Introduction	Optical Theorem	SM computation	ID limits	Results	Conclusions
00	00	0	0000	00	O

130GeV gamma-ray line and DM model-building constraints from continuum gamma rays, radio and antiproton data

M. Vollmann M. Asano T. Bringmann G. Sigl

II. Institut für Theoretische Physik Universität Hamburg

MITP Workshop "Cosmic-Rays and Photons from Dark Matter Annihilation: Theoretical Issues"

Introduction	Optical Theorem	SM computation	ID limits	Results	Conclusions
00	00	O	0000	00	O
Outling					

- 1 Introduction
- **2** Optical Theorem
- **3** SM computation
- **4** ID limits

Introduction	Optical Theorem	SM computation	ID limits	Results	Conclusions
●○		0	0000	00	O
The 130 Ge\	/ line				

• Monochromatic γ -ray lines from the GC \Rightarrow Smoking-gun signature for indirect searches of DM

The claim (arXiv: hep-ph/1203.1312; hep-ph/1204.2797)

- 43 month of Fermi data
- Optimized target regions analysis method

 $3.2\sigma~\gamma$ -ray line at $E_\gamma \sim 130\,{
m GeV}$

- If interpreted as $\chi\chi \rightarrow \gamma\gamma$, γZ or γH , $\Rightarrow \sigma v \sim 10^{-27} \text{ cm}^3/\text{s}$ $M_{\chi} = \{130 \text{ GeV}, 145 \text{ GeV}, 155 \text{ GeV}\}$ respectively.
- DM interpretation in debate

Introduction	Optical Theorem	SM computation	ID limits	Results	Conclusions
○●	00	O	0000	00	0

Model-building constraints

• $\chi\chi \to \gamma\gamma$, γZ and $\gamma H \Longrightarrow$ 1-loop processes (χ 's are electrically neutral)

Immediate questions

- ★ What kind of particles run on the loops?
- ★ If these are dominated by SM particles, how are associated tree-level processes related to the 1-loop one describing the line signal?
- ★ Can we relate them in a model-independent fashion?

₩

- "Generalized" Optical Theorem (see Abazajian et al (arXiv: hep-ph/1111.2835))
- ID (continuum γ 's, \bar{p} 's, radio) searches put limits on those tree-level processes \Rightarrow We use these limits to constraint the models

Introduction	Optical Theorem	SM computation	ID limits	Results	Conclusions
00	●○	O	0000	00	O
Optical T	heorem				

• We make use of the generalized Optical Theorem:

Conditions

- Interaction must respect CP and Lorentz invariance
- Initial $|i\rangle$ and final $|f\rangle \Rightarrow$ eigenstates of the total angular momentum @ the CoM

Remark: Setting $|i\rangle = |f\rangle$ yields to the familar optical theorem

Introduction	Optical Theorem	SM computation	ID limits	Results	Conclusions
00	○●	0	0000	00	O
Optical T	heorem (Cont.))			

Master formula

$$r_{i\to f} \equiv \frac{\Im[\mathcal{M}_{i\to f}]^2}{|\mathcal{M}_{i\to f}|^2} \propto \frac{\sum_I \sigma_{i\to I} \sum_I \langle \sigma v \rangle_{f\to f}}{\langle \sigma v \rangle_{i\to f}}$$

allows the user to set constraints on the observable quantity $\Im[\sigma v]_{i \to f} \equiv r_{i \to f} \langle \sigma v \rangle_{i \to f}$, if he follows the following

Procedure

- Compute SM prediction of $\sum \sigma_{i \rightarrow I}$
- $\sum \langle \sigma v \rangle_{f \to I} \to \text{Constraints from continuum } \gamma$'s, \bar{p} 's and radio

•
$$\langle \sigma v
angle_{i
ightarrow f}
ightarrow$$
 Claimed value ($\sim 10^{-27} \, {
m cm^3/s})$

