, the overall e↵ect is a phase drift as a function of ⌧ , which corresponds
to a shift in the beating frequency.
Furthermore, the resonant sideband beating will be red- or blue-shifted also in the case in
which the harmonic is detuned with respect to the resonance energy. For example, if the
upper harmonics is centered above the resonance, the distance between the center of the
sideband and the resonance is smaller than !IR. Therefore, on average, the resonant jump
downward will also be shorter than !IR. As a consequence, the interference with the upward
amplitude from the lower harmonic will be red-shifted.

6. Why is the phase shift across the resonance quite di↵erent from a (convoluted) arctan variation

function? Could the authors give physical explanation of the behavior of the phase variation ? How

does the pulse duration/intensity of the IR change it ?

As the referee says, and as we mention in the supplementary material, if the background
continuum is “dark”, i.e., if it is not radiatively coupled to the ground state |gi, and the
only other relevant contribution to the two-photon transition, by virtue of it being almost
resonant, comes from an intermediate autoionizing state |ai, then the transition matrix
element hE|OG

+
0 (Eg + !XUV)O|gi can be approximated as

hE|OG

+
0 (Eg + !XUV)O|gi ' hE|O|ai ha|O|gi

!XUV � (Ea � Eg � i�a/2)
, (7)

where Ea and �a are the resonance position and width, respectively, Eg is the ground-state

energy and O is the dipole transition operator (e.g., O = ✏̂ · PNe

i=1 ~pi in velocity gauge).
Let’s examine the structure of this function of the XUV frequency that depends paramet-
rically on the complex number Eag � i�a/2. If we put aside for a moment the fixed factor
hE|O|ai ha|O|gi, this comes down to study the elementary function
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The circle is followed counterclockwise from 0� to 0+ (see Fig. 1). As a consequence, the
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Figure 5: Trajectory of the function (x � z)�1 in the complex plane for z = �i/2, x 2 [�3, x0]. The
(negative) angle ' formed with the positive real semi-axis increases from ' = �⇡ to ' = 0 as x goes from
�1 to +1.

argument ' of the resonant complex amplitude increases by ⇡, as expected,
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To account for the finite duration of the pulses, we must take the convolution of the stationary
amplitude (or, rather, of the product of the amplitudes from the lower and upper harmonics,
but we can assume that one of the two paths is non-resonant and virtually constant), with the
appropriate spectral weight. Notice that doing so is not the same as taking the convolution
of the phase itself, because the argument �(z) of a complex number z is not a linear function
of z. In the present case, nevertheless, the argument of the convoluted amplitude would still
experience a jump of ⇡.

The picture changes radically, however, when a direct-ionization term,Mdir(E) = hE|OG

+
0 (Eg+

!XUV)O|gidir, contributes to the transition amplitude,

hE|OG

+
0 (Eg + !XUV)O|gi ' hE|O|aiha|O|gi

!XUV � Eag + i�a/2
+Mdir(E). (11)

The contribution of the direct ionization to the transition amplitude generally changes
little in an energy interval of the order of the resonance width, and may be assumed to
be approximately a (complex) constant Mdir(Ea). Furthermore, if the larger contribution
to the direct-ionization term comes from the continuum (see discussion in the answer to
question 5), the two-photon matrix element is essentially real: negative (positive) if the
final IR photon is absorbed (emitted). The trajectory of the transition matrix element in
the complex plane, therefore, is still a circle, but translated with respect to the origin by
Mdir(Ea) (see Fig. 2 and 3).

As Figures 2 and 3 show, the overall phase jump is 0, ⇡ or 2⇡ depending on whether the
origin falls outside, on the border of, or inside the circle. The overall jump, in other terms, is
a topological index. If finite pulses are used, the amplitude must be convoluted. In general,
this results in a contraction of the circle closer to the limiting point for x ! ±1, i.e., closer
to the direct-ionization transition amplitude (see Figs.2b,d).

The ideal picture sketched above remains indicative even in the more realistic case were the
direct contribution changes with the energy, and the energy range itself is limited. Indeed,
while the transition amplitude may describe a distorted arc, instead of a complete circle, if
the resonant amplitude is much stronger than the direct one, the trajectory in the complex
plane is still very similar to the ideal one starting right at the origin, and the excursion of
the phase is ' ⇡, as in Fig.2a,b. On the other hand, if the direct-ionization amplitude is
not negligible, the drift it undergoes across the energy range is generally small with respect
to its absolute value. So, it is still very unlikely that the total amplitude will encircle the
origin, and the overall phase excursion will remain close to zero, as in Fig.2c,d.

This intuitive geometrical interpretation of the role of resonances is very appropriate for
a general audience, since it permits to grasp the idea at the basis of the model without
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Notice that the finite duration of the pulses induces a redshift �!(!IR) of the sideband
beating even in absence of intermediate resonances. The reason is that Mdir

fi

(!) is
inversely proportional to the energy of the last exchanged IR photon, thus amplifying
the low-frequency components in the beating.

Finally, the presence of an intermediate resonance does not necessarily increase the frequency
change. Indeed, while the non-resonant contribution always gives rise to a decrease in fre-
quency, as we explained above, the resonance may increase as well as decrease the beating
frequency. The reason why this happens is that, if the duration of the pump and probe
pulses is not much longer than the lifetime of the resonance, a stationary condition is never
achieved. Hence, the population of the intermediate resonant state keeps increasing across
the passage of the XUV train. In turn, the later the IR probe comes, the higher the pro-
portion of the resonance component. Since the background and the resonant beating are in
general out of phase, the overall e↵ect is a phase drift as a function of ⌧ , which corresponds
to a shift in the beating frequency.
Furthermore, the resonant sideband beating will be red- or blue-shifted also in the case in
which the harmonic is detuned with respect to the resonance energy. For example, if the
upper harmonics is centered above the resonance, the distance between the center of the
sideband and the resonance is smaller than !IR. Therefore, on average, the resonant jump
downward will also be shorter than !IR. As a consequence, the interference with the upward
amplitude from the lower harmonic will be red-shifted.

