Search for Neutrinos from Gamma-Ray Bursts with ANTARES

Very Large Volume Neutrino Telescope Workshop 2013 AlbaNova University Center, Stockholm

Julia Schmid for the ANTARES Collaboration August 5 – 7, 2013

FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG

NATURWISSENSCHAFTLICHE FAKULTÄT

Why Gamma Ray Bursts?

Gamma Ray Bursts

- intense flashes of γ radiation
- 2 classes: short ($_{\lesssim}$ 2s) & long ($_{\gtrsim}$ 2s) GRBs
- fast rotating Wolf-Rayet stars \rightarrow SN 1 b/c \rightarrow jet \rightarrow shock fronts
- Fermi-accelerated $e^- \rightarrow$ Synchroton & inverse Compton $\rightarrow \gamma$ -Rays
- may also accelerate p^+ in shocks \rightarrow neutrino signal $p^+ + \gamma \rightsquigarrow \pi^+ \longrightarrow \mu^+ + \nu_\mu \rightarrow e^+ + \nu_e + \overline{\nu}_\mu + \nu_\mu$
- Short & defined position \rightarrow low background

unambiguous proof of hadronic acceleration GRB \longleftrightarrow UHECR?

Reminder: The ANTARES detector

12 lines with 885 photo multiplier tubes, taking data since 2007

ANTARES overview \rightarrow see talk of T. Eberl

First search for ν_{μ} from GRBs: 2007

- ANTARES construction phase:
 5 detection lines
 January 27 to December 7, 2007
- 40 long GRBs, total $T_{\text{search}} = 0.5$ hours
- binned search:

 $T_{\text{search}} = T_{90} \pm 5\%$ reconstructed events $\leq 2^{\circ}$ around GRB fixed reconstruction quality cuts $\beta \leq 1^{\circ} \& \Lambda \geq -5.5$

- \rightarrow expected **Background**:
- \rightarrow expected **Signal**:

 $1.24 \cdot 10^{-4}$ events $1.7 \cdot 10^{-3}$ events

(analytical model by Guetta et al., 2004)

\rightarrow no coincident ν_{μ} event found!

(Adrián-Martínez et al., 2013a, JCAP03(2013)006)

First search for ν_{μ} from GRBs: 2007

limit on Guetta et al. (2004) model

quasi-diffuse limit

(Adrián-Martínez et al., 2013a, JCAP03(2013)006)

August 5 – 7, 2013 | J. Schmid | GRB Analysis with ANTARES

Search for ν_{μ} from GRB: late-2007 — 2011

Overview:

- 9 12 detection lines
 December 07, 2007 to December 31, 2011
- 296 long GRBs, total $T_{\text{search}} = 6.6$ hours
- parameters from *Fermi*, *Swift* & *grbweb* (Aguilar, 2011)
- Signal: per-GRB Monte Carlo simulations

(NeuCosmA model, Hümmer et al., 2010)

- Background: extracted from data
- Extended Maximum Likelihood search
- reconstruction quality cut Λ optimised per GRB

 \longrightarrow maximise model discovery potential \mathcal{MDP}

(Adrián-Martínez et al., 2013b, arXiv:1307.0304, submitted to A&A)

Sky map of selected 296 GRBs

Neutrino Emission from Gamma-Ray Bursts: Models

August 5 – 7, 2013 M. Bustamante GRB Analysis with ANTARES

Expected Neutrino Fluences

NeuCosmA and Guetta spectra thick: sum of the 296 individual spectra August 5 – 7, 2013 | J. Schmid | GRB Analysis with ANTARES

Generation of Signal Distribution

Monte Carlo Simulation \rightarrow Reconstruction \rightarrow Point Spread Function $S(\delta) = dN/d\delta$

August 5 – 7, 2013 | J. Schmid | GRB Analysis with ANTARES

Background estimation from Data

small rate of upgoing events (~ 4/day) \rightarrow average over late-2007 - 2011 for GRB's coordinates Θ, Φ \rightarrow scale by c(t) $\mu_b(\Theta, \Phi) = \langle n(\Theta, \Phi) \rangle_{\text{late-07-11}} \cdot c(t)$ $\rightarrow \mathcal{B}(\delta) = \mu_b \cdot 2\pi \sin(\delta)$

background components: atmospheric ν and misreconstructed atmospheric μ from Cosmic Rays

