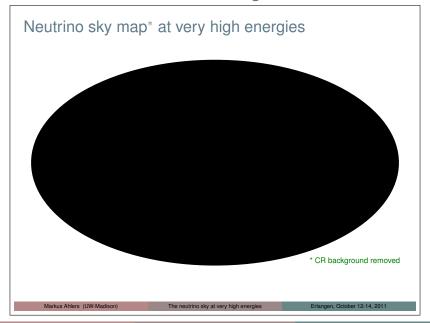
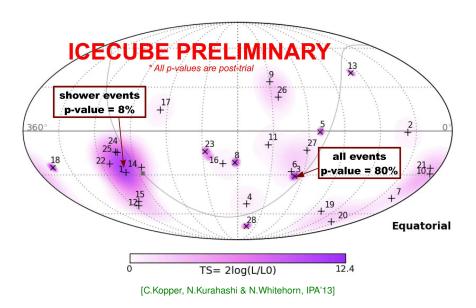
Multi-Messenger Tests of the IceCube Excess

Markus Ahlers


UW-Madison & WIPAC

VLV ν T Workshop Stockholm, August 5, 2013

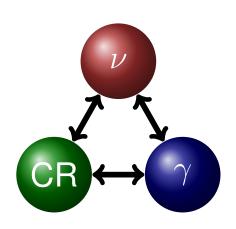


Introduction: VLV_VT 2011 Erlangen

Introduction: VLV ν T 2013 Stockholm

"IceCube excess"

• IceCube observes 28 events over a period of two years, while $10.6^{+5.0}_{-3.6}$ are expected from conventional atmospheric contributions.


[C.Koppers's and N.Whitehorn's talks at this meeting]

- flux excess at 4.1σ for combined 26+2 fit
- isotropic and flavor-universal
- small excess in the Southern Hemisphere even after correction for zenith angle dependent acceptance
- E^{-2} spectrum favors cutoff/break at 2-5 PeV
- "best-fit" of the HESE spectrum

$$E_{\nu}^{2}J_{\nu_{\alpha}}^{\rm IC} \simeq (1.2 \pm 0.4) \times 10^{-8} \text{GeVs}^{-1} \text{cm}^{2} \text{sr}^{-1}$$

Multi-messenger paradigm

- Neutrino production is closely related to the production of cosmic rays (CRs) and γ-rays.
- 1 PeV neutrinos correspond to 20 PeV CR nucleons and 2 PeV γ-rays
- → very interesting energy range:
 - Glashow resonance?
 - galactic or extragalactic?
 - isotropic or point-sources?
 - chemical composition?
 - pp or $p\gamma$ origin?

- more \(\nu\) flux properties (non-lceCube & preliminary data):
 - "Glashow-excitement" [Barger, Learned & Pakvasa 1306.2309; Bhattacharya et al. 1209.2422]
 - spectral features [Laha et al. 1306.2309; Anchordoqui et al. 1306.5021; He et al. 1307.1450]
 - flavor composition

[Winter 1307.2793]

• typical neutrino energy from $p\gamma$ interactions (in boosted environments):

$$E_{\nu,\mathrm{pk}} \simeq \frac{1}{20} \Gamma^2 \frac{m_{\Delta}^2 - m_p^2}{4\omega} \simeq 8 \mathrm{PeV} \, \Gamma^2 \left(\frac{\mathrm{eV}}{\omega_{\mathrm{eV}}} \right)$$

GZK neutrinos from optical-UV background

[Berezinsky&Zatsepin'69]

- prompt neutrino emission in GRBs ($\Gamma \simeq 300$ / $E_{\gamma} \simeq 1$ MeV) [Waxman&Bahcall'97
- ullet UV emission from AGN disk ($\Gamma \simeq 1$ / $E_{\gamma} \simeq 10$ eV) [Stecker/Done/Salamon/Sommers'91]
- . .
- neutrinos form pp interactions follow CR spectrum: $E_{
 u, ext{max}} \simeq \frac{1}{20} E_{p, ext{max}}$
 - starburst galaxies ($E_{\nu, \rm max} \simeq 100 \, {\rm TeV}$)

Loeb&Waxman'06

• hypernova ($E_{\nu, \rm max} \simeq 1 \ {\rm PeV}$)

