Dark side of the Universe: enlightenment through positrons, gamma-rays and neutrinos

Andi Hektor

CERN, Geneva & NICPB, Tallinn & HIP, Helsinki

in collaboration with M. Cirelli, A. Finoguenov, J. Pata, M. Piibeleht, M. Raidal, A. Strumia, E. Tempel et al

MITP | Mainz | July 2, 2013

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへで

Outlines

0 DM interpetation of AMS-02 positron fraction

The paper will appear in \sim this week

2 γ -rays from galaxy clusters

Our papers: 1207.4466, next one appearing soon

③ Secondary neutrinos from DM annihilation in the Sun

Paper under preparation

(日) (四) (三) (三) (三)

3

γ-rays from galaxy clusters

Neutrinos from DM annihilation in the Sun $_{\rm OOOOOOOOO}$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

(1)

A DM interpetation of AMS-02 positron fraction

Neutrinos from DM annihilation in the Sun $_{\rm OOOOOOOOO}$

Prologue

 e^+ excess from the annihilation signal of the Galactic halo

- Boost factor $\mathcal{O}(1000)$
- Leptonic channels favoured (other killed by $\bar{p} \& \gamma$ constraints)
- SUSY DM is dead, long live SUSY DM!

e^+ excess from the annihilation signal of local overdensity

- No need for the large boost factor
- \bar{p} constraint reduced, γ constraints depend on details
- A close subhalo?
 No constrained by γ-rays + very low probability
- Living in an overdensity fluctuation?
 Yes wait for next slides!
- WW, ZZ, bb, tt and HH favoured SUSY DM is back!

Neutrinos from DM annihilation in the Sun $_{\rm OOOOOOOOO}$

Positron fraction, AD 2011

Neutrinos from DM annihilation in the Sun 000000000

Annihilation signal from the main halo

▲ロト ▲圖ト ▲国ト ▲国ト 三国 - のへで

Neutrinos from DM annihilation in the Sun 000000000

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Annihilation signal from the main halo

Fitting of PAMELA e^+ data, no antiproton fitting

From [Cirelli et al, 0809.2409]

 γ -rays from galaxy clusters

Neutrinos from DM annihilation in the Sun $_{\rm OOOOOOOOO}$

Antiproton flux, AD 2013

Calculated using tools from [Cirelli et al, 1012.4515]

Neutrinos from DM annihilation in the Sun 000000000

Annihilation signal from the main halo

Effect of the \bar{p} fitting

From [Cirelli et al, 0809.2409]

◆□> ◆□> ◆ヨ> ◆ヨ> ◆ヨ> ○○ ○へ⊙

Neutrinos from DM annihilation in the Sun $_{\rm OOOOOOOOO}$

Positron fraction, AD 2013

Neutrinos from DM annihilation in the Sun 000000000

Annihilation signal from the main halo

From PAMELA to AMS02

From [Cirelli et al, 0809.2409]

▲ロト ▲圖ト ▲ヨト ▲ヨト ニヨー のへで

γ-rays from galaxy clusters 0000000000000 Neutrinos from DM annihilation in the Sun $_{\rm OOOOOOOOO}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへぐ

If the e^+ excess arises locally...

(日) (日) (日) (日) (日) (日) (日) (日) (日)

If the e^+ excess arises locally...

Why locally?

- Annoying constraints from GC, dwarfs, extragalactics, CMB, etc get weaker (no boost there!)
- If no energy loss ($R \lesssim 1$ kpc) $\Phi_{e^+}(E)/\Phi_{\bar{\rho}}(E)$ gets better

Need to be checked...

- Shape of the *e*⁺ spectrum?
- $\Phi_{e^+}/\Phi_{\gamma}(E)$?
- Direct detection?

