Neutrino mass hierarchy study with PINGU

VLVNT, Stockholm August 2013

Andreas Groß on behalf of the IceCube collaboration

Outline

- Introduction
 - Neutrino oscillations, MSW effect, neutrino mass hierarchy
- PINGU detector
 - Possible design, expected performance
- Study of PINGU's sensitivity to neutrino mass hierarchy

Neutrino oscillations

• Mass eigenstates $v_i = flavor$ eigenstates v_{α}

$$- |\nu_{j}\rangle = \sum_{\alpha=e,\mu,\tau} U^{*}_{\alpha j} |\nu_{\alpha}\rangle$$

$$- |\nu_{\alpha}\rangle = \sum_{j=1,2,3} U_{\alpha j} |\nu_{j}\rangle$$

with transition matrix U_{*qi}* (PMNS^{*}-Matrix)</sub>

• Propagation:

 $- |v_i(t)\rangle = e^{-iE_jt} |v_i\rangle$

• Resulting transition probability:

 $\mathsf{P}_{\alpha \to \beta}(\mathsf{E},\mathsf{L}) = \sum_{j=1,2,3} \sum_{k=1,2,3} \bigcup_{\alpha j} \bigcup_{\beta j} \bigcup_{\alpha k} \bigcup_{\beta k} \operatorname{exp}(i \Delta m_{kj}^{2} \mathsf{L} / 2\mathsf{E})$

• Parametrization of U: 3 mixing angles θ_{ii} , complex phase δ

*PMNS-Matrix: Pontecorvo-Maki-Nakagawa-Sakata-Matrix

Status of neutrino oscillation physics

- Known parameters:
 - mixing angles
 - absolute mass differences, mass ordering of v_1 and v_2
- Unknown parameters:
 - Complex phase δ
 - Mass ordering: is v_3 the lightest or the heaviest neutrino?

How we want to measure it?

- MSW effect: neutrino oscillations in matter differ from vaccuum
 - strongest effects for E<10 GeV
- MSW effect depends on hierarchy
- Atmospheric neutrinos: CR interaction in the atmosphere, pion, kaon decay
- Need high statistics of events below 10 GeV
 - This is achievable for ice Cherenkov detectors
 - Use denser instrumentation than for IceCube/DeepCore, ANTARES
 - Instrument a larger volume than for Super-K

Potential design of PINGU

 PINGU (Preciscion IceCube Next Generation Upgrade) is designed to measure the neutrino mass hierarchy with atm neutrinos by reaching a threshold below 10 GeV

Some more technical info

- Wide use of IceCube experience
- Refrozen hole ice has shorter scattering length then bulk ice
 - De-gas water column in the hole before refreezing
- Use more recent in-ice electronics
 - Remove local coincidence condition for data transmission
 - Use only one sampling device
- Deployment of 40 strings realistic in 3 subsequent polar seasons

PINGU performance

Energy and direction reconstruction

Event rate/effective volume

40 strings: enlarged effective volume, in particular for E < 5 GeV

A study to determine PINGU's sensitivity to neutrino mass hierarchy

Perform an analysis of oscillation parameters

- Define χ^2 as a function of the oscillation parameters
- Take into account systematic uncertainties via the pull method
- Treat Δm^2 as a signed quantity
- Define $\Delta \chi^2$ =min χ^2 (NH) min χ^2 (IH) as test statistics for the neutrino mass hierarchy
- Apply the analysis to a representative ('Asimov') dataset
- The significance for this data set is an approximation for the median significance

How is it done?

- Assume true oscillation parameters (here: Δm²=-2.4x10⁻³ eV², sin²(θ₂₃)=0.35, 1 year 40 string PINGU)
- Calculate the expected number of events in each bin (energy, zenith) for these parameters
- 'Asimov' pseudo-data: perform the analysis to these data
- Obtain χ^2 as a function of oscillation parameters
- Find minimum χ^2 for $\Delta m^2 > 0$ and for $\Delta m^2 < 0$
- Here: difference between these minima $\Delta\chi^2$ =12.1 (~3.4 σ)
- Assumed signal efficiency 50% for rejection of bg

LLH ratio method

- Define patterns (expectation values in energy/zenith bins) for normal and inverted hierarchy
- Define LLH
- Test statistics: LLH ratio normal hierarchy vs inverted hierarchy
- Scan various values for Δm^2
- Asumptions: low signal efficiency is assumed, 20 strings config, resolutions from parametrization

Summary

• 3 studies performed:

- Asimov study (discussed above)
- LLH ratio study (discussed above)
- LLH analysis
 - Based on oscillation analysis (as χ^2 study)
 - Use event selection similar as IceCube
 - Most backgrounds implemented

The sensitivity of PINGU

- Scan of different true oscillation parameters
- Comparison of results obtained by different methods (e.g. similar to D. Franco et al., JHEP 1304 (2013) 008)
- This results in a range of expectations (significance vs time)

- Caveats: small impact of CP violating phase δ and $\theta_{_{13}}$ not included here

Crosscheck of the test statistics

Question: is the Asimov approximation using sqrt($\Delta \chi^2$) a good approximation?

Check by the following procedure:

- Run pseudo-experiments (Poisson fluctuations) for different true oscillation parameters
- Compare median $\Delta\chi^2$ of pseudo-exp to Asimov dataset
- Define test statistics for the rejection of the wrong hierarchy: What is the fraction of pseudo-experiments in the wrong hierarchy which gives a larger χ^2 difference?
- Choose the most conservative distribution for any oscillation parameters
- Compare this distribution to the χ^2 distribution assumed for the Asimov approach

See also Qian et al. and Evslin et al.

Not shown here: Asimov dataset agrees with median from pseudo-exp within 1-2%

Conclusion: the Asimov approximation is a good approximation