[Fox, Kashiyama & Meszaros 1305.6606]

- •
- spectral breaks from synchrotron loss of mesons and muons before decay, e.g. in GRBs

more ν flux properties (non-lceCube & preliminary data):

"Glashow-excitement" [Barger, Learned & Pakvasa 1306.2309; Bhattacharya et al. 1209.2422]

• spectral features [Laha et al. 1306.2309; Anchordoqui et al. 1306.5021; He et al. 1307.1450]

flavor composition

[Winter 1307.2793]

• typical neutrino energy from $p\gamma$ interactions (in boosted environments):

$$E_{\nu,\mathrm{pk}} \simeq \frac{1}{20} \Gamma^2 \frac{m_{\Delta}^2 - m_p^2}{4\omega} \simeq 8 \mathrm{PeV} \, \Gamma^2 \left(\frac{\mathrm{eV}}{\omega_{\mathrm{eV}}} \right)$$

GZK neutrinos from optical-UV background

[Berezinsky&Zatsepin'69]

• prompt neutrino emission in GRBs ($\Gamma \simeq 300$ / $E_{\gamma} \simeq 1$ MeV) [Waxman&Bahcall'97]

ullet UV emission from AGN disk ($\Gamma\simeq 1$ / $E_{\gamma}\simeq 10$ eV) [Stecker/Done/Salamon/Sommers'91]

• ..

• neutrinos form pp interactions follow CR spectrum: $E_{
u, {
m max}} \simeq {1\over 20} E_{p, {
m max}}$

• starburst galaxies $(E_{\nu, \rm max} \simeq 100 {\rm \ TeV})$

[Loeb&Waxman'06]

• hypernova ($E_{\nu, \rm max} \simeq 1 \ {\rm PeV}$)

[Fox, Kashiyama & Meszaros 1305.6606]

• ...

 spectral breaks from synchrotron loss of mesons and muons before decay, e.g. in GRBs

- more ν flux properties (non-lceCube & preliminary data):
 - ★ "Glashow-excitement" [Barger, Learned & Pakvasa 1306.2309; Bhattacharya et al. 1209.2422]
 - spectral features [Laha et al. 1306.2309; Anchordoqui et al. 1306.5021; He et al. 1307.1450]
 - flavor composition

[Winter 1307.2793]

• typical neutrino energy from $p\gamma$ interactions (in boosted environments):

$$E_{\nu,\mathrm{pk}} \simeq \frac{1}{20} \Gamma^2 \frac{m_{\Delta}^2 - m_p^2}{4\omega} \simeq 8 \mathrm{PeV} \, \Gamma^2 \left(\frac{\mathrm{eV}}{\omega_{\mathrm{eV}}} \right)$$

GZK neutrinos from optical-UV background

[Berezinsky&Zatsepin'69]

- prompt neutrino emission in GRBs ($\Gamma \simeq 300$ / $E_{\gamma} \simeq 1$ MeV) [Waxman&Bahcall'97]
- ullet UV emission from AGN disk ($\Gamma\simeq 1$ / $E_{\gamma}\simeq 10$ eV) [Stecker/Done/Salamon/Sommers'91]
- ..
- neutrinos form pp interactions follow CR spectrum: $E_{
 u, \max} \simeq \frac{1}{20} E_{p, \max}$
 - starburst galaxies ($E_{\nu, \rm max} \simeq 100 \text{ TeV}$)

[Loeb&Waxman'06]

• hypernova ($E_{\nu, \rm max} \simeq 1 \; {\rm PeV}$)

[Fox, Kashiyama & Meszaros 1305.6606]

- . . .
- spectral breaks from synchrotron loss of mesons and muons before decay, e.g. in GRBs

- more ν flux properties (non-lceCube & preliminary data):
 - * "Glashow-excitement" [Barger, Learned & Pakvasa 1306.2309; Bhattacharya et al. 1209.2422]
 - spectral features [Laha et al. 1306.2309; Anchordoqui et al. 1306.5021; He et al. 1307.1450]
 - flavor composition

[Winter 1307.2793]