6. Why is the phase shift across the resonance quite di↵erent from a (convoluted) arctan variation

function? Could the authors give physical explanation of the behavior of the phase variation ? How

does the pulse duration/intensity of the IR change it ?

As the referee says, and as we mention in the supplementary material, if the background
continuum is “dark”, i.e., if it is not radiatively coupled to the ground state |gi, and the
only other relevant contribution to the two-photon transition, by virtue of it being almost
resonant, comes from an intermediate autoionizing state |ai, then the transition matrix
element hE|OG

+
0 (Eg + !XUV)O|gi can be approximated as

hE|OG

+
0 (Eg + !XUV)O|gi ' hE|O|ai ha|O|gi

!XUV � (Ea � Eg � i�a/2)
, (7)

where Ea and �a are the resonance position and width, respectively, Eg is the ground-state

energy and O is the dipole transition operator (e.g., O = ✏̂ · PNe

i=1 ~pi in velocity gauge).
Let’s examine the structure of this function of the XUV frequency that depends paramet-
rically on the complex number Eag � i�a/2. If we put aside for a moment the fixed factor
hE|O|ai ha|O|gi, this comes down to study the elementary function
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The circle is followed counterclockwise from 0� to 0+ (see Fig. 1). As a consequence, the
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Notice that the finite duration of the pulses induces a redshift �!(!IR) of the sideband
beating even in absence of intermediate resonances. The reason is that Mdir

fi

(!) is
inversely proportional to the energy of the last exchanged IR photon, thus amplifying
the low-frequency components in the beating.

Finally, the presence of an intermediate resonance does not necessarily increase the frequency
change. Indeed, while the non-resonant contribution always gives rise to a decrease in fre-
quency, as we explained above, the resonance may increase as well as decrease the beating
frequency. The reason why this happens is that, if the duration of the pump and probe
pulses is not much longer than the lifetime of the resonance, a stationary condition is never
achieved. Hence, the population of the intermediate resonant state keeps increasing across
the passage of the XUV train. In turn, the later the IR probe comes, the higher the pro-
portion of the resonance component. Since the background and the resonant beating are in
general out of phase, the overall e↵ect is a phase drift as a function of ⌧ , which corresponds
to a shift in the beating frequency.
Furthermore, the resonant sideband beating will be red- or blue-shifted also in the case in
which the harmonic is detuned with respect to the resonance energy. For example, if the
upper harmonics is centered above the resonance, the distance between the center of the
sideband and the resonance is smaller than !IR. Therefore, on average, the resonant jump
downward will also be shorter than !IR. As a consequence, the interference with the upward
amplitude from the lower harmonic will be red-shifted.

6. Why is the phase shift across the resonance quite di↵erent from a (convoluted) arctan variation

function? Could the authors give physical explanation of the behavior of the phase variation ? How

does the pulse duration/intensity of the IR change it ?

As the referee says, and as we mention in the supplementary material, if the background
continuum is “dark”, i.e., if it is not radiatively coupled to the ground state |gi, and the
only other relevant contribution to the two-photon transition, by virtue of it being almost
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element hE|OG
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energy and O is the dipole transition operator (e.g., O = ✏̂ · PNe

i=1 ~pi in velocity gauge).
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Finally, the presence of an intermediate resonance does not necessarily increase the frequency
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quency, as we explained above, the resonance may increase as well as decrease the beating
frequency. The reason why this happens is that, if the duration of the pump and probe
pulses is not much longer than the lifetime of the resonance, a stationary condition is never
achieved. Hence, the population of the intermediate resonant state keeps increasing across
the passage of the XUV train. In turn, the later the IR probe comes, the higher the pro-
portion of the resonance component. Since the background and the resonant beating are in
general out of phase, the overall e↵ect is a phase drift as a function of ⌧ , which corresponds
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Furthermore, the resonant sideband beating will be red- or blue-shifted also in the case in
which the harmonic is detuned with respect to the resonance energy. For example, if the
upper harmonics is centered above the resonance, the distance between the center of the
sideband and the resonance is smaller than !IR. Therefore, on average, the resonant jump
downward will also be shorter than !IR. As a consequence, the interference with the upward
amplitude from the lower harmonic will be red-shifted.

6. Why is the phase shift across the resonance quite di↵erent from a (convoluted) arctan variation

function? Could the authors give physical explanation of the behavior of the phase variation ? How

does the pulse duration/intensity of the IR change it ?

As the referee says, and as we mention in the supplementary material, if the background
continuum is “dark”, i.e., if it is not radiatively coupled to the ground state |gi, and the
only other relevant contribution to the two-photon transition, by virtue of it being almost
resonant, comes from an intermediate autoionizing state |ai, then the transition matrix
element hE|OG

+
0 (Eg + !XUV)O|gi can be approximated as
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+
0 (Eg + !XUV)O|gi ' hE|O|ai ha|O|gi

!XUV � (Ea � Eg � i�a/2)
, (7)

where Ea and �a are the resonance position and width, respectively, Eg is the ground-state

energy and O is the dipole transition operator (e.g., O = ✏̂ · PNe

i=1 ~pi in velocity gauge).
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The circle is followed counterclockwise from 0� to 0+ (see Fig. 1). As a consequence, the
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Figure 5: Trajectory of the function (x � z)�1 in the complex plane for z = �i/2, x 2 [�3, x0]. The
(negative) angle ' formed with the positive real semi-axis increases from ' = �⇡ to ' = 0 as x goes from
�1 to +1.

argument ' of the resonant complex amplitude increases by ⇡, as expected,
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To account for the finite duration of the pulses, we must take the convolution of the stationary
amplitude (or, rather, of the product of the amplitudes from the lower and upper harmonics,
but we can assume that one of the two paths is non-resonant and virtually constant), with the
appropriate spectral weight. Notice that doing so is not the same as taking the convolution
of the phase itself, because the argument �(z) of a complex number z is not a linear function
of z. In the present case, nevertheless, the argument of the convoluted amplitude would still
experience a jump of ⇡.

