Low Frequency Constraints on Dark Matter Annihilation in Small Scale Galaxies

> Feng Huang 峰 黄

Department of Astronomy, Xiamen University, China

2013-07-01@MITP workshop, Mainz

Multi-wavelength?

dwarf galaxies

$$q_e(E,r) = \frac{1}{2 M_{\chi}^2} \sum_f \frac{dN_e^f}{dE_e}(E) B_f \ \rho^2(r)$$

e^+-: SZ effect ICS emission Synchrotron emission

Colafrancesco, IoP/RAS Meeting 2007

How to model the transport process

Figure 4: The e^{\pm} density $n_e(r)$ from neutralino annihilations in the Draco dSph. The solid and dot-dashed curves are our full solutions with $E_{\min} = m_e$ and $0.01m_{\text{DM}}$ respectively. The dotted curve is the result of the "approximate solution", and the dashed curve is the result of the "no-diffusion solution" as described in Eq. (3.2).

Table 1: The dSphs parameters used in this paper. The distance and virial mass data are mostly taken from Ref. [24], other parameters are calculated as outlined below. For Ursa Minor, which was not included in Ref. [24], we take the mass as to be the same as that of Draco.

Name	D [kpc]	M _{vir} [10 ⁸ M _☉]	$\frac{\rho_s}{[10^8 M_{\odot}/kpc^3]}$	$\frac{r_s}{[\text{kpc}]}$	$\frac{r_t}{\text{kpc}}$
Draco	80	40	0.82	1.2	9.9
LeoI	250	10	1.2	0.64	16.7
Fornax	138	10	1.2	0.64	10.3
LeoII	205	4	1.5	0.43	10.6
Carina	101	2	1.8	0.32	4.8
Sculptor	79	10	1.2	0.64	6.5
Sextans	86	3	1.6	0.38	4.8
Ursa Minor	66	40	0.82	1.2	8.6

SZ-effect

Table 2: WIMP DM induced SZ effect (in units of K) for Local Group luminous dSphs. We assume $m_{\chi} = 100 \text{ GeV}, \langle \sigma v \rangle = 3.0 \times 10^{-26} \text{cm}^3 \text{s}^{-1}$, M99 profile, and $\theta = 1''$.

dSph	$r_h(\mathrm{kpc})$	$M_{\rm vir}(M_{\odot})$	$35 \text{GHz} \ (x = 0.616)$	$1000 \text{GHz} \ (x = 17.46)$
Ursa Minor	1.6	4×10^9	$-5.44 imes10^{-12}$	2.43×10^{-10}
$Draco^{a}$	1.6	4×10^9	$-5.39 imes10^{-12}$	2.32×10^{-10}
Leo I	1.6	1×10^9	-6.88×10^{-13}	5.37×10^{-12}
Fornax	5.4	$1 imes 10^9$	-5.12×10^{-13}	$1.91 imes 10^{-10}$
Leo II	1.04	$4 imes 10^8$	-5.45×10^{-15}	$3.35 imes 10^{-11}$
Carina	1.7	2×10^8	-2.37×10^{-13}	8.97×10^{-13}
Sculptor	3.26	1×10^9	-2.61×10^{-12}	9.72×10^{-11}
Sextans ^b	4.8	$3 imes 10^8$	-1.61×10^{-12}	$5.89 imes10^{-11}$

 ${}^{a}r_{\text{steller}}$ is around 0.93 kpc, which give a slightly large r_{h} as 1.86 kpc. In the calculation, we just use the $r_{h} = 1.6$ kpc as the diffusion zone for consistency with previous results. ${}^{b}r_{\text{steller}}$ is around 4 kpc, which give a really large r_{h} as 8 kpc. In the real calculation, we use r_{t} as the diffusion zone.

Radio Emission

Radio Observation Requirement

Fomalont et. al. with VLA at 4.885GHz in 1979

very center region (within 4arcmin) no detectable radio emission (<2mJy)

