Slow, slower, and even slower electrons from strong-field ionization

Ulf Saalmann Max-Planck-Institute for the Physics of Complex Systems • Dresden

Alexander Kästner, Elias Diesen & Jan-Michael Rost

low-energy structures (LESs)

prove on the second second second

- very-low-energy structure (VLES)
- "zero"-energy structure (ZES)

recollisions in strong-field ionisation

observation of the LES

data from Blaga et al. [Nat. Phys. <u>5</u> (2009) 335] photo-electrons for λ =2µm and *I*=1.5×10¹⁴W/cm²

observation of a VLES

data from Wu et al. [PRL 109 (2012) 043001]

"denote this as the high-energy low-energy structure (HLES)" "for visual convenience, the HLES and the VLES are marked"

behavior at E=0 ?

observation of a "zero-peak"

data from Dura et al. [Sci. Rep. 3 (2013) 2675]

"the offset of the 'zero-peak' from zero transverse momentum is within our measurement resolution"

slow

numerical calculations

 reproduction of the original LES by various quantum and classical calculations

Blaga et al., Nat. Phys. 2009, Quan et al., Phys. Rev. Lett. 2009. Catoire et al. , Las. Phys. 2009. Liu and Hatsagortsyan, Phys. Rev. Lett. 2010. Lemell et al., Phys. Rev. A 2012.

...

agreement on forward scattering

classical trajectories

Ζ

$$H = \frac{p_{\rho}^{2}}{2} + \frac{p_{z}^{2}}{2} - \frac{1}{\sqrt{z^{2} + \rho^{2}}} + z F_{0} \cos(\omega t)$$

initial values (time t'): field $F_0 \cos(\omega t') \rightarrow A_0 \sin(\omega t')$ $z(t') = z' \quad p_z(t') = 0$ $\rho(t') = 0 \quad p_\rho(t') = p'_\rho$

probability for
$$F = F(t')$$

 $W(F, p'_{\rho}) \propto \frac{p'_{\rho}}{\sqrt{1 + {p'_{\rho}}^2/2E_{ip}}} \frac{e^{-2(2E_{ip} + {p'_{\rho}}^2)^{3/2}/3F}}{F^2}$

classical vs. Bernard Piraux @ NORDITA May 21st

numerical calculations

What forms the peak structure?

numerical calculations

What forms the peak structure?

trajectories: initial conditions → final observables or in between (but time-dependent fields)

deflection function: dependence on initial variables

longitudinal momentum $p_z(t=nT; A', p'_{\rho})$

(multiple) recollisions

formation of peaks (LES)?

1-dim deflection function

spectrum from "binning" of final variables

1-dim deflection function

deflection function *Y*: relation between initial *x* and final variable *y*

→ defines the spectrum
$$P(y) = \int dx \, \delta(y - Y(x))$$

= $\sum_{j} \left| \frac{\partial Y(x)}{\partial x} \right|_{x=X_j(y)}^{-1}$

extrema of the deflection function → peaks in the spectrum

2-dim deflection function

→ peak structure for saddle points (cf. van-Hove singularities)

deflection function for $\lambda = 2\mu m$ and $I = 10^{14} W/cm^2$

longitudinal momentum $p_z(t=nT; A', p'_{\rho})$

mechanism of saddle-point formation? → trajectories at saddle point

recollisions aside the ion, i.e. weak perturbation → soft recollisions

bunching in soft recollisions

longitudinal momentum $p_z(t=nT; A', p'_{\rho})$

saddle point(s) from bunching of trajectories

series of LES peaks

soft recollisions at later times $t_k^* = \frac{2k+1}{2}T$

higher-order LES in experiment

recent data from Wolter et al. [Phys. Rev. A 2014]

series of LES peaks

ponderomotive energy or Keldysh parameter?

Blaga et al. Nat. Phys. <u>5</u> (2009) 335

peak position for few-cycle pulses

$$z(t) = p t + \int_{0}^{t} dt' \mathcal{A}(t')$$

soft recollision

$$z(t^{*}=3\pi/\omega) = 0 \qquad p = -\frac{1}{t^{*}} \int_{0}^{t^{*}} dt \mathcal{A}(t_{0}+t)$$

$$\mathcal{A}(t) = -\frac{\mathcal{A}_{0}}{\omega} \frac{d}{dt} e^{-2\ln 2[t/T]^{2}} \cos(\omega t - \phi) \qquad T = n\frac{2\pi}{\omega}$$

$$p(n,\phi) = \zeta(n,\phi)p_{\infty} \qquad p_{\infty} \equiv \frac{2\mathcal{A}_{0}}{3\pi}$$

$$\zeta(n,\phi) = \frac{1}{2} \Big[e^{-[\ln 2/2][\phi/\pi]^{2}/n^{2}} + e^{-[\ln 2/2][3+\phi/\pi]^{2}/n^{2}} \Big]$$