• typical neutrino energy from $p\gamma$ interactions (in boosted environments):

$$E_{\nu,\mathrm{pk}} \simeq \frac{1}{20} \Gamma^2 \frac{m_{\Delta}^2 - m_p^2}{4\omega} \simeq 8 \mathrm{PeV} \, \Gamma^2 \left(\frac{\mathrm{eV}}{\omega_{\mathrm{eV}}} \right)$$

GZK neutrinos from optical-UV background

[Berezinsky&Zatsepin'69]

- prompt neutrino emission in GRBs ($\Gamma \simeq 300$ / $E_{\gamma} \simeq 1$ MeV) [Waxman&Bahcall'97]
- ullet UV emission from AGN disk ($\Gamma\simeq 1$ / $E_{\gamma}\simeq 10$ eV) [Stecker/Done/Salamon/Sommers'91]
- ..
- neutrinos form pp interactions follow CR spectrum: $E_{
 u, \max} \simeq \frac{1}{20} E_{p, \max}$
 - starburst galaxies ($E_{\nu, \rm max} \simeq 100 \text{ TeV}$)

[Loeb&Waxman'06]

• hypernova ($E_{\nu, \rm max} \simeq 1 \; {\sf PeV}$)

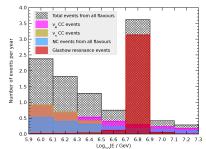
[Fox, Kashiyama & Meszaros 1305.6606]

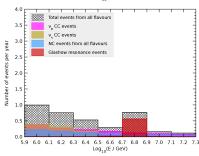
- . . .
- spectral breaks from synchrotron loss of mesons and muons before decay, e.g. in GRBs

Glashow resonance

resonant interactions with in-ice electrons:

$$\bar{\nu}_e e^- \to W \to X$$

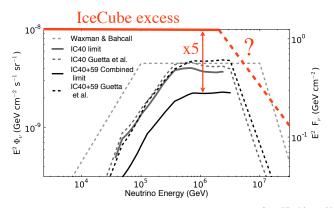

- hadronic (70%) or leptonic (30%) decay
- pp (top plot) and $p\gamma$ (bottom plot) with different flavor ratios and E^{-2} -flux [Bhattacharya, Gandhi, Rodejohann & Watanabe'11]
- early "Glashow-excitement" after Neutrino 2012, Kyoto


[Barger, Learned & Pakvasa 1207.4571] [Bhattacharya et al. 1209.2422]

- Where are the Glashow events?
- → flavor composition and spectral features

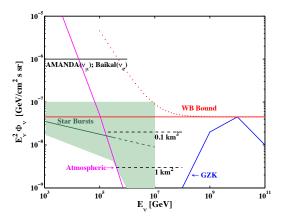
 [Laha et al. 1306.2309; Anchordoqui et al. 1306.5021]

 [He et al. 1307.1450; Winter 1307.2793]



Gamma-ray Bursts

- strong limits on neutrino emission associated with the fireball model [Abbasi et al.:12]
- → IceCube excess exceeds IC40+59 limit by factor ~ 5
 - **loophole:** undetected low-power γ -ray bursts (GRB)


[Murase & loka 1306.2274]

[modified from Abbasi et al.:12]

Starburst galaxies

- intense CR interactions (and acceleration) in dense starburst galaxies
- cutoff/break feature (0.1-1) PeV at the CR knee (of these galaxies), but very uncertain
- plot shows muon neutrinos on production (3/2 of total)

[Loeb & Waxman'06]

Proposed source candidates

extragalactic sources:

✗ GZK neutrinos

relation to the sources of UHE CRs

GZK from low E_{max} blazars

cores of active galactic nuclei (AGN)

low-power γ-ray bursts (GRB)

star-forming galaxies

[Roulet, Sigl, van Vliet & Mollerach 1209.4033]

[Kistler, Stanev & Yuksel 1301.1703]

[Kalashev, Kusenko & Essey 1303.0300]

[Stecker 1305.7404]

[Murase & loka 1306.2274] [He et al. 1303.1253; Murase. MA & Lacki 1306.3417]

• intergalactic shocks and AGN in structured regions [Murase, MA & Lacki 1306.3417]

Galactic sources

• heavy dark matter decay [Feldstein, Kusenko, Matsumoto & Yanagida 1303.7320

• peculiar hypernovae [Fox, Kashiyama & Meszaros 1305.6606;MA & Murase (in prep.)]