Extended Maximum Likelihood

- Pseudo–Experiments (*PE*) generated from background distribution B(δ) with n_s = 1, 2, 3, ... signal events injected from S(δ)
- test function

$$Q = \max_{\mu_{s} \in [0, n_{\text{tot}}]} \sum_{i=1}^{n_{\text{tot}}} \log \frac{\mu_{s} \cdot \mathcal{S}(\delta_{i}) + \hat{\mu}_{b} \cdot \mathcal{B}(\delta_{i})}{\hat{\mu}_{b} \cdot \mathcal{B}(\delta_{i})} - (\mu_{s} + \hat{\mu}_{b})$$

a priori knowledge of background rate $\hat{\mu}_{b}$

- ightarrow calculate Q for each PE
- \rightarrow model discovery potential \mathcal{MDP} for each Λ_{cut}
- \Rightarrow find optimal quality cut Λ_{cut}

quality cut optimized for NeuCosmA model probability to make a discovery at expected signal rate μ_s for GRB110918, background $\hat{\mu}_b = 3.7 \cdot 10^{-4}$

Final Analysis Parameters

Optimisation results for the 10 most promising GRBs

GRB	$\Lambda_{\rm cut}$	$\mu_{\rm b}$	$\mu_{ m s}^{ m NeuCosmA}$	$\mu_{ m s}^{ m Guetta}$	$\langle \alpha \rangle$	<i>T</i> _{search}	$\sigma_{\rm tot}$
					(°)	(s)	
11091889	-5.5	$3.7 \cdot 10^{-4}$	3.5·10 ^{−2}	1.7·10 ^{−1}	0.32	73.4	
08060725	-5.4	$5.5 \cdot 10^{-4}$	6.5·10 ^{−3}	1.4·10 ^{−2}	0.33	164.3	
11100892	-5.5	$3.6 \cdot 10^{-4}$	2.2·10 ^{−3}	2.6·10 ^{−3}	0.35	75.4	
10101417	-5.1	$4.1 \cdot 10^{-4}$	1.2·10 ^{−3}	1.7·10 ^{−2}	0.89	723.1	
10072809	-5.6	$2.0 \cdot 10^{-4}$	$9.6 \cdot 10^{-4}$	1.4·10 ^{−2}	0.49	268.6	
09020174	-5.4	$5.4 \cdot 10^{-4}$	$7.0 \cdot 10^{-4}$	2.4·10 ^{−2}	0.39	126.6	
11122048	-5.2	$1.4 \cdot 10^{-4}$	$6.2 \cdot 10^{-4}$	1.2·10 ^{−2}	1.13	66.5	
09082967	-5.4	$1.7 \cdot 10^{-4}$	$3.9 \cdot 10^{-4}$	5.7·10 ⁻³	1.02	112.1	
11062215	-5.4	$1.7 \cdot 10^{-4}$	$4.3 \cdot 10^{-4}$	9.5·10 ^{−3}	1.42	116.6	
08100914	-5.5	1.3·10 ^{−4}	$3.5 \cdot 10^{-4}$	1.9·10 ^{−3}	0.94	70.2	
all GRBs:							3σ
mean	-5.4	$1.7 \cdot 10^{-4}$	$2.0 \cdot 10^{-4}$	1.6 ⋅10 ⁻³	2.85	80.4	
sum		$5.1 \cdot 10^{-2}$	$6.1 \cdot 10^{-2}$	4.8·10 ^{−1}		2.4·10 ⁴	

Results

No event found in stacked GRB search windows!

expected events: 0.48 (Guetta), 0.061 (NeuCosmA)

Results

No event found in stacked GRB search windows!

 \rightarrow 90% C.L. limits (dashed)

Results

No event found in stacked GRB search windows!

expected events: 0.48 (*Guetta*), 0.061 (*NeuCosmA*) Grey: first ANTARES limit, 40 GRBs in 2007 Black: IceCube IC40+59 limit, 300 GRBs (Abbasi et al., 2012)

August 5 – 7, 2013 | J. Schmid | GRB Analysis with ANTARES

Summary

- 2 GRB searches with ANTARES: 2007 (construction phase) & late-07 – 2011 (full detector) →no excess over background found
- put most stringent limits on Southern Hemisphere bursts
- for the first time optimised for numerical *NeuCosmA* model \rightarrow predicted fluxes \sim 10 lower than analytical models
 - \rightarrow expected neutrinos from GRBs still compatible with non-observation!