Introduction	Optical Theorem	SM computation	ID limits	Results	Conclusions
		•			

Computation of tree-level amplitudes in the SM

- **1** Initial state $|i\rangle = |\chi\chi\rangle \Rightarrow$ s-wave (L = 0)
 - \checkmark Squared amplitudes of partial waves of superior order (L > 0) go like β^{2L} when $\beta \rightarrow 0$ (typically $\langle \beta_{DM}^2 \rangle \sim 10^{-6}$)
- **2** Use CP & Lorentz symmetry to determine $|i\rangle$, $|I\rangle$ and $|f\rangle \Rightarrow$ you are left with just a handful of possible states!!
- Obecompose amplitudes in terms of helicity eigenstates
- Use Feynmann rules
- Integrate over phase space

Limits fro	om indirect dete	ection			
Introduction	Optical Theorem	SM computation	ID limits	Results	Conclusions
00	00	O	●○○○	00	O

- $\chi\chi$ annihilation products undergo several interesting physical processes
 - Fragment into stable particles such γ 's, \bar{p} 's and e^{\pm} 's
 - e^{\pm} diffuse and may
 - $\bullet\,$ Scatter with a CMB photon and produce high-energy $\gamma{'}{\rm s}$
 - Interact with the galactic magnetic field and emit synchrotron radiation

Fairly well understood expected Continuum gamma-ray, antriproton and synchrotron radiation fluxes.

These suffer from several astrophysical uncertainties, though.

Introduction	Optical Theorem	SM computation	ID limits	Results	Conclusions
00	00	0	○●○○	00	0

Continuum gamma-rays

Gamma-ray emission by DM-annihillation is well described by

$$\gamma$$
 -diff. flux = $\frac{1}{8\pi m_{\chi}^2} \sum_{\text{ann. chann.}} \sigma v \frac{dN}{dE_{\gamma}} \underbrace{\int_{\Delta\Omega} d\Omega \int_{\text{l.o.s.}} ds \rho_{\chi}(r)^2}_{J_{\text{astro}}}$

Likelihood fits to observations enable to constraint several annihilation channels. We use the following

Observations analyses

- Dwarf spheroidal galaxies by Fermi collaboration (arXiv:astro-ph/1108.3546)
- Galactic Centre (Cholis et al. arXiv:hep-ph/1207.1468)
 - Slightly different DM profile than the one in Weniger's hep-ph/1204.2797

 \Rightarrow Rescale J_{astro}

Introduction	Optical Theorem	SM computation	ID limits	Results	Conclusions
00		0	○○●○	00	O
Antiprotro	ons				

Diffusive propagation of antiprotons in the galaxy is described by a diffusion eq. where

- The antiproton yield (\rightarrow source function Q) was computed by using DarkSUSY
- We use two different propagation prescriptions (see Evoli et al. astro-ph.HE/1108.0664)
 - "KRA" (*L* = 4 kpc)
 - "CON" (*L* = 10 kpc)

Data analysis

- PAMELA data (arXiv:1007.0821)
 - \bullet Prescription: Minimally expected astrophysical background+signal < Data+3 σ

Introduction 00	Optical Theorem	SM computation o	Results 00	Conclusions 0

Synchrotron radiation

Synchrotron radiation produced by high-energy e^{\pm} is given by

$$\nu \frac{\mathrm{d}W_{\mathrm{synch.}}}{\mathrm{d}\nu} \approx \frac{1}{2m_{\chi}^2} \sum_{\mathrm{ann. \ chann.}} \sigma \nu \int_{\mathrm{cone}} \mathrm{d}V E_c \rho_{\chi}^2(r) N_e(E_c)$$
$$E_c(r) = 0.46 \,\mathrm{GeV} \left(\frac{\nu}{\mathrm{GHz}}\right)^{1/2} \left(\frac{\mathrm{mG}}{B(r)}\right)^{1/2}$$

• Galactic magnetic field

$$B(r) = 7.2 \,\mathrm{mG} \times \begin{cases} (R_{\mathrm{acc}}/r)^{5/4} & r < R_{\mathrm{acc}} \\ (R_{\mathrm{acc}}/r)^2 & R_{\mathrm{acc}} < r \lesssim 100 R_{\mathrm{acc}} \\ 10^{-4} & r \gtrsim 100 R_{\mathrm{acc}} \end{cases}$$