• diffuse Galactic γ -ray emission [MA & Murase (in prep.)

• γ -ray association:

• unidentified Galactic TeV γ -ray sources

• sub-TeV diffuse Galactic γ -ray emission

[Fox, Kashiyama & Meszaros 1306.6606]

[Neronov, Semikoz & Tchernin 1307.2158]

Proposed source candidates

extragalactic sources:

K GZK neutrinos

K

relation to the sources of UHF CRs

GZK from low E_{max} blazars

cores of active galactic nuclei (AGN)

low-power γ -ray bursts (GRB)

star-forming galaxies

[Roulet, Sigl, van Vliet & Mollerach 1209.4033] [Kistler, Stanev & Yuksel 1301.1703]

[Kalashev, Kusenko & Essey 1303.0300] [Stecker 1305.7404]

[Murase & loka 1306.2274]

[He et al. 1303.1253: Murase, MA & Lacki 1306.3417]

intergalactic shocks and AGN in structured regions [Murase, MA & Lacki 1306.3417]

Galactic sources:

heavy dark matter decay peculiar hypernovae

[Feldstein, Kusenko, Matsumoto & Yanagida 1303.7320]

diffuse Galactic γ -ray emission

[Fox. Kashiyama & Meszaros 1305.6606:MA & Murase (in prep.)] [MA & Murase (in prep.)]

Proposed source candidates

extragalactic sources:

✗ GZK neutrinos

relation to the sources of UHE CRs

• GZK from low E_{max} blazars

cores of active galactic nuclei (AGN)

low-power γ-ray bursts (GRB)

star-forming galaxies

[Roulet, Sigl, van Vliet & Mollerach 1209.4033]

[Kistler, Stanev & Yuksel 1301.1703]

[Kalashev, Kusenko & Essey 1303.0300] [Stecker 1305.7404]

[Murase & loka 1306.2274]

[He et al. 1303.1253; Murase, MA & Lacki 1306.3417]

intergalactic shocks and AGN in structured regions [Murase, MA & Lacki 1306.3417]

Galactic sources:

heavy dark matter decay
 [Feldstein, Kusenko, Matsumoto & Yanagida 1303.7320]

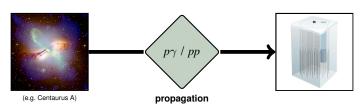
peculiar hypernovae [Fox, Kashiyama & Meszaros 1305.6606;MA & Murase (in prep.)]

• diffuse Galactic γ -ray emission [MA & Murase (in prep.)]

• γ -ray association:

• unidentified Galactic TeV γ -ray sources

• sub-TeV diffuse Galactic γ -ray emission

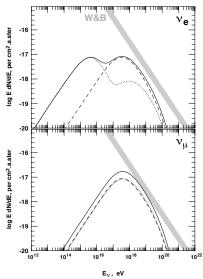

[Fox, Kashiyama & Meszaros 1306.6606]

[Neronov, Semikoz & Tchernin 1307.2158]

Cosmogenic neutrinos

- Can these events have a cosmogenic origin?
- cos-mo-gen-ic (adj.): "produced by cosmic rays"
- **X** but this is true for all high-energy neutrinos...
- "our" definition: not in the source or atmosphere, but during CR propagation
- most plausibly via pion production in $p\gamma$ interactions, e.g.

$$\begin{aligned} p + \gamma_{\text{bgr}} &\to \Delta \to n + \pi^+ \\ \pi^+ &\to \mu^+ \nu_\mu &\& \mu^+ \to e^+ \bar{\nu}_\mu \nu_e \end{aligned}$$


GZK neutrinos from CMB

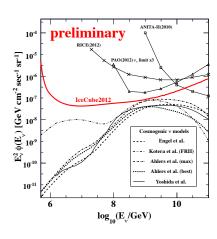
- Greisen-Zatsepin-Kuzmin (GZK) interactions of ultra-high energy CRs with cosmic microwave background (CMB) [Greisen'66;Zatsepin/Kuzmin'66]
- "GZK"-neutrinos at EeV energies from pion decay [Berezinsky/Zatsepin'69]
- three neutrinos $(\nu_{\mu}/\bar{\nu}_{\mu}/\nu_{e})$ from π^{+} :

$$E_{
u_{\pi}} \simeq \frac{1}{4} \langle x \rangle E_p \simeq \frac{1}{20} E_p$$