 γ -rays from galaxy clusters

Neutrinos from DM annihilation in the Sun $_{\rm OOOOOOOOO}$

Spherical Cow Model (SCM)

A spherical region of overdensity

$$Q_{x}(r, E) = \begin{cases} Q_{x}(E), & \text{if } r \leq R\\ 0, & \text{if } r > R \end{cases}$$
(1)
$$Q_{x}(E) = \left(\frac{\rho}{m_{\text{DM}}}\right)^{2} \frac{\langle \sigma v \rangle_{x}}{2} f_{x}(E)$$
(2)

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○○○

- $R \lesssim 0.5$ kpc (no energy loss enhances $\Phi_{e^+}(E)/\Phi_{\bar{p}}(E)$)
- $\Phi_{e,p}(E) = \frac{v_{e,p}(E)}{K_{e,p}(E)} \int dr \ r \ Q_{e,p}(r,E) \propto \frac{v^{e,p}(E)}{K_{e,p}(E)} \frac{R^2}{2}$ • $\Phi_{\gamma}(E) = \int dr \ Q_{\gamma}(r,E) \propto R$

Neutrinos from DM annihilation in the Sun $_{\rm OOOOOOOOO}$

SCM + Galactic versus pure Galactic

Fitting of $\Phi_{e^+}^{\text{total}}(E) = \Phi_{e^+}^{\text{SCM}}(E) + \Phi_{e^+}^{\text{Gal}}(E)$

 γ -rays from galaxy clusters

Neutrinos from DM annihilation in the Sun $_{\rm OOOOOOOOO}$

Fitting SCM

 γ -rays from galaxy clusters

Neutrinos from DM annihilation in the Sun $_{\rm OOOOOOOOO}$

Fitting SCM

◆□ > ◆母 > ◆臣 > ◆臣 > ─ 臣 ─ のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Neutrinos from DM annihilation in the Sun $_{\rm OOOOOOOOO}$

γ -ray constraints from the polar regions $|b| > 60^{\circ}$

(ロ) (型) (目) (目) (日) (の)()

Neutrinos from DM annihilation in the Sun

Antiproton constraints

イロト イポト イモト イモト э

Neutrinos from DM annihilation in the Sun $_{\rm OOOOOOOOO}$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○○○

Semi-conclusions

- Favoured channels: WW, ZZ, hh, bb, tt, gg
- SUSY is back
- Beyond SCM
 - Diffusive flux $\propto (R^3 r^3)/R$
 - Direct flux (max) \propto R + r

Neutrinos from DM annihilation in the Sun $_{\rm OOOOOOOOO}$

・ロト ・聞ト ・ヨト ・ヨト

3

Local overdensity

Best fit needs large overdensity: $\rho_{SCM} \simeq 40 \rho_{\odot}$

Kamionkowski, Koushiappas & Kuhlen, 1001.3144

Arithmetics of boost factors

•
$$\Phi_{e^+}^{\text{total}}(E) = B_{\text{part}} \Phi_{e^+}^{\text{SCM}}(E) + B_{\text{part}} \rho_{\text{SCM}}^2(B_{\text{vel}}) \Phi_{e^+}^{\text{Gal}}(E)$$

• γ and $ar{p}$ constraints allow $B_{
m part} \sim 100 \Rightarrow
ho_{
m SCM} \sim 4 \dots 5$

Kamionkowski, Koushiappas & Kuhlen, 1001.3144

▲ロト ▲園ト ▲目ト ▲目ト 三日 - のんの

- Local DM density from gravitational effects?
 - No problem, $V_{
 m SCM}/V_{
 m loc} \lesssim 0.01$
- Direct detection constraints?
 - e.g. Wino (W-loop, $\sigma_{
 m SI} \sim 0.6 imes 10^{-46} \
 m cm^2)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Neutrinos from DM annihilation in the Sun $_{\rm OOOOOOOOO}$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Conclusions

- Local annihilation boost due to a density (or velocity distribution) fluctuation is a plausible explanation of the AMS02 results
- Favoured channels: WW, ZZ, hh, bb, tt, gg
- Predictions:
 - mild excess in $\Phi_{\bar{p}}$ at $E\gtrsim 50~{
 m GeV}$
 - anisotropy of $\Phi_{\bar{p}}$ and Φ_{e^+}

 γ -rays from galaxy clusters \bullet

Neutrinos from DM annihilation in the Sun $_{\rm OOOOOOOOO}$

▲ロト ▲周ト ▲ヨト ▲ヨト 三日 - のくぐ

(2)

$\gamma\text{-rays}$ from galaxy clusters

Where are clusters...