⇒ Current & future neutrino telescopes may soon probe numerical GRB neutrino emission models

Bundesministerium für Bildung und Forschung

References

Abbasi R., Abdou Y., Abu-Zayyad T., et al., 2012, Nat 484, 351
Adrián-Martínez S., Albert A., Al Samarai I., et al., 2013a, JCAP 2013, 006
Adrián-Martínez S., Albert A., Al Samarai I., et al., 2013b, ArXiv e-prints
Aguilar J.A., 2011, In: IUPAP (ed.) ICRC, Vol. 8. Proceedings of the 32nd International Cosmic Ray Conference, Institute of High Energy Physics, Beijing, p. 232 Guetta D., Hooper D., Alvarez-Muñiz J., et al., 2004, Astropart. Phys. 20, 429

Hümmer S., Baerwald P., Winter W., 2012, Phys. Rev. Lett. 108, 231101

Hümmer S., Rüger M., Spanier F., Winter W., 2010, ApJ 721, 630

NeuCosmA simulations: P. Baerwald

Fermi: http://heasarc.gsfc.nasa.gov/W3Browse/fermi/fermigbrst.html
Swift: http://swift.gsfc.nasa.gov/docs/swift/archive/grb_table.html

GCN provided by *lceCube*: http://grbweb.icecube.wisc.edu

Backup

FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG

NATURWISSENSCHAFTLICHE FAKULTÄT

Signal & Background PDFs

Effective Area for muon neutrinos, late-2007 – 2011

Background Calculation

$$\mu_b(\Theta, \Phi) = \langle n(\Theta, \Phi) \rangle_{\text{all runs}} \cdot c_i \cdot c_{\text{period}} \cdot 1.5$$

with $c_i = \frac{[n_i]^{90\%}}{t_i \sum t_j / \sum n_j}$

- n(Θ, Φ): max of average and central value of 10° cone around GRB position (Θ, Φ)
- *c_i*: correction factor for run *i*, ratio of events in this run and average events in this run
- *c*_{period}: correction for long periods with stable conditions
- 1.5: width of n_{est} / n_{meas}

Signal PSF fit

GRB Parameter Catalogue

condensated from

- Fermi: best photon spectrum
- Swift: best localisation
- *grbweb*: fill up missing parameters (Aguilar, 2011)

Default parameters:

$$\begin{array}{ll} \alpha = 1 & \beta = \alpha + 1 & \epsilon_{\text{peak}} = 200 \, \text{keV} \\ z = 2.15 & L_{\text{iso}} = 10^{52} \, \text{erg/s} \\ \Gamma = 316 & \epsilon_e = 0.1 & \epsilon_B = 0.1 \\ f_e = 0.1 & \langle x_{p \to \pi} \rangle = 0.2 & t_{\text{var}} = 0.01 \, \text{s} \end{array}$$

same as in Aguilar (2011)

Selection of Gamma Ray Bursts

(exclusion percentage)

- either spectrum or fluence measured (3%)
- duration given (2%)
- long GRBs (15%)
- below ANTARES horizon (47%)
- ANTARES taking physics data (29%)
- whole GRB in data taking run & stable conditions (19%)

1108 GRBs in total \longrightarrow 296 GRBs in selected sample, \sim 27%.

Model Discovery Probability

$$\mathcal{MDP} \equiv \sum_{n_s=0}^{\infty} \mathcal{P}(n_s | \mu_s) \cdot \int_{Q_p^{\text{thres}}}^{\infty} h_{n_s}(Q)$$

- *n_s*: injected signal events in pseudo experiment
- $\mathcal{P}(n_s|\mu_s)$: Poisson distribution for signal rate μ_s
- $h_{n_s}(Q)$: Distribution of Q-values for given n_s
- Q_p^{thres} : threshold value of Q for given significance

maximum of $\mathcal{MDP} \longrightarrow$ optimal quality cut

distributions of Q and μ_s^{est} for $n_s = 0, 1, 2, 3, \dots$ injected signal events Model Discovery Probabilities and probability of Q-values versus μ_s . August 5 - 7, 2013 | J. Schmid | GRB Analysis with ANTARES

GRB models: Comparison

revision: full γ distribution, full Δ width, E loss of secondaries, E dependenc of p mean free path, still Δ approximation

numerical *NeuCosmA*: Monte Carlo simulations based on SOPHIA, full $p-\gamma$ cross section, multi $-\pi$ and K^+ production

Analysis in Numbers

• Search radius $\delta_{max} = 10^{\circ}$

Simulations

Signal $S(\delta)$ 4 · 10⁹ ν_{μ} tracks 150 shower events

pseudo experiments 10^{10} background PEs 10^5 PEs for each n_s

Check for optimal Subsample N_{GRB}

thick: extended maximum likelihood method, thin: binned analysis with fixed cuts $\Lambda > -5.5$, $\beta < 1^{\circ}$.