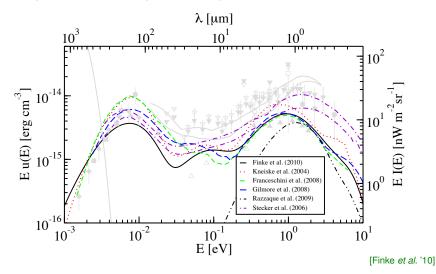
one neutrino from neutron decay:

$$E_{\bar{\nu}_e} \simeq \frac{m_n - m_p}{m_n} E_p \simeq 10^{-3} E_p$$

[Engel, Stanev & Seckel'01]


GZK neutrinos from CMB

- Greisen-Zatsepin-Kuzmin (GZK)
 interactions of ultra-high energy CRs
 with cosmic microwave background
 (CMB) [Greisen'66;Zatsepin/Kuzmin'66]
- "GZK"-neutrinos at EeV energies from pion decay [Berezinsky/Zatsepin'69]
- three neutrinos $(\nu_{\mu}/\bar{\nu}_{\mu}/\nu_{e})$ from π^{+} :


$$E_{
u_{\pi}} \simeq \frac{1}{4} \langle x \rangle E_p \simeq \frac{1}{20} E_p$$

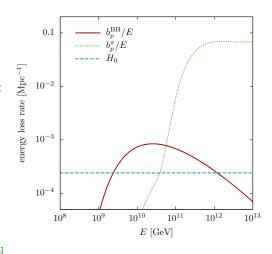
• one neutrino from neutron decay:

$$E_{\bar{\nu}_e} \simeq \frac{m_n - m_p}{m_n} E_p \simeq 10^{-3} E_p$$

Extra-galactic background light (EBL)

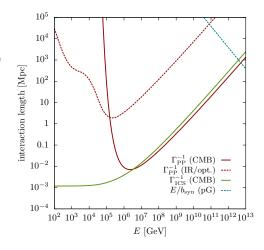
optical-UV background gives PeV neutrino peak

Cosmogenic neutrinos & gamma-rays


 GZK interactions produce neutral and charged pions

$$p + \gamma_{\text{CMB}} \rightarrow n + \pi^+/p + \pi^0$$

• Bethe-Heitler (BH) pair production:

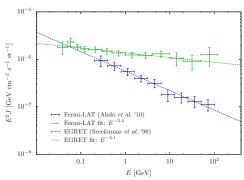

$$p + \gamma_{\text{CMB}} \rightarrow p + e^+ + e^-$$

- → BH is dominant energy loss process for UHE CR protons at ~ 2 × 10⁹ ÷ 2 × 10¹⁰ GeV.
 - EM components cascade in CMB/EBL and contribute to GeV-TeV γ-ray background [Berezinsky&Smirnov'75]

Gamma-ray cascades

- CMB interactions (solid lines) dominate in casade:
 - inverse Compton scattering (ICS) $e^{\pm} + \gamma_{\text{CMB}} \rightarrow e^{\pm} + \gamma$
 - pair production (PP) $\gamma + \gamma_{\text{CMB}} \rightarrow e^+ + e^-$
- PP in IR/optical background (red dashed line) determines the "edge" of the spectrum.
- this calculation: Franceschini et al. '08

Rapid cascade interactions produce universal GeV-TeV emission (almost) independent of injection spectrum and source distribution.

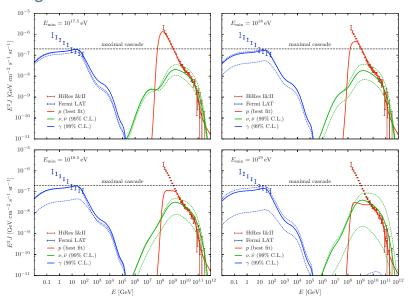

→ "cascade bound" for neutrinos

[Berezinsky&Smirnov'75]