CEP average $\bar{\zeta}(n) \approx \frac{1}{2} \Big[1 + e^{-[\ln 2/2]9/n^{2}} \Big] < 1$

peak position for few-cycle pulses

focus average

$$P_{\tilde{F}}(I) = e^{-1/\tilde{F}\sqrt{I/I_{\max}}} \frac{2I/I_{\max}+1}{[I/I_{\max}]^3} \sqrt{1-I/I_{\max}} \qquad \tilde{F} = F/[2E_{ip}]^{3/2}$$

$$p \propto \sqrt{I}$$
 $\langle p \rangle_{\text{focus}} = \frac{p(I_{\text{max}})}{1 + [3/2]^2 \tilde{F}}$

$$\frac{\bar{p}^{2}(n)}{2} = \frac{p_{\infty}^{2}}{2} \frac{\bar{\zeta}^{2}(n)}{\left[1 + [3/2]^{2}\tilde{F}\right]^{2}}$$
universal dependence on
$$\frac{\bar{E}_{\text{LES}}(n)}{E_{\text{pond}}} = \frac{2}{9\pi^{2}} \frac{\left[1 + e^{-\left[\ln 2/2\right]9/n^{2}}\right]^{2}}{1 + \left[9/2\right]F/\left[2E_{\text{ip}}\right]^{3/2}} \xrightarrow{\text{pulse duration (cycles)}}{\text{effective field strength}}$$

experiments in the DiMauro group

rare-gas atoms in few-cycle pulses 1.8μm 10¹⁴ W/cm²

slower

series of LES peaks

– analogous bunching
– no field strength dependence
– at very low energies → VLES

even slower

calculations vs. measurement

agreement if extraction field included!

"zero"-energy electrons

extraction field matters, despite being weak $F \sim 1...10V/cm \sim 10^{-9}au$

typical above-the-barrier trajectories

standard Stark problem

$$\begin{split} \tilde{H} &= \frac{\tilde{p}_{\rho}^{2}}{2} + \frac{\tilde{p}_{z}^{2}}{2} - \frac{1}{\sqrt{\tilde{\rho}^{2} + \tilde{z}^{2}}} - F\tilde{z} & \text{original} \\ & \text{proper scaling} \quad \frac{1}{F^{1/2}} \begin{pmatrix} \rho \\ z \end{pmatrix}, \quad F^{1/4} \begin{pmatrix} p_{\rho} \\ p_{z} \end{pmatrix}, \quad F^{1/2}E, \quad \frac{1}{F^{3/4}}t \\ H &= \frac{p_{\rho}^{2}}{2} + \frac{p_{z}^{2}}{2} - \frac{1}{\sqrt{\rho^{2} + z^{2}}} - z & \text{generic} \\ & \text{Hamiltonian} \end{split}$$

standard Stark problem

standard Stark problem

$$E_u + E_v = 0$$
$$t = \int_0^\tau \mathrm{d}\tau' \left[u^2(\tau') + v^2(\tau') \right]$$

only trajectories starting at the Coulomb center characterized by energy *E* and angle θ

$$u(0) = 0 \qquad v(0) = 0$$

$$p_u(0) = \cos\left(\frac{\theta}{2}\right) \qquad p_v(0) = \sin\left(\frac{\theta}{2}\right)$$

$$E_u = +\cos\theta \qquad E_v = -\cos\theta$$

trajectories are being trapped if $E_u = \cos \theta \le E^2/2 - 1$

deflection function

2D deflection function

 $p_z(t) = p_z^{\text{init}} + Ft$ or $p_z^{\text{init}} = p_z(t) - Ft \rightarrow \text{const}$

2D deflection function

$$P(p_{\rho}, p_{z}) = \int dE \int d\theta \,\,\delta(p_{\rho} - \tilde{p}_{\rho}(E, \theta)) \,\,\delta(p_{z} - \tilde{p}_{z}(E, \theta))$$
$$= \frac{1}{\left\|\begin{array}{c}\partial_{E}\tilde{p}_{\rho} & \partial_{\theta}\tilde{p}_{\rho} \\ \partial_{E}\tilde{p}_{z} & \partial_{\theta}\tilde{p}_{z}\end{array}\right\|_{\substack{E = \tilde{E}(p_{\rho}, p_{z})\\ \theta = \tilde{\theta}(p_{\rho}, p_{z})}}$$

peak for $\frac{\partial_E \tilde{p}_{\rho}}{\partial_{\theta} \tilde{p}_{\rho}} = \frac{\partial_E \tilde{p}_z}{\partial_{\theta} \tilde{p}_z}$, i. e. parallel contour lines

2D deflection function

→ ridge in the (p_{ρ}, p_z) spectrum

transverse and longitudinal momenta for specific energies *E* and various angles θ

spectrum for uniform distribution of energies *E* and angles θ

spectrum for uniform distribution of energies *E* and angles θ

Richter, Kunitski, Dörner (Frankfurt) N₂, 800nm

influence of angular distribution

almost independent of angular distribution !

summary

LES mechanism from deflection function → longitudinal bunching in soft recollisions

→ higher-order (lower-energy) peaks

• VLES

alternative soft recollisions

• "Z"ES

analysis of Stark trajectories due to extraction field

- → meachnism for peak formation
- → scaling with field strength, confirmed experimentally

唧 1. 11. 11. 11. 11 Thank you!

111