The picture changes radically, however, when a direct-ionization term,Mdir(E) = hE|OG

+
0 (Eg+

!XUV)O|gidir, contributes to the transition amplitude,

hE|OG

+
0 (Eg + !XUV)O|gi ' hE|O|aiha|O|gi

!XUV � Eag + i�a/2
+Mdir(E). (11)

The contribution of the direct ionization to the transition amplitude generally changes
little in an energy interval of the order of the resonance width, and may be assumed to
be approximately a (complex) constant Mdir(Ea). Furthermore, if the larger contribution
to the direct-ionization term comes from the continuum (see discussion in the answer to
question 5), the two-photon matrix element is essentially real: negative (positive) if the
final IR photon is absorbed (emitted). The trajectory of the transition matrix element in
the complex plane, therefore, is still a circle, but translated with respect to the origin by
Mdir(Ea) (see Fig. 2 and 3).

As Figures 2 and 3 show, the overall phase jump is 0, ⇡ or 2⇡ depending on whether the
origin falls outside, on the border of, or inside the circle. The overall jump, in other terms, is
a topological index. If finite pulses are used, the amplitude must be convoluted. In general,
this results in a contraction of the circle closer to the limiting point for x ! ±1, i.e., closer
to the direct-ionization transition amplitude (see Figs.2b,d).

The ideal picture sketched above remains indicative even in the more realistic case were the
direct contribution changes with the energy, and the energy range itself is limited. Indeed,
while the transition amplitude may describe a distorted arc, instead of a complete circle, if
the resonant amplitude is much stronger than the direct one, the trajectory in the complex
plane is still very similar to the ideal one starting right at the origin, and the excursion of
the phase is ' ⇡, as in Fig.2a,b. On the other hand, if the direct-ionization amplitude is
not negligible, the drift it undergoes across the energy range is generally small with respect
to its absolute value. So, it is still very unlikely that the total amplitude will encircle the
origin, and the overall phase excursion will remain close to zero, as in Fig.2c,d.

This intuitive geometrical interpretation of the role of resonances is very appropriate for
a general audience, since it permits to grasp the idea at the basis of the model without
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Notice that the finite duration of the pulses induces a redshift �!(!IR) of the sideband
beating even in absence of intermediate resonances. The reason is that Mdir

fi

(!) is
inversely proportional to the energy of the last exchanged IR photon, thus amplifying
the low-frequency components in the beating.

Finally, the presence of an intermediate resonance does not necessarily increase the frequency
change. Indeed, while the non-resonant contribution always gives rise to a decrease in fre-
quency, as we explained above, the resonance may increase as well as decrease the beating
frequency. The reason why this happens is that, if the duration of the pump and probe
pulses is not much longer than the lifetime of the resonance, a stationary condition is never
achieved. Hence, the population of the intermediate resonant state keeps increasing across
the passage of the XUV train. In turn, the later the IR probe comes, the higher the pro-
portion of the resonance component. Since the background and the resonant beating are in
general out of phase, the overall e↵ect is a phase drift as a function of ⌧ , which corresponds
to a shift in the beating frequency.
Furthermore, the resonant sideband beating will be red- or blue-shifted also in the case in
which the harmonic is detuned with respect to the resonance energy. For example, if the
upper harmonics is centered above the resonance, the distance between the center of the
sideband and the resonance is smaller than !IR. Therefore, on average, the resonant jump
downward will also be shorter than !IR. As a consequence, the interference with the upward
amplitude from the lower harmonic will be red-shifted.

6. Why is the phase shift across the resonance quite di↵erent from a (convoluted) arctan variation

function? Could the authors give physical explanation of the behavior of the phase variation ? How

does the pulse duration/intensity of the IR change it ?

As the referee says, and as we mention in the supplementary material, if the background
continuum is “dark”, i.e., if it is not radiatively coupled to the ground state |gi, and the
only other relevant contribution to the two-photon transition, by virtue of it being almost
resonant, comes from an intermediate autoionizing state |ai, then the transition matrix
element hE|OG

+
0 (Eg + !XUV)O|gi can be approximated as

hE|OG

+
0 (Eg + !XUV)O|gi ' hE|O|ai ha|O|gi

!XUV � (Ea � Eg � i�a/2)
, (7)

where Ea and �a are the resonance position and width, respectively, Eg is the ground-state

energy and O is the dipole transition operator (e.g., O = ✏̂ · PNe

i=1 ~pi in velocity gauge).
Let’s examine the structure of this function of the XUV frequency that depends paramet-
rically on the complex number Eag � i�a/2. If we put aside for a moment the fixed factor
hE|O|ai ha|O|gi, this comes down to study the elementary function
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, (8)

(zR = Eag, zI = ��a/2). It is easy to see that this function maps the (�1,1) real axis to
a circle in the complex plane, centered at i/(2zI) and with radius 1/(2|zI |). Indeed,

�

�

�

�

1

x� z

� i

2zI

�

�

�

�

2

=

✓

1

x� z

� i

2zI

◆✓

1

x� z

⇤ +
i

2zI

◆

=

=
1

|x� z|2 +
i

2zI

✓

1

x� z

� 1

x� z

⇤

◆

+
1

(2zI)2
=

=
1

|x� z|2 +
i

2zI

2izI
|x� z|2 +

1

(2zI)2
=

1

(2zI)2
.

(9)

The circle is followed counterclockwise from 0� to 0+ (see Fig. 1). As a consequence, the
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Notice that the finite duration of the pulses induces a redshift �!(!IR) of the sideband
beating even in absence of intermediate resonances. The reason is that Mdir

fi
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inversely proportional to the energy of the last exchanged IR photon, thus amplifying
the low-frequency components in the beating.