Gamma-ray cascades

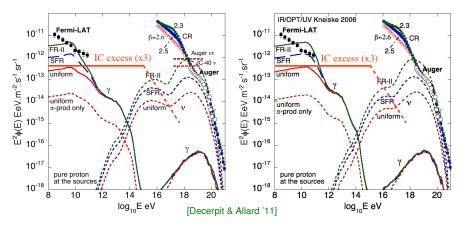
- CMB interactions (solid lines) dominate in casade:
 - inverse Compton scattering (ICS) $e^{\pm} + \gamma_{\text{CMB}} \rightarrow e^{\pm} + \gamma$
 - pair production (PP) $\gamma + \gamma_{\rm CMB} \rightarrow e^+ + e^-$
- PP in IR/optical background (red dashed line) determines the "edge" of the spectrum.
- this calculation: Franceschini et al. '08

diffuse γ -ray background

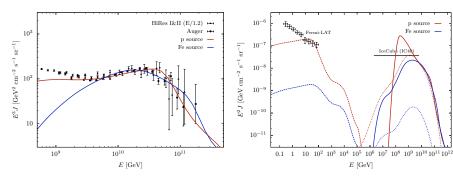


Rapid cascade interactions produce universal GeV-TeV emission (almost) independent of injection spectrum and source distribution.

→ "cascade bound" for neutrinos


[Berezinsky&Smirnov'75]

Cosmogenic neutrinos from EBL


[MA, Anchordogui, Gonzalez-Garcia, Halzen & Sarkar '11]

Cosmogenic neutrinos from EBL

- neutrino flux depend on source evolution model (strongest for "FR-II") and EBL model (highest for "Stecker" model)
- "Stecker" model disfavored by Fermi observations of GRBs
- x strong evolution disfavored by Fermi diffuse background

Composition dependence of UHE CR sources

- UHE CR emission toy-model:
 - 100% proton: n = 5 & $z_{\text{max}} = 2$ & $\gamma = 2.3$ & $E_{\text{max}} = 10^{20.5}$ eV
 - 100% iron: n = 0 & $z_{\text{max}} = 2$ & $\gamma = 2.3$ & $E_{\text{max}} = 26 \times 10^{20.5}$ eV
- Diffuse spectra of cosmogenic γ -rays (dashed lines) and neutrinos (dotted lines) vastly different. [MA&Salvado'11]

Cosmogenic neutrinos from heavy nuclei

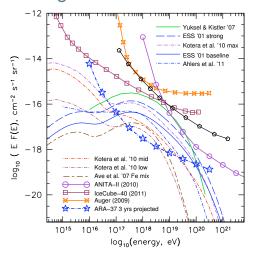


TABLE II: Expected numbers of events $N_{\rm V}$ from several UHE neutrino models, comparing published values from the 2008 ANITA-II flight with predicted events for a three-year exposure for ARA-37.

Model & references N_{v} :	ANITA-II,	ARA,
	(2008 flight)	3 years
Baseline cosmogenic models:		
Protheroe & Johnson 1996 [27]	0.6	59
Engel, Seckel, Stanev 2001 [28]	0.33	47
Kotera, Allard, & Olinto 2010 [29]	0.5	59
Strong source evolution models:		
Engel, Seckel, Stanev 2001 [28]	1.0	148
Kalashev et al. 2002 [30]	5.8	146
Barger, Huber, & Marfatia 2006 [32]	3.5	154
Yuksel & Kistler 2007 [33]	1.7	221
Mixed-Iron-Composition:		
Ave et al. 2005 [34]	0.01	6.6
Stanev 2008 [35]	0.0002	1.5
Kotera, Allard, & Olinto 2010 [29] upper	0.08	11.3
Kotera, Allard, & Olinto 2010 [29] lower	0.005	4.1
Models constrained by Fermi cascade bound:		
Ahlers et al. 2010 [36]	0.09	20.7
Waxman-Bahcall (WB) fluxes:		
WB 1999, evolved sources [37]	1.5	76
WB 1999, standard [37]	0.5	27

[ARA'11]

Best-fit range of GZK neutrino predictions (~two orders of magnitude!) cover various evolution models and source compositions.

