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Motivation: Why Study dSph Kinematics?

Clean target for indirect detection

Large mass-luminosity ratio

Proximity and Sphericity

Earth-incident flux strongly dependent on DM density

dφ

dE
=

1

4π

< σv >

2m2
DM

dN

dE
×
∫

∆Ω

∫
ρ2
DM(l ,Ω)dldΩ

Right hand term is the astrophysical J-Factor which
depends on the square of the halo density profile.
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Dwarf Spheroidal Observables

Photometry. The projected radii R and 2D surface brightness
Σ(R) of the stars.

Stellar Kinematics: The projected velocities of order 102 − 103

stars along the line of sight.

Metallicity: Can now identify distinct metal rich and poor
stellar subcomponents.

How can we use this data to constrain the density?
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Assuming spherical symmetry and no collisions a condition for
dynamic equilibrium is the time-independent collisionless
Boltzmann equation (CBE)

∂f

∂t
= vr

∂f

∂r
+

(
v2
θ + v2

φ

r
− dΦ

dr

)
∂f

∂vr

+
1

r
(v2

φ cot θ − vrvθ)
∂f

∂vθ

− 1

r
(vφvr + vφvθ cot θ)

∂f

∂vφ
= 0

This places conditions on the potential for compatibility with
the stellar phase space f (r , ~v) and thus to the observables
upon projection along the line of sight to flos.

Thomas Richardson (In Collaboration with Malcolm Fairbairn) Uncovering the density of DM in dSphs



kcl.png

Motivation and Background
Classic Jeans Analysis

Higher Moments
Conclusions

The CBE is difficult to solve even with current numeric
capabilities. Several key techniques:

Change coordinates to integrals of motion e.g. f (E ) for
isotropic and f (E , L) for anisotropic spherical models to
automatically satisfy CBE.

Integrate over velocity space for Jeans equations that place
local constraints on velocity moments.

Further integrating over position space yields global virial
constraints.
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Multiplying the CBE by vr and integrating over velocity space
gives the second order Jeans equation

d(νσ2
r )

dr
+

2β

r
νσ2

r + ν
dΦ

dr
= 0.

Can calculate the local variance from given gravitational potential
Φ(r), stellar density distribution ν(r) and anisotropy parameter
β(r)

φ(r) =
4πG

r

∫ r

0
r2 [ν(r) + ρDM(r)] dr , β(r) = 1− σ2

t (r)

2σ2
r (r)

,

which measures the deviation from the isotropic system.
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Projection

The projected surface density profile is readily obtained from ν(r),

Σ(R) = 2

∫ ∞

R

ν(r)r√
r2 − R2

dr .

Projecting the dispersion however entangles it in an integral
equation with the unknown anisotropy parameter,

σ2
los =

2

Σ(R)

∫ ∞

R
(1− βR

2

r2
)σ2

r

ν(r)r√
r2 − R2

dr

mass-anisotropy degeneracy → large uncertainty in J-factor.
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Figure: Mass-Anisotropy Degeneracy
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Recipe

Pick a density model e.g NFW profile,

Model the anisotropy, e.g

β(r) = (β∞ − β0)
r2

r2
β + r2

+ β0

Generate a theoretical dispersion via the Jeans equation with
a set of parameters e.g p = {β0, β∞, rβ, ρ0, rnfw}
Fit to the binned variances of velocity data d with likelihood
function e.g

− lnL(d |p) =
1

2

N∑
i=1

(σ2 − σ̂2)2

α2
σ2

Run MCMC for posteriors of density parameters
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Breaking the degeneracy

New methods from larger data sets and resolution of stellar
subcomponents

Mass slope method for multiple subcomponents. Estimates
for Fornax and Sculptor are inconsistent with cuspy profiles.

In Sculptor multiple populations embedded in a shared NFW
cannot jointly satisfy virial constraints (Evans 2012) or the
Jeans equations (Battaglia 08).

With large data sets one could also look to the higher
moments of the velocity distribution.
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There are three unique moments at fourth order v4
r , v

4
t and v2

r v
2
t

related by only two fourth order Jeans equations.

d(νv4
r )

dr
− 6

r
νv2

r v
2
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2

r
νv4
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r
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2
t )
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− 4

3r
νv4
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4

r
νv2

r v
2
t + νσ2

t

dΦ

dr
= 0.

We therefore introduce an extra degree of freedom,

β′(r) = 1− 3

2

v2
r v

2
t

v4
r

to close the equations. The projected fourth moment is then,

v4
los(R) =

2

Σ

∫ ∞

R

(
gv4

r +
3R4

4r3
(β′ − β)σ2

r

dφ
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)
ν(r)r√
r2 − R2

dr

g(β′, r ,R) = 1− 2β′
R2

r2
+
β′(1− β′)

2

R4

r4
− R4

4r3

dβ′

dr
.
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Kurtosis

Need to bin observed LOS data to sample the nth moment,
statistical errors increase rapidly with n.

For ease of interpretation the fourth moment is standardised
for the kurtosis

κlos =
v4
los

(σ2
los)2

Extending the likelihood function with β′ parameters to jointly
fit the line of sight dispersions and kurtosis,

− lnL(d |p) =
1

2

{
N∑
i=1

(σ2
los − σ̂2

los)
2

α2
σ2

+
N∑
i=1

(κlos − κ̂los)
2

α2
κ

}
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Figure: DSph velocity moments (Strigari et al 2010)
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Figure: Fornax MCMC Analysis
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Figure: Sculptor MCMC Analysis
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The kurtosis data does tighten the constraints! The fourth
order degeneracy is less affecting than the traditional one

In Fornax the improvement is small and is not able to
distinguish between cusped and cored solutions. Don’t predict
large core suggested by multiple populations mass slope
method.

In Sculptor a cored solution is clearly favoured. This is line
with evidence from the mass slope method, virial theorem and
Jeans analysis of stellar subcomponents.

So why does the inclusion of the kurtosis make such a dramatic
difference in Sculptor but not Fornax?.......
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Figure: Fornax and Sculptor kurtosis data and Jeans solutions
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Key issues

Foreground contaminants

Binary stars

Potential rotation in Sculptor.

Uncertainty in stellar density profile ν(r)

Whilst each of these could reduce the tension of the Sculptor
measurement with the cusped ΛCDM halo none of them is likely to
increase the core size in Fornax in line with the literature.
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Figure: NFW Jeans solutions with different stellar densities
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Conclusions

DSphs are a clean target for indirect detection and as DM
dominated objects are good tests for N-body simulation
predictions for halo density profiles
The mass-anisotropy degeneracy in the traditional Jeans
analysis generates large uncertainties in the density and
J-factor.
Higher order moments can partially relieve the degeneracy and
predict a cored profile in Sculptor in line with other methods
in the literature. For Fornax however there is tension with the
large cores predicted by studies of stellar subcomponents.
Already with two samples there is variety. To explore whether
astrophysical effects (e.g supernova feedback/star formation),
unexplored systematics or alternative cosmologies (e.g WDM,
SIDM) are the cause of these discrepancies needs more time
and data.
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