Finally, the presence of an intermediate resonance does not necessarily increase the frequency
change. Indeed, while the non-resonant contribution always gives rise to a decrease in fre-
quency, as we explained above, the resonance may increase as well as decrease the beating
frequency. The reason why this happens is that, if the duration of the pump and probe
pulses is not much longer than the lifetime of the resonance, a stationary condition is never
achieved. Hence, the population of the intermediate resonant state keeps increasing across
the passage of the XUV train. In turn, the later the IR probe comes, the higher the pro-
portion of the resonance component. Since the background and the resonant beating are in
general out of phase, the overall e↵ect is a phase drift as a function of ⌧ , which corresponds
to a shift in the beating frequency.
Furthermore, the resonant sideband beating will be red- or blue-shifted also in the case in
which the harmonic is detuned with respect to the resonance energy. For example, if the
upper harmonics is centered above the resonance, the distance between the center of the
sideband and the resonance is smaller than !IR. Therefore, on average, the resonant jump
downward will also be shorter than !IR. As a consequence, the interference with the upward
amplitude from the lower harmonic will be red-shifted.

6. Why is the phase shift across the resonance quite di↵erent from a (convoluted) arctan variation

function? Could the authors give physical explanation of the behavior of the phase variation ? How

does the pulse duration/intensity of the IR change it ?

As the referee says, and as we mention in the supplementary material, if the background
continuum is “dark”, i.e., if it is not radiatively coupled to the ground state |gi, and the
only other relevant contribution to the two-photon transition, by virtue of it being almost
resonant, comes from an intermediate autoionizing state |ai, then the transition matrix
element hE|OG

+
0 (Eg + !XUV)O|gi can be approximated as

hE|OG

+
0 (Eg + !XUV)O|gi ' hE|O|ai ha|O|gi

!XUV � (Ea � Eg � i�a/2)
, (7)

where Ea and �a are the resonance position and width, respectively, Eg is the ground-state

energy and O is the dipole transition operator (e.g., O = ✏̂ · PNe

i=1 ~pi in velocity gauge).
Let’s examine the structure of this function of the XUV frequency that depends paramet-
rically on the complex number Eag � i�a/2. If we put aside for a moment the fixed factor
hE|O|ai ha|O|gi, this comes down to study the elementary function
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Notice that the finite duration of the pulses induces a redshift �!(!IR) of the sideband
beating even in absence of intermediate resonances. The reason is that Mdir

fi

(!) is
inversely proportional to the energy of the last exchanged IR photon, thus amplifying
the low-frequency components in the beating.

Finally, the presence of an intermediate resonance does not necessarily increase the frequency
change. Indeed, while the non-resonant contribution always gives rise to a decrease in fre-
quency, as we explained above, the resonance may increase as well as decrease the beating
frequency. The reason why this happens is that, if the duration of the pump and probe
pulses is not much longer than the lifetime of the resonance, a stationary condition is never
achieved. Hence, the population of the intermediate resonant state keeps increasing across
the passage of the XUV train. In turn, the later the IR probe comes, the higher the pro-
portion of the resonance component. Since the background and the resonant beating are in
general out of phase, the overall e↵ect is a phase drift as a function of ⌧ , which corresponds
to a shift in the beating frequency.
Furthermore, the resonant sideband beating will be red- or blue-shifted also in the case in
which the harmonic is detuned with respect to the resonance energy. For example, if the
upper harmonics is centered above the resonance, the distance between the center of the
sideband and the resonance is smaller than !IR. Therefore, on average, the resonant jump
downward will also be shorter than !IR. As a consequence, the interference with the upward
amplitude from the lower harmonic will be red-shifted.

6. Why is the phase shift across the resonance quite di↵erent from a (convoluted) arctan variation

function? Could the authors give physical explanation of the behavior of the phase variation ? How

does the pulse duration/intensity of the IR change it ?

As the referee says, and as we mention in the supplementary material, if the background
continuum is “dark”, i.e., if it is not radiatively coupled to the ground state |gi, and the
only other relevant contribution to the two-photon transition, by virtue of it being almost
resonant, comes from an intermediate autoionizing state |ai, then the transition matrix
element hE|OG

+
0 (Eg + !XUV)O|gi can be approximated as

hE|OG

+
0 (Eg + !XUV)O|gi ' hE|O|ai ha|O|gi

!XUV � (Ea � Eg � i�a/2)
, (7)

where Ea and �a are the resonance position and width, respectively, Eg is the ground-state

energy and O is the dipole transition operator (e.g., O = ✏̂ · PNe

i=1 ~pi in velocity gauge).
Let’s examine the structure of this function of the XUV frequency that depends paramet-
rically on the complex number Eag � i�a/2. If we put aside for a moment the fixed factor
hE|O|ai ha|O|gi, this comes down to study the elementary function
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Figure 5: Trajectory of the function (x � z)�1 in the complex plane for z = �i/2, x 2 [�3, x0]. The
(negative) angle ' formed with the positive real semi-axis increases from ' = �⇡ to ' = 0 as x goes from
�1 to +1.
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To account for the finite duration of the pulses, we must take the convolution of the stationary
amplitude (or, rather, of the product of the amplitudes from the lower and upper harmonics,
but we can assume that one of the two paths is non-resonant and virtually constant), with the
appropriate spectral weight. Notice that doing so is not the same as taking the convolution
of the phase itself, because the argument �(z) of a complex number z is not a linear function
of z. In the present case, nevertheless, the argument of the convoluted amplitude would still
experience a jump of ⇡.

The picture changes radically, however, when a direct-ionization term,Mdir(E) = hE|OG

+
0 (Eg+

!XUV)O|gidir, contributes to the transition amplitude,

hE|OG

+
0 (Eg + !XUV)O|gi ' hE|O|aiha|O|gi

!XUV � Eag + i�a/2
+Mdir(E). (11)

The contribution of the direct ionization to the transition amplitude generally changes
little in an energy interval of the order of the resonance width, and may be assumed to
be approximately a (complex) constant Mdir(Ea). Furthermore, if the larger contribution
to the direct-ionization term comes from the continuum (see discussion in the answer to
question 5), the two-photon matrix element is essentially real: negative (positive) if the
final IR photon is absorbed (emitted). The trajectory of the transition matrix element in
the complex plane, therefore, is still a circle, but translated with respect to the origin by
Mdir(Ea) (see Fig. 2 and 3).