Updated observation required

Diffuse emission ----- large field view weak emission ----- high sensitivity

2011-07-GMRT: http://gmrt.ncra.tifr.res.in/

F.o.V at 150MHz: 67 arcmint

rms: 0.02mJy/beam 10 hours, BW: 16MHz

arXiv:1301.5306 K. Spekkens et al

TABLE 2Observation and Map Properties

Field (1)	Observing Dates (2)	Integ.Time (3)	$ \begin{array}{c} \operatorname{Map} \operatorname{Centre} \\ (4) \end{array} $	Dimensions (5)	Resolution (6)
Draco (GBT) UMaII (GBT) Coma (GBT) Will1 (GBT) Draco (VLA)	2007 October – December ^a 2009 February – March ^b 2009 February – March 2009 February ^c 2007 November 4	14.8 h 18.8 h 8.6 h 1.8 h 5.4 h	$\begin{array}{c} 17^{\rm h}20^{\rm m},\ 57^\circ 55'\\ 8^{\rm h}52^{\rm m},\ 63^\circ 08'\\ 12^{\rm h}27^{\rm m},\ 23^\circ 54'\\ 10^{\rm h}49^{\rm m},\ 51^\circ 03'\\ 17^{\rm h}18^{\rm m},\ 57^\circ 53' \end{array}$	$\begin{array}{c} 4^{\circ} \times 4^{\circ} \\ 4^{\circ} \times 4^{\circ} \\ 2^{\circ}.5 \times 2^{\circ}.5 \\ 1^{\circ}.5 \times 1^{\circ}.5 \\ 3^{\circ} \times 4^{\circ} \end{array}$	$\begin{array}{c} 9.12'\times 9.12'\\ 9.12'\times 9.12'\\ 9.12'\times 9.12'\\ 9.12'\times 9.12'\\ 9.12'\times 9.12'\\ 6.8''\times 5.3''\end{array}$

TABLE 3 NOISE PROPERTIES OF THE GBT MAPS

Field	σ_{usub}	σ_{sub}	σ_{map}	σ_{ast}	DR
(1)	(1139/511) (2)	(3)	(11397 bill) (4)	(113975111) (5)	(6)
Draco	33	6.6	3.4	5.7	88
UMaII	50	6.3	5.1	3.7	142
Coma	34	3.6	1.3	3.3	87
Will1	14	2.3	1.5	1.8	37

Dwarf Galaxies Radio Signals (Synchrotron Emission)

12

Comic Ray:

ξ(M) = c M^{-(1+x)}

Observables produced by massive stars (short-lived population) although low mass stars dominate the mass:

U

radio	1. 4GHz	4. 8GHz
observation	529Jy	363Jy
Cosmic ray	492Jy	185Jy
excess	37Jy	178Jy

FIR SFR Contribution from CR "excess" as the upper limit from DM

Lower frequency

Subtract contribution from CR, constraints on DM are comparable to gamma-ray window

If this excess exist for other small scale galaxies

Legacy: Survey Description and Infrared Photometry(92/258)

The rotation curves shapes of late-type dwarf galaxies Arxive:0901.4222, R.A. Swaters et al 17

		_		
UGC2033****	0.03977		UGC7151****	0.64784
UGC2455****	0.07284		UGC7232****	0.15222
UGC3711****	0.19383		UGC7261****	0.09583
UGC3851****	0.36694		UGC7278****	0.767
UGC4305****	0.07526		UGC7524****	0.71783
UGC4325****	0.12908		UGC7603****	0.10884
UGC4499****	0.04375		UGC7690****	0.05661
UGC5272****	0.05319		UGC8490****	0.35408
UGC5414****	0.04432		UGC11861****	0.08045
UGC5721****	0.19589		UGC7399****	0.29246
UGC5829****	0.07584		UGC1281****	0.1224

22 out of 62

with UV to obtain SFR: SFR $(M_o yr^{-1}) = 9.8 \times 10^{-11} (L_{IR} + 2.2L_{UV})$ (erg s⁻¹)

$$L_N = 1.3 \times 10^{30} \times (\frac{\nu}{GHz})^{-\delta} (\frac{\nu_{SN}}{yr^{-1}}) *_{f}$$

Where & How

GALAXY: MW(GC,halo,subhalo)

Nearby Dwarf Galaxies;

Cluster of Galaxies

Extragalactic Background...

STAR: the SUN; Pop III star; Neutron Star Binary System...

Earth: Direct Detection...

Too massive neutron stars: The role of dark matter?

Ang Li, Feng Huang(XMU) Renxin Xu(PKU)

A two-solar-mass neutron star (NS) measured using Shapiro delay

 $1.97 \pm 0.04 \ M_{\odot}$

- Large companion star: $0.5M_{\odot}$
- Remarkably edge-on: 89.17±0.02°

Demorest P., et al, Nature, 2010, 467: 1081

Table 1

Characteristics of the maximum mass configurations (maximum masses M, corresponding radii R and central number densities ρ_c) for different DM mass m_{χ} and composition.