Neutrino and γ -ray connection

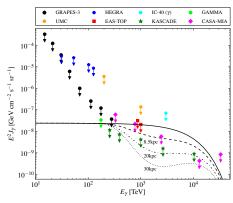
related production of charged and neutral pions:

$$pp \ p\gamma$$
 $ightarrow \left\{ egin{aligned} X+\pi^\pm \ X+\pi^0 \end{aligned}
ight.$

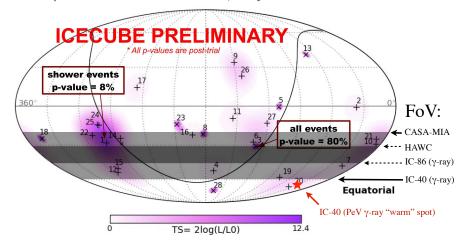
simple related production spectra:

$$E_{\gamma}Q_{\gamma}(E_{\gamma})\simeq rac{2}{K}rac{1}{3}\sum_{
u_{lpha}} E_{
u}Q_{
u_{lpha}}(E_{
u})$$

- neutrino energy: $E_{\nu} \simeq E_{\gamma}/2$
- pion ratio: $K = \frac{N_{\pi^{\pm}}}{N_{\pi^0}}$
- $K \simeq 2 \ (K \simeq 1)$ for $pp \ (p\gamma)$ scenario

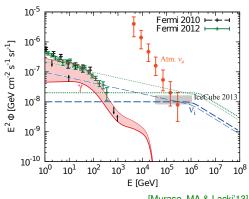


Isotropic diffuse TeV-PeV γ -ray limits

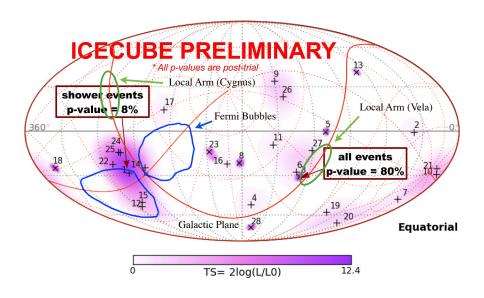

IceCube-equivalent diffuse γ-ray flux:

$$E_{\gamma}J_{\gamma}(E_{\gamma})\simeq e^{-rac{d}{\lambda\gamma\gamma}}rac{2}{K}rac{1}{3}\sum_{
u_{\sigma}}E_{
u}J_{
u_{lpha}}^{
m IC}(E_{
u})$$

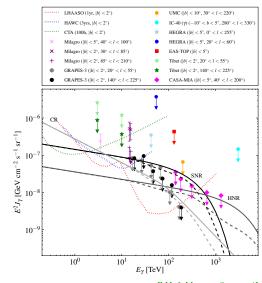
- absorption length $\lambda_{\gamma\gamma}$ via $\gamma\gamma \to e^+e^-$
- effect strongest for CMB in PeV range: $\lambda_{\gamma\gamma} \simeq 10 \ \mathrm{kpc}$
- plot shows distance d from 8.5 kpc (GC) to 30 kpc
- strong constraints of isotropic diffuse
 Galactic emission from γ-ray
 observatories [Gupta 1305.4123]


Isotropic diffuse TeV-PeV γ -ray limits

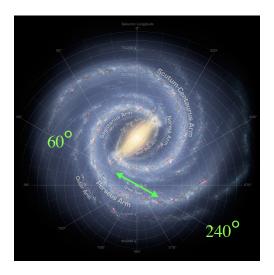
- 15 events lie in TeV-PeV "blind spot"
- one PeV event ("Ernie") within 10° of PeV γ -ray "warm spot" [IceCube'12]


GeV-TeV γ -ray limits on pp scenario

- neutrino flux in pp scenario follows CR spectrum $\propto E^{-\Gamma}$
- low energy tail of GeV-TeV neutrino/γ-ray spectra
- constraint by extragalactic γ-ray background
- extra-galactic emission: $\Gamma \lesssim 2.2$
- Galactic emission: $\Gamma \lesssim 2.0$
- limits insensitive to redshift evolution effects

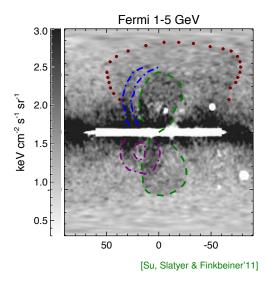

[Murase, MA & Lacki'13]