As Figures 2 and 3 show, the overall phase jump is 0, ⇡ or 2⇡ depending on whether the
origin falls outside, on the border of, or inside the circle. The overall jump, in other terms, is
a topological index. If finite pulses are used, the amplitude must be convoluted. In general,
this results in a contraction of the circle closer to the limiting point for x ! ±1, i.e., closer
to the direct-ionization transition amplitude (see Figs.2b,d).

The ideal picture sketched above remains indicative even in the more realistic case were the
direct contribution changes with the energy, and the energy range itself is limited. Indeed,
while the transition amplitude may describe a distorted arc, instead of a complete circle, if
the resonant amplitude is much stronger than the direct one, the trajectory in the complex
plane is still very similar to the ideal one starting right at the origin, and the excursion of
the phase is ' ⇡, as in Fig.2a,b. On the other hand, if the direct-ionization amplitude is
not negligible, the drift it undergoes across the energy range is generally small with respect
to its absolute value. So, it is still very unlikely that the total amplitude will encircle the
origin, and the overall phase excursion will remain close to zero, as in Fig.2c,d.

This intuitive geometrical interpretation of the role of resonances is very appropriate for
a general audience, since it permits to grasp the idea at the basis of the model without
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Resonant phase-shift of sideband beating

Notice that the finite duration of the pulses induces a redshift �!(!IR) of the sideband
beating even in absence of intermediate resonances. The reason is that Mdir

fi

(!) is
inversely proportional to the energy of the last exchanged IR photon, thus amplifying
the low-frequency components in the beating.

Finally, the presence of an intermediate resonance does not necessarily increase the frequency
change. Indeed, while the non-resonant contribution always gives rise to a decrease in fre-
quency, as we explained above, the resonance may increase as well as decrease the beating
frequency. The reason why this happens is that, if the duration of the pump and probe
pulses is not much longer than the lifetime of the resonance, a stationary condition is never
achieved. Hence, the population of the intermediate resonant state keeps increasing across
the passage of the XUV train. In turn, the later the IR probe comes, the higher the pro-
portion of the resonance component. Since the background and the resonant beating are in
general out of phase, the overall e↵ect is a phase drift as a function of ⌧ , which corresponds
to a shift in the beating frequency.
Furthermore, the resonant sideband beating will be red- or blue-shifted also in the case in
which the harmonic is detuned with respect to the resonance energy. For example, if the
upper harmonics is centered above the resonance, the distance between the center of the
sideband and the resonance is smaller than !IR. Therefore, on average, the resonant jump
downward will also be shorter than !IR. As a consequence, the interference with the upward
amplitude from the lower harmonic will be red-shifted.

6. Why is the phase shift across the resonance quite di↵erent from a (convoluted) arctan variation

function? Could the authors give physical explanation of the behavior of the phase variation ? How

does the pulse duration/intensity of the IR change it ?

As the referee says, and as we mention in the supplementary material, if the background
continuum is “dark”, i.e., if it is not radiatively coupled to the ground state |gi, and the
only other relevant contribution to the two-photon transition, by virtue of it being almost
resonant, comes from an intermediate autoionizing state |ai, then the transition matrix
element hE|OG

+
0 (Eg + !XUV)O|gi can be approximated as

hE|OG

+
0 (Eg + !XUV)O|gi ' hE|O|ai ha|O|gi

!XUV � (Ea � Eg � i�a/2)
, (7)

where Ea and �a are the resonance position and width, respectively, Eg is the ground-state

energy and O is the dipole transition operator (e.g., O = ✏̂ · PNe

i=1 ~pi in velocity gauge).
Let’s examine the structure of this function of the XUV frequency that depends paramet-
rically on the complex number Eag � i�a/2. If we put aside for a moment the fixed factor
hE|O|ai ha|O|gi, this comes down to study the elementary function

1

x� z

, z = zR + izI , x, zR 2 R, zI 2 R�
, (8)

(zR = Eag, zI = ��a/2). It is easy to see that this function maps the (�1,1) real axis to
a circle in the complex plane, centered at i/(2zI) and with radius 1/(2|zI |). Indeed,
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The circle is followed counterclockwise from 0� to 0+ (see Fig. 1). As a consequence, the
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As the laser frequency crosses the resonance, 
the transition amplitude describes a circle in 
the complex plane, centered at -iΓa with 
radius Γa

Notice that the finite duration of the pulses induces a redshift �!(!IR) of the sideband
beating even in absence of intermediate resonances. The reason is that Mdir

fi

(!) is
inversely proportional to the energy of the last exchanged IR photon, thus amplifying
the low-frequency components in the beating.

Finally, the presence of an intermediate resonance does not necessarily increase the frequency
change. Indeed, while the non-resonant contribution always gives rise to a decrease in fre-
quency, as we explained above, the resonance may increase as well as decrease the beating
frequency. The reason why this happens is that, if the duration of the pump and probe
pulses is not much longer than the lifetime of the resonance, a stationary condition is never
achieved. Hence, the population of the intermediate resonant state keeps increasing across
the passage of the XUV train. In turn, the later the IR probe comes, the higher the pro-
portion of the resonance component. Since the background and the resonant beating are in
general out of phase, the overall e↵ect is a phase drift as a function of ⌧ , which corresponds
to a shift in the beating frequency.
Furthermore, the resonant sideband beating will be red- or blue-shifted also in the case in
which the harmonic is detuned with respect to the resonance energy. For example, if the
upper harmonics is centered above the resonance, the distance between the center of the
sideband and the resonance is smaller than !IR. Therefore, on average, the resonant jump
downward will also be shorter than !IR. As a consequence, the interference with the upward
amplitude from the lower harmonic will be red-shifted.