$m_{\chi} ~({\rm GeV})$		SI				WI	
		$M(M_{\odot})$	$R \ (\mathrm{km})$	$\rho_c~({\rm fm}^{-3})$	$M(M_{\odot})$	$R \ (\mathrm{km})$	$\rho_c~({\rm fm}^{-3})$
0.01	NS	2.96	17.3	0.35	2.11	12.4	0.77
	HS	2.96	17.3	0.35	2.11	12.4	0.77
0.1	NS	2.88	16.8	0.36	2.06	11.7	0.82
	HS	2.88	16.8	0.36	2.06	11.7	0.82
1	NS	1.67	9.85	0.68	1.34	6.61	1.39
	HS	1.61	10.5	0.61	0.71	7.39	1.32
10	NS	0.39	2.16	2.61	0.34	1.74	4.12
	HS	0.26	1.99	3.62	0.05	0.65	40.9

 $M_{\chi} = \frac{4}{3}\pi R^3 \bar{\rho_{\chi}} \qquad R = \frac{0.49(M_1/M_2)^{2/3}}{0.6(M_1/M_2)^{2/3} + \ln[1 + (M_1/M_2)^{1/3}]} \ a$

Nucleon Spin Structure ann its impact on Dark Matter Direct Search

Feng Huang(XMU) Shaoyang Jia(St. W&M, USA)

DM interact with quarks through...h. $L = f_q(\bar{\chi}\chi) \cdot (\bar{q}q) + d_q(\bar{\chi}\gamma^{\mu}\gamma^{5}\chi) \cdot (\bar{q}\gamma_{\mu}\gamma^{5}q) + \dots$ quark content quark spin $f_a; d_a$ 0.553 ± 0.043 [4] $m_{\rm u}/m_{\rm d}$ [5]5 $\pm 2 \text{ MeV}$ $m_{ m d}$ $m_{\rm s}/m_{\rm d}$ $18.9 \pm$ 0.8[4] $1.25 \pm 0.09 \text{ GeV}$ [5] m_c $4.20 \pm 0.07 \text{ GeV}$ [5] $m_{ m b}$ $171.4 \pm 2.1 \text{ GeV}$ [6] $m_{ m t}$ [7]36 \pm 7 MeV σ_0 $\Sigma_{\pi N}$ \pm 8 MeV 64 [8, 9] $a_3^{(p)}$ [5] 1.2695 ± 0.0029 Strange quark $a_{8}^{(p)}$ $0.585 \pm$ [10, 11]0.025(p) $-0.09 \pm$ -0.03[12]

Arxiv:[hep-ph]0801.3656

27

Eg: the scale dependency of quark mass

Nucleon Structure in low energy???

- •Lattice QCD
- •Phenomenological model
- •Experiment data

Due to the divergeny of α_s Results confined to the scale of GeV

The scale dependency?

the scale of $m_s^2 \approx 0.01 GeV^2$

Our Model:

•Step1: Expand the Nucleon property in α_s

•Step2: Find the scale dependency of α_s

Converge in the low energy region

QCD coupling constant α_s

$$\beta(\alpha_s) = -\alpha_s^2(\beta_0 + \beta_1\alpha_s + \beta_2\alpha_s^2 + \dots)$$

 $Q^{2} \frac{d\alpha_{s}}{dQ^{2}} = \beta(\alpha_{s}).$ $Q^{2} \frac{d\alpha_{s}}{dQ^{2}} = \beta_{ptb}(\alpha_{s})F_{gm}(Q^{2}),$

1

 $J_{2} = 2(02)$

FIG. 2. Scale Dependence of m and F_{gm} ; Solid line for correction factor, and dashed line for effective gluon mass in unit of GeV.

$$F_{gm}(Q^2) = \frac{Q^2}{4m^2(Q^2) + Q^2} \left(1 + 4\frac{am^2(Q^2)}{dQ^2}\right)$$
$$m^2(Q^2) = \frac{m_0^4}{Q^2 + m_0^2} \left[\ln\left(\frac{Q^2 + 2m_0^2}{\Lambda_{\rm QCD}}\right) / \ln\left(\frac{2m_0^2}{\Lambda_{\rm QCD}^2}\right)\right]^3$$

 Ω^2

FIG. 1. Green solid line: numerical solution to Eq. (8) with four-loop β_{ptb} . Red dotted line: running coupling obtained by three-loop version of Eq. (B1). Blue dashed line: numerical solution to three-loop QCD beta function. All curves are normalized at $Q^2 = M_{Z_0}^2$.