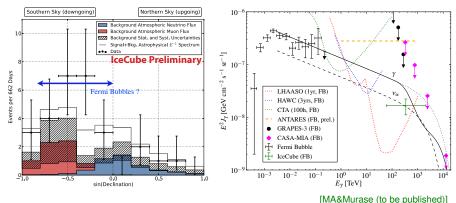
Extended Galactic sources


Galactic Plane diffuse fluxes

- diffuse γ -ray emission from CR propagation ($|b| < 2^{\circ}$)
- supernova remnants (SNR): $R_{\rm SN} \simeq 0.03 {\rm yr}^{-1}$ $\mathcal{E}_{\rm ej} \simeq 10^{51} {\rm erg}$ $N_{\rm SNR} \simeq 1200$
- hypernova remnants (HNR): $R_{\rm HN} \simeq 0.01 R_{\rm SN}$ $\mathcal{E}_{\rm ej} \simeq 10^{52} {\rm erg}$ $N_{\rm HNR} \simeq 20$
- - $J \propto 30\%$ for $|b| < 10^{\circ}$ $J \propto 15\%$ for $|b| < 30^{\circ}$
- however, this does not account for local fluctuation

[MA & Murase (in prep.)]


Milky Way and Local Arm


Close-by sources in the Local Arm can show up as high-latitude hot spots!

Fermi Bubbles

- two extended GeV γ-ray emission regions close to the Galactic Center [Su, Slatyer & Finkbeiner'10]
- hard spectra and relatively uniform emission
- some correlation with WMAP haze and X-ray observation
- model 1: hadronuclear interactions of CRs accelerated by star-burst driven winds and convected over few 10⁹ years [Crocker & Aharonian'11]
- model 2: leptonic emission from 2nd order Fermi acceleration of electrons [Mertsch & Sarkar'11]
- probed by associated neutrino production [Lunardini & Razzaque'12]

Fermi Bubbles

- small zenith "excess" in IceCube excess (but not significant)
- Galactic Center source(s) of extended source, e.g. "Fermi Bubbles"?
- [Finkbeiner, Su & Slatyer'10]
- FB "excess" in agreement with GeV-PeV neutrino & γ -ray observations and limits assuming $\Gamma \simeq 2.2$

Summary: VLV vT 2011 Erlangen

Summary

- X No surprises yet: very high energy neutrino sky looks dark.
- Neutrino (non-)observatories have reached a sensitivity to constrain multi-messenger signals – γ-rays and UHE CRs – with "minimal" assumptions.
- Cosmogenic neutrinos of proton-dominated models in reach, even with stronger bounds on diffuse γ-ray emission from Fermi-LAT.
- ✗ However, there are model uncertainties, in particular evolution of CR sources.
- Strong integral limit on diffuse emission set by IceCube (PeV-EeV):
 - $\omega_{\text{Fermi}} \simeq 6 \times 10^{-7} \text{ eV/cm}^3$
 - $\omega_{\rm HiRes,E>4EeV} \simeq 4 \times 10^{44} {\rm erg/Mpc}^3/{\rm yr} \times t_{\rm age} \simeq 1 \times 10^{-7} {\rm eV/cm}^3$
 - $\omega_{\rm IC40} \lesssim 1 \times 10^{-7} \, \rm eV/cm^3$
- Specific neutrino emission models, e.g. prompt neutrino emission of GRBs can already be tested by present limits.

Markus Ahlers (UW-Madison)

The neutrino sky at very high energies

Erlangen, October 12-14, 2011

Summary: VLV vT 2013 Stockholm

- IceCube Excess marks the beginning of HE neutrino astronomy.
- ✔ PeV neutrino signal connects to an interesting multi-messenger energy region:
 - Glashow resonance?
 - galactic or extragalactic?
 - isotropic or point-sources?
 - chemical composition?
 - pp or $p\gamma$ origin?
- \rightarrow Diffuse γ -ray observations serve as a diagnostic tool.
 - limits on diffuse TeV-PeV γ -ray emission challenge the contribution of local sources
 - hints for GeV-TeV γ -ray counterparts? (Cygnus region, Fermi Bubbles,...)
 - however, TeV-PeV "blind spot" due to lack of Southern observatories