6. Why is the phase shift across the resonance quite di↵erent from a (convoluted) arctan variation

function? Could the authors give physical explanation of the behavior of the phase variation ? How

does the pulse duration/intensity of the IR change it ?

As the referee says, and as we mention in the supplementary material, if the background
continuum is “dark”, i.e., if it is not radiatively coupled to the ground state |gi, and the
only other relevant contribution to the two-photon transition, by virtue of it being almost
resonant, comes from an intermediate autoionizing state |ai, then the transition matrix
element hE|OG

+
0 (Eg + !XUV)O|gi can be approximated as

hE|OG

+
0 (Eg + !XUV)O|gi ' hE|O|ai ha|O|gi

!XUV � (Ea � Eg � i�a/2)
, (7)

where Ea and �a are the resonance position and width, respectively, Eg is the ground-state

energy and O is the dipole transition operator (e.g., O = ✏̂ · PNe

i=1 ~pi in velocity gauge).
Let’s examine the structure of this function of the XUV frequency that depends paramet-
rically on the complex number Eag � i�a/2. If we put aside for a moment the fixed factor
hE|O|ai ha|O|gi, this comes down to study the elementary function

1
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, z = zR + izI , x, zR 2 R, zI 2 R�
, (8)

(zR = Eag, zI = ��a/2). It is easy to see that this function maps the (�1,1) real axis to
a circle in the complex plane, centered at i/(2zI) and with radius 1/(2|zI |). Indeed,
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The circle is followed counterclockwise from 0� to 0+ (see Fig. 1). As a consequence, the
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Figure 5: Trajectory of the function (x � z)�1 in the complex plane for z = �i/2, x 2 [�3, x0]. The
(negative) angle ' formed with the positive real semi-axis increases from ' = �⇡ to ' = 0 as x goes from
�1 to +1.

argument ' of the resonant complex amplitude increases by ⇡, as expected,
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To account for the finite duration of the pulses, we must take the convolution of the stationary
amplitude (or, rather, of the product of the amplitudes from the lower and upper harmonics,
but we can assume that one of the two paths is non-resonant and virtually constant), with the
appropriate spectral weight. Notice that doing so is not the same as taking the convolution
of the phase itself, because the argument �(z) of a complex number z is not a linear function
of z. In the present case, nevertheless, the argument of the convoluted amplitude would still
experience a jump of ⇡.

The picture changes radically, however, when a direct-ionization term,Mdir(E) = hE|OG

+
0 (Eg+

!XUV)O|gidir, contributes to the transition amplitude,

hE|OG

+
0 (Eg + !XUV)O|gi ' hE|O|aiha|O|gi

!XUV � Eag + i�a/2
+Mdir(E). (11)

The contribution of the direct ionization to the transition amplitude generally changes
little in an energy interval of the order of the resonance width, and may be assumed to
be approximately a (complex) constant Mdir(Ea). Furthermore, if the larger contribution
to the direct-ionization term comes from the continuum (see discussion in the answer to
question 5), the two-photon matrix element is essentially real: negative (positive) if the
final IR photon is absorbed (emitted). The trajectory of the transition matrix element in
the complex plane, therefore, is still a circle, but translated with respect to the origin by
Mdir(Ea) (see Fig. 2 and 3).

As Figures 2 and 3 show, the overall phase jump is 0, ⇡ or 2⇡ depending on whether the
origin falls outside, on the border of, or inside the circle. The overall jump, in other terms, is
a topological index. If finite pulses are used, the amplitude must be convoluted. In general,
this results in a contraction of the circle closer to the limiting point for x ! ±1, i.e., closer
to the direct-ionization transition amplitude (see Figs.2b,d).

The ideal picture sketched above remains indicative even in the more realistic case were the
direct contribution changes with the energy, and the energy range itself is limited. Indeed,
while the transition amplitude may describe a distorted arc, instead of a complete circle, if
the resonant amplitude is much stronger than the direct one, the trajectory in the complex
plane is still very similar to the ideal one starting right at the origin, and the excursion of
the phase is ' ⇡, as in Fig.2a,b. On the other hand, if the direct-ionization amplitude is
not negligible, the drift it undergoes across the energy range is generally small with respect
to its absolute value. So, it is still very unlikely that the total amplitude will encircle the
origin, and the overall phase excursion will remain close to zero, as in Fig.2c,d.

This intuitive geometrical interpretation of the role of resonances is very appropriate for
a general audience, since it permits to grasp the idea at the basis of the model without
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To account for the finite duration of the pulses, we must take the convolution of the stationary
amplitude (or, rather, of the product of the amplitudes from the lower and upper harmonics,
but we can assume that one of the two paths is non-resonant and virtually constant), with the
appropriate spectral weight. Notice that doing so is not the same as taking the convolution
of the phase itself, because the argument �(z) of a complex number z is not a linear function
of z. In the present case, nevertheless, the argument of the convoluted amplitude would still
experience a jump of ⇡.
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!XUV)O|gidir, contributes to the transition amplitude,
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!XUV � Eag + i�a/2
+Mdir(E). (11)

The contribution of the direct ionization to the transition amplitude generally changes
little in an energy interval of the order of the resonance width, and may be assumed to
be approximately a (complex) constant Mdir(Ea). Furthermore, if the larger contribution
to the direct-ionization term comes from the continuum (see discussion in the answer to
question 5), the two-photon matrix element is essentially real: negative (positive) if the
final IR photon is absorbed (emitted). The trajectory of the transition matrix element in
the complex plane, therefore, is still a circle, but translated with respect to the origin by
Mdir(Ea) (see Fig. 2 and 3).

As Figures 2 and 3 show, the overall phase jump is 0, ⇡ or 2⇡ depending on whether the
origin falls outside, on the border of, or inside the circle. The overall jump, in other terms, is
a topological index. If finite pulses are used, the amplitude must be convoluted. In general,
this results in a contraction of the circle closer to the limiting point for x ! ±1, i.e., closer
to the direct-ionization transition amplitude (see Figs.2b,d).