 $\Delta\Sigma(Q^{2}) = \Delta\Sigma(\mu^{2})exp\left\{\int_{Q^{2}}^{\mu^{2}} \left(8n_{f}\left(\frac{\alpha_{s}(Q^{2})}{4\pi}\right)^{2} + \left(200n_{f} - \frac{16}{9}n_{f}^{2}\right)\left(\frac{\alpha_{s}(Q^{2})}{4\pi}\right)^{3}\right)\frac{dQ^{2}}{Q^{2}}\right\}.$

(1): perturbatively expand to what kind of order

(2): How does the coupling constant evolve with the energy scale Q²

33

(10)

 $\Delta_{s}^{p} = \Delta_{s}^{n} = -0.022 \ @Q^{2} = 0.01 GeV^{2}$ 34

Spin-dependent DM-N cross-section

$$\sigma_{\chi p,n} = \frac{32}{\pi} G_F^2 m_r^2 \Lambda^2 J(J+1) \qquad m_r = \frac{m_{\chi} m_p}{m_{\chi} + m_p}$$

where $\Lambda = \frac{a_{p,n}}{I}$ (*J*: the spin of the nucleon) λ $a_{p,n} = \sum_{q=u,d,s} \frac{d_q}{\sqrt{2}G_r} \left(\Delta_q^{(p,n)} \right) \qquad d_q = -\frac{g^2 T_{3q}}{8M_w^2} \left(\left| N_{13} \right|^2 - \left| N_{14} \right|^2 \right) + \dots$ $\Delta_a^{(p,n)}$: the quark spin content of the nucleon $oldsymbol{
h}$ Øur results:♪ $\Delta_{s}^{p} = \Delta_{s}^{n} = -0.022 \ @Q^{2} = 0.01 GeV^{2}$ $\Delta_{s}^{p} = \Delta_{s}^{n} = -0.084 \ (a)Q^{2} = 3GeV^{2}$

		$Q^2 = 0.$	01 GeV ²
		σ_{px}^d/Pb	σ_{nx}^d/Pb
Mx = (GeV)	73.33	1.96E-06	1.84E-06
	78.27	2.88E-03	2.70E-03
	92.25	3.79E-04	3.56E-04
	151.57	4.97E-05	4.70E-05
	165.02	4.54E-04	4.25E-04
	377.32	5.73E-07	5.36E-07
	988.44	9.78E-04	9.16E-04
	1016.83	9.67E-04	9.10E-04

		$Q^2 = 1.$	00 GeV ²
		σ^d_{px}/Pb	σ_{nx}^d/Pb
Mx= (GeV)	73.33	2.34E-06	1.46E-06
	78.27	3.44E-03	2.14E-03
	92.25	4.53E-04	2.81E-04
	151.57	5.95E-05	3.71E-05
	165.02	5.41E-04	3.37E-04
	377.32	6.83E-07	4.25E-07
	988.44	1.17E-03	7.25E-04
	1016.83	1.16E-03	7.19E-04

$\begin{array}{c} Q^2 \\ = 0.01 \text{GeV}^2 \end{array}$		σ^{d}_{Ax}/Pb						
Mx/GeV	a=1, z=0	a=1, z=1	a=7, z=3	a=23, z=11	a=73, z=32	a=127, z=53		
78.27	2.70E- 03	2.88E- 03	3.94E- 02	0.106778814	0.755063204	0.716975714		
151.57	4.70E- 05	4.97E- 05	7.63E- 04	2.70E-03	3.45E-02	4.80E-02		
1016.83	9.10E- 04	9.67E- 04	1.33E- 02	3.68E-02	0.270643779	0.259847102		

表格八:为在自旋Q² = 0.10GeV²下各物质的弹性散射截面

$Q^2 = 0.10 \text{GeV}^2$	σ^d_{Ax}					
Mx/GeV	a=1,	a=1,	a=7,	a=23, z=11	a=73, z=32	a=127,
	z=0	z=1	z=3			z=53
78.27	2.54E-03	3.04E-03	4.16E-02	0.113787152	0.705147425	0.782515072
151.57	4.44E-05	5.25E-05	8.07E-04	2.88E-03	3.22E-02	5.25E-02
1016.83	8.58E-04	1.02E-03	1.41E-02	3.93E-02	0.252621582	0.283863118