• Prescription: $\left. \nu \frac{\mathrm{d}W_{\mathrm{synch.}}}{\mathrm{d}\nu} \right|_{\nu=408\,\mathrm{MHz}} < 50\,\mathrm{mJy}$

Introduction	Optical Theorem	SM computation	ID limits	Results	Conclusions
00	00	0	0000	●○	0

Constraints on the model-building

Constraints on $r_{i \rightarrow f}$

Majorana WIMP	cont. gamma <i>limit</i> (GC)	antiproton <i>limit</i> ('KRA', <i>L</i> = 4 kpc)	synchrotron <i>limit</i> (full cone)
ЬБ	$6.0 \times 10^{-6} (5.3 \times 10^{-6})$	$3.0 imes 10^{-6} \ (2.8 imes 10^{-6})$	$7.8 \times 10^{-6} \ (7.2 \times 10^{-6})$
$\tau^+\tau^-$	$2.9 \times 10^{-5} (3.5 \times 10^{-8})$	—	$5.3 imes 10^{-5} (6.8 imes 10^{-8})$
$\mu^+\mu^-$	$5.1 \times 10^{-7} (5.6 \times 10^{-10})$	—	$3.3 \times 10^{-7} (4.4 \times 10^{-10})$
e ⁺ e ⁻	$1.7 \times 10^{-11} (1.4 \times 10^{-14})$	—	$1.9 \times 10^{-11} (2.6 \times 10^{-14})$
W^+W^-	0.021 (0.074)	7.9×10^{-3} (0.029)	0.025 (0.10)

Scalar WIMP	cont. gamma <i>limit</i> (GC)	antiproton <i>limit</i> ('KRA', <i>L</i> = 4 kpc)	synchrotron <i>limit</i> (full cone)
ЬБ	$6.0 \times 10^{-6} (5.7 \times 10^{-6})$	$3.0 imes 10^{-6} (3.0 imes 10^{-6})$	$7.8 imes 10^{-6} (7.7 imes 10^{-6})$
$\tau^+\tau^-$	$2.9 \times 10^{-5} (3.7 \times 10^{-8})$	—	$5.3 \times 10^{-5} (7.2 \times 10^{-8})$
$\mu^+\mu^-$	$5.1 \times 10^{-7} (5.8 \times 10^{-10})$	_	$3.3 imes 10^{-7} (4.5 imes 10^{-10})$
e ⁺ e ⁻	$1.7 \times 10^{-11} (1.5 \times 10^{-14})$	_	$1.9 \times 10^{-11} \ (2.6 \times 10^{-14})$
W^+W^- (t)	0.023 (0.076)	$8.8 imes 10^{-3}$ (0.030)	0.028 (0.10)
W^+W^- (I)	$1.2 \times 10^{-3} (5.3 \times 10^{-4})$	$4.5 imes 10^{-4} (2.1 imes 10^{-4})$	$1.4 \times 10^{-3} (7.1 \times 10^{-4})$

Introduction	Optical Theorem	SM computation	ID limits	Results	Conclusions
00	00	0	0000	○●	O
	าร				

Scan (DarkSUSY) over a selection of MSSM and cMSSM's with $m_\chi pprox$ 145 GeV

Introduction	Optical Theorem	SM computation	ID limits	Results	Conclusions
00	00	O	0000	00	•
Conclusion	IS				

- Interesting debate on the 130 GeV line over the last several months
- Developed a general method constraining model-building, which only assumes Lorentz and CP symmetry
- Applied this formalism to DM particle physics models accounting for the 130 GeV line

The method can be adapted to several situations where model-independence is needed (e.g. arXiv: hep-ph/1111.2835)

- Revised the commonly used methodology used in deriving (radio) constraints
- Demonstrated usefulness of the method by considering a large set of models