Large scale: CMB, 21-cm, isotropic diffuse γ-rays

Galaxy clusters: γ-rays, SZ-effect

Galactic scale: γ-rays, charged particles, synchrotron, CMB haze

Dwarf scale: γ-rays

(日) (部) (注) (注) (注)

Sub-halo scale (solved/unresolved): γ-rays, charged particles

Э

Neutrinos from DM annihilation in the Sun $_{\rm OOOOOOOOO}$

◆□> ◆□> ◆豆> ◆豆> ・豆 ・のへで

 $\gamma\text{-rays}$ from galaxy clusters $\circ\circ\circ\bullet\circ\circ\circ\circ\circ\circ\circ$

Neutrinos from DM annihilation in the Sun $_{\rm OOOOOOOOO}$

A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B

 $\exists \rightarrow$

Galaxy clusters: first study

Hektor, Tempel & Raidal [1207.4466]

 γ -rays from galaxy clusters

Neutrinos from DM annihilation in the Sun $_{\rm OOOOOOOOO}$

Galaxy clusters (refreshed study): analysed clusters

▲□ > ▲圖 > ▲目 > ▲目 > → 目 → のへで

 γ -rays from galaxy clusters

Neutrinos from DM annihilation in the Sun $_{\rm OOOOOOOOO}$

Galaxy clusters (refreshed study): analysed "cleaner" clusters

Neutrinos from DM annihilation in the Sun $_{\rm OOOOOOOOO}$

Galaxy clusters (refreshed study): *J*-factors

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Galaxy clusters (refreshed study): histograms with better energy resolution

イロト イロト イヨト イヨト ヨー シベウ

Galaxy clusters (refreshed study): histograms with better energy resolution

イロト イヨト イヨト イヨト 三日 - のへで

Galaxy clusters (refreshed study): kernel-smoothed spectra (13 "cleanest")

Galaxy clusters (refreshed study): kernel-smoothed spectra (5 strongest)

 γ -rays from galaxy clusters

Neutrinos from DM annihilation in the Sun $_{\rm OOOOOOOOO}$

Galaxy clusters: correlation between the signal and J-factor

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Neutrinos from DM annihilation in the Sun $_{\rm OOOOOOOOO}$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○○○

Conclusions

What next?

- Reprocessed data from Fermi LAT
- HESS-II
- Using a newer cluster catalog more accurate masses and r₂₀₀
- Analysis of the lower energy data, E < 20 GeV a lot of non-DM physics there also!

γ-rays from galaxy clusters 000000000000 (日) (日) (日) (日) (日) (日) (日) (日) (日)

(3)

Secondary neutrinos from DM annihilation in the Sun

Refreshing memory

- Sun captures DM ($m_{
 m DM}\gtrsim$ 5 GeV)
- Annihilation rate \propto capture rate
- DM annihilation happens in the solar core $(
 ho_{
 m core}\sim 160~{
 m g~cm^{-3}},~T\sim 1~{
 m keV})$
- Only neutrinos can escape from the core
- Stable and semi-stable annihilation products interact with the solar core environment initiating EM and hadronic cascades
- Long-living π^+ , *n* etc get stopped and decay at rest
- Process $\pi^+ \rightarrow \mu^+ + \nu_\mu$ produces a "neutrino line"

γ-rays from galaxy clusters 0000000000000 ▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

What is done and what is not?

What is done?

- Rott, Siegal-Gaskins & Beacom, 1208.0827
- Bernal, Martin-Albo & Sergio Palomares-Ruiz, 1208.0834
- No full scale MC simulations!

Our technical set up

- PYTHIA ⇒ (semi)stable particles ⇒ Geant4 ⇒ oscillations
 ⇒ detector response
- Computational intensive!

$\chi\chi ightarrow$ bb, $m_{ m DM}=100~{ m GeV}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

$\chi\chi ightarrow ZZ$, $m_{ m DM} = 100~{ m GeV}$

◆□▶ ◆□▶ ◆三≯ ◆三≯ 三三 のへで

$\chi\chi ightarrow qq$, $m_{ m DM}=100~{ m GeV}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

$\chi\chi ightarrow au au$, $m_{ m DM}=10000$ GeV

◆ロト ◆御ト ◆注ト ◆注ト 注目 のへで

γ-rays from galaxy clusters 000000000000

π^+ decay signal versus background

γ-rays from galaxy clusters 000000000000 *ロ * * ● * * ● * * ● * ● * ● * ●

Conclusions

- Signal of secondary solar neutrinos is an interesting new observable in DM physics
- However, it is computationally and statistically complex

Thank you!