The ideal picture sketched above remains indicative even in the more realistic case were the
direct contribution changes with the energy, and the energy range itself is limited. Indeed,
while the transition amplitude may describe a distorted arc, instead of a complete circle, if
the resonant amplitude is much stronger than the direct one, the trajectory in the complex
plane is still very similar to the ideal one starting right at the origin, and the excursion of
the phase is ' ⇡, as in Fig.2a,b. On the other hand, if the direct-ionization amplitude is
not negligible, the drift it undergoes across the energy range is generally small with respect
to its absolute value. So, it is still very unlikely that the total amplitude will encircle the
origin, and the overall phase excursion will remain close to zero, as in Fig.2c,d.

This intuitive geometrical interpretation of the role of resonances is very appropriate for
a general audience, since it permits to grasp the idea at the basis of the model without
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Resonant phase-shift of sideband beating

Notice that the finite duration of the pulses induces a redshift �!(!IR) of the sideband
beating even in absence of intermediate resonances. The reason is that Mdir

fi

(!) is
inversely proportional to the energy of the last exchanged IR photon, thus amplifying
the low-frequency components in the beating.

Finally, the presence of an intermediate resonance does not necessarily increase the frequency
change. Indeed, while the non-resonant contribution always gives rise to a decrease in fre-
quency, as we explained above, the resonance may increase as well as decrease the beating
frequency. The reason why this happens is that, if the duration of the pump and probe
pulses is not much longer than the lifetime of the resonance, a stationary condition is never
achieved. Hence, the population of the intermediate resonant state keeps increasing across
the passage of the XUV train. In turn, the later the IR probe comes, the higher the pro-
portion of the resonance component. Since the background and the resonant beating are in
general out of phase, the overall e↵ect is a phase drift as a function of ⌧ , which corresponds
to a shift in the beating frequency.
Furthermore, the resonant sideband beating will be red- or blue-shifted also in the case in
which the harmonic is detuned with respect to the resonance energy. For example, if the
upper harmonics is centered above the resonance, the distance between the center of the
sideband and the resonance is smaller than !IR. Therefore, on average, the resonant jump
downward will also be shorter than !IR. As a consequence, the interference with the upward
amplitude from the lower harmonic will be red-shifted.

6. Why is the phase shift across the resonance quite di↵erent from a (convoluted) arctan variation

function? Could the authors give physical explanation of the behavior of the phase variation ? How

does the pulse duration/intensity of the IR change it ?

As the referee says, and as we mention in the supplementary material, if the background
continuum is “dark”, i.e., if it is not radiatively coupled to the ground state |gi, and the
only other relevant contribution to the two-photon transition, by virtue of it being almost
resonant, comes from an intermediate autoionizing state |ai, then the transition matrix
element hE|OG

+
0 (Eg + !XUV)O|gi can be approximated as

hE|OG

+
0 (Eg + !XUV)O|gi ' hE|O|ai ha|O|gi

!XUV � (Ea � Eg � i�a/2)
, (7)

where Ea and �a are the resonance position and width, respectively, Eg is the ground-state

energy and O is the dipole transition operator (e.g., O = ✏̂ · PNe

i=1 ~pi in velocity gauge).
Let’s examine the structure of this function of the XUV frequency that depends paramet-
rically on the complex number Eag � i�a/2. If we put aside for a moment the fixed factor
hE|O|ai ha|O|gi, this comes down to study the elementary function
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The circle is followed counterclockwise from 0� to 0+ (see Fig. 1). As a consequence, the
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Figure 5: Trajectory of the function (x � z)�1 in the complex plane for z = �i/2, x 2 [�3, x0]. The
(negative) angle ' formed with the positive real semi-axis increases from ' = �⇡ to ' = 0 as x goes from
�1 to +1.

argument ' of the resonant complex amplitude increases by ⇡, as expected,
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To account for the finite duration of the pulses, we must take the convolution of the stationary
amplitude (or, rather, of the product of the amplitudes from the lower and upper harmonics,
but we can assume that one of the two paths is non-resonant and virtually constant), with the
appropriate spectral weight. Notice that doing so is not the same as taking the convolution
of the phase itself, because the argument �(z) of a complex number z is not a linear function
of z. In the present case, nevertheless, the argument of the convoluted amplitude would still
experience a jump of ⇡.

The picture changes radically, however, when a direct-ionization term,Mdir(E) = hE|OG

+
0 (Eg+

!XUV)O|gidir, contributes to the transition amplitude,

hE|OG

+
0 (Eg + !XUV)O|gi ' hE|O|aiha|O|gi

!XUV � Eag + i�a/2
+Mdir(E). (11)

The contribution of the direct ionization to the transition amplitude generally changes
little in an energy interval of the order of the resonance width, and may be assumed to
be approximately a (complex) constant Mdir(Ea). Furthermore, if the larger contribution
to the direct-ionization term comes from the continuum (see discussion in the answer to
question 5), the two-photon matrix element is essentially real: negative (positive) if the
final IR photon is absorbed (emitted). The trajectory of the transition matrix element in
the complex plane, therefore, is still a circle, but translated with respect to the origin by
Mdir(Ea) (see Fig. 2 and 3).

As Figures 2 and 3 show, the overall phase jump is 0, ⇡ or 2⇡ depending on whether the
origin falls outside, on the border of, or inside the circle. The overall jump, in other terms, is
a topological index. If finite pulses are used, the amplitude must be convoluted. In general,
this results in a contraction of the circle closer to the limiting point for x ! ±1, i.e., closer
to the direct-ionization transition amplitude (see Figs.2b,d).

The ideal picture sketched above remains indicative even in the more realistic case were the
direct contribution changes with the energy, and the energy range itself is limited. Indeed,
while the transition amplitude may describe a distorted arc, instead of a complete circle, if
the resonant amplitude is much stronger than the direct one, the trajectory in the complex
plane is still very similar to the ideal one starting right at the origin, and the excursion of
the phase is ' ⇡, as in Fig.2a,b. On the other hand, if the direct-ionization amplitude is
not negligible, the drift it undergoes across the energy range is generally small with respect
to its absolute value. So, it is still very unlikely that the total amplitude will encircle the
origin, and the overall phase excursion will remain close to zero, as in Fig.2c,d.

