Sensitivity of the KM3NeT detector to a neutrino flux from the Fermi Bubbles

P. Piattelli for the KM3NeT collaboration

INFN-Laboratori Nazionali del Sud – Catania (Italy)

Presented on behalf of R. Coniglione

The Fermi Bubbles observations

• High energy $\gamma\text{-rays}$ from two well defined in shape large bubbles in the Milk Way has been observed by Fermi LAT (Meng and Su 2010)

The Fermi Bubbles

≈ 50° above and below the Galactic centre and ≈ 40° in longitude.

The Fermi Bubbles observations: the counterparts

 X-ray, microwaves and very recently radio emissions also observed

High energy γ -emission region

Carretti et al., Nature Jan 2013

The high energy y-ray spectrum

- Analysis based on a complex map processing depending on Galactic emission modelling
 - First analysis of Meng Su et al. (Astrophys. J. 2010)
 - Confirmed by the Fermi collaboration on a larger set of data ... bubble spectrum measured up to 500 GeV (Preliminary spectrum showed at ICRC2013 -- not yet published -- with a cutoff above 100 GeV ... very low statistics in the cutoff region)

The γ spectrum is flat in E² dN/dE and of high intensity (several 10⁻⁷ GeV cm⁻² s⁻¹ sr⁻¹)

No evidence of spacial variation both in the spectrum shape and in the intensity

A cartoon picture

In Meng Su et al. the bubbles are explained as due to relativistic CR electrons that produce γ through IC process

In Crocker et Aharonian (2010) gammas are originated by a CR population associated with long time scale star formation in the GC (~10¹⁰ years), interacting with the ambient matter and producing high energy gamma through π0 decay.

OPEN QUESTIONS

- ✓ What mechanism produces the high energy γ-rays?
- ✓ Are also high energy neutrinos produced?

KM3NeT detector -> talk by U. Katz

The sensitivity analysis

Monte Carlo Simulations

- neutrinos from bubbles and their interactions
- atmospheric neutrinos (Bartol flux) and their interactions
- atmospheric muons (Mupage parameterisation)
- Light simulation (optical water properties)
- Hit generation (PMT simulation)
- 40K Background and electronics
- Track reconstruction

Discovery flux calculation

- Minimization of Discovery Potential (MDP)
- Cuts related to the reconstruction quality and number of hits (related to the muon energy)

Details on: A.M. Martinez et al. (KM3NeT collaboration), Astropart. Physics 42 (2013) 7

The generation region

- Up-going tracks selected
- •Visibility for a detector located in the Mediterranean sea
 - •Bubble North ~ 58%

The neutrino spectrum

If the mechanism is fully hadronic and the source transparent to γ-rays the expected neutrino flux can be estimated from the measured γ-ray spectrum. (F.L.Villante and F.Vissani, Phys.~Rev.~D 78 (2008) 103007)

From measured γ

 $E_{\gamma}^{2} d\Phi/dE_{\gamma} \approx 4 \times 10^{-7} \text{ GeV cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$ Bubbles solid angle $\approx 0.7 \text{ sr}$

To expected neutrino

 $E_v^2 d\Phi/dE_v \approx 10^{-7} \text{ GeV cm}^{-2} \text{ s}^{-1}$

Neutrino spectra with cutoff at 100 TeV and 30 TeV also considered

Is this flux observable with the KM3NeT detector?

The results

Discovery potential at 3σ and 5σ (50% discovery probability) as a function of the observation years

Detector with

- 12320 OMs
- 180m distance between DUs
- $\approx 6 \text{ km}^3$

Cutoff 30 TeV

Cutoff 100 TeV

No Cutoff

Results depend on the assumed spectrum

About 1.5 year to discover the Fermi Bubbles for a 100 TeV cutoff spectrum

Detail on A. M. Martinez et al. KM3NeT collaboration, Astropart. Physics 42 (2013) 7-14 10

....as a function of detector size

Neutrino telescopes have modular design; science capabilities increase continuously with size.

Number of reconstructed events as a function of the number of OM

Linear increase of the number of reconstructed events

....as a function of detector size

Time for discovery as a function of number of OM

Discovery (5σ) for a detector with ≈ 6000 OMs in about 2.5 years

Evidence 3σ in 2.5 years for a detector with ≈ 2000 OMs

Conclusions

- Fermi bubbles are a promising source for the KM3NeT detector
- Assuming a E⁻² neutrino spectrum with cutoff@100 TeV
 - Discovery (5σ) in 1.5 years for the full KM3NeT detector
 - Evidence (3σ) in about 2.5 years in the first stage of construction (about 15% of the complete detector)