This intuitive geometrical interpretation of the role of resonances is very appropriate for
a general audience, since it permits to grasp the idea at the basis of the model without
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Resonant phase-shift of sideband beating
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(negative) angle ' formed with the positive real semi-axis increases from ' = �⇡ to ' = 0 as x goes from
�1 to +1.
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To account for the finite duration of the pulses, we must take the convolution of the stationary
amplitude (or, rather, of the product of the amplitudes from the lower and upper harmonics,
but we can assume that one of the two paths is non-resonant and virtually constant), with the
appropriate spectral weight. Notice that doing so is not the same as taking the convolution
of the phase itself, because the argument �(z) of a complex number z is not a linear function
of z. In the present case, nevertheless, the argument of the convoluted amplitude would still
experience a jump of ⇡.

The picture changes radically, however, when a direct-ionization term,Mdir(E) = hE|OG

+
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!XUV)O|gidir, contributes to the transition amplitude,

hE|OG

+
0 (Eg + !XUV)O|gi ' hE|O|aiha|O|gi

!XUV � Eag + i�a/2
+Mdir(E). (11)

The contribution of the direct ionization to the transition amplitude generally changes
little in an energy interval of the order of the resonance width, and may be assumed to
be approximately a (complex) constant Mdir(Ea). Furthermore, if the larger contribution
to the direct-ionization term comes from the continuum (see discussion in the answer to
question 5), the two-photon matrix element is essentially real: negative (positive) if the
final IR photon is absorbed (emitted). The trajectory of the transition matrix element in
the complex plane, therefore, is still a circle, but translated with respect to the origin by
Mdir(Ea) (see Fig. 2 and 3).

As Figures 2 and 3 show, the overall phase jump is 0, ⇡ or 2⇡ depending on whether the
origin falls outside, on the border of, or inside the circle. The overall jump, in other terms, is
a topological index. If finite pulses are used, the amplitude must be convoluted. In general,
this results in a contraction of the circle closer to the limiting point for x ! ±1, i.e., closer
to the direct-ionization transition amplitude (see Figs.2b,d).

The ideal picture sketched above remains indicative even in the more realistic case were the
direct contribution changes with the energy, and the energy range itself is limited. Indeed,
while the transition amplitude may describe a distorted arc, instead of a complete circle, if
the resonant amplitude is much stronger than the direct one, the trajectory in the complex
plane is still very similar to the ideal one starting right at the origin, and the excursion of
the phase is ' ⇡, as in Fig.2a,b. On the other hand, if the direct-ionization amplitude is
not negligible, the drift it undergoes across the energy range is generally small with respect
to its absolute value. So, it is still very unlikely that the total amplitude will encircle the
origin, and the overall phase excursion will remain close to zero, as in Fig.2c,d.

This intuitive geometrical interpretation of the role of resonances is very appropriate for
a general audience, since it permits to grasp the idea at the basis of the model without
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�f is the detuning of the observation energy Ef with respect to ESB2n , the sideband
nominal position,

�f = Ef � ESB2n , ESB2n = Ei + !H2n+1 � !IR = Ei + !H2n�1 + !IR, (25)

and w(z) is the Faddeeva function of complex argument,

w(z) = e�z
2

✓
1 +
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Z z
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et
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dt

◆
. (26)

Finally, z±a and z±f are dimensionless complex numbers that measure the detuning
between an e↵ective complex XUV frequency !̃±, defined as

!̃± = !H2n±1 +
�f

�2
t �2

IR

� i
⌧

�2
t

, (27)

and either the (complex) resonance excitation energy !ãi (!ãi = Ẽa � Ei) or the
final excitation energy !fi, respectively,

z±a =
�tp
2
(!̃± � !ãi), z±f =

�tp
2
(!̃± � !fi). (28)

The energy resolved intensity of the sideband as a function of the pump probe time
delay, ISB(Ef ;!IR, ⌧), is now easily computed from the parametrized expression of

the transition amplitudes (22) as (we set A± = A(2)±
fH i for brevity)

ISB(Ef ;!IR, ⌧) =
��A+(!IR, ⌧)

��2+
��A�(!IR, ⌧)

��2+ 2<e ⇥A+⇤(!IR, ⌧)A�(!IR, ⌧)
⇤
(29)

The local phase of the sideband rapid modulation, which is our ultimate observ-
able, is simply the argument of the interference term A+⇤(!IR, ⌧)A�(!IR, ⌧). This
phase di↵ers from the standard RABITT term 2!IR⌧ by a quantity �'(Ef ;!IR, ⌧)
which depends on the exact energy at which the sideband is observed, on the laser
frequency and on the pump-probe time delay, and has the following expression

�'(!IR, ⌧) = � arg
�
w⇤(z�f )

⇥
B w(z+a )� w(z+f )

⇤ 
, (30)

where B = [�Ea� 2�1�a/(Ef �Ea)](i� q0a). In linear approximation, we can write

�'(!IR, ⌧) ' �'0(!IR) + ⌧�!0(!IR), (31)

with
�'0(!IR) = �'(!IR, 0), �!0(!IR) = @⌧�'(!IR, ⌧)

���
⌧=0

. (32)

The latter expressions highlight one of the most striking features predicted by the
model, namely, that the intermediate resonance does not just a↵ect the local phase
of the sideband, it alters the RABITT frequency itself. A finite frequency detuning
is present even without intermediate resonance, when the overlap duration �t is
not much larger than the period of the carrier laser. Such detuning, however,
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Conclusion

A two-photon finite-pulse resonant model has been 
both necessary and sufficient to explain the 
phenomenology predicted numerically or observed 
experimentally so far. 

The interpretation of the dynamics in terms of 
wavepackets is probably still viable but it cannot 
rely solely on stationary